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Abstract

Lane detection is a key task for autonomous driving ve-
hicles. Currently, lane detection relies on a huge amount of
annotated images, which is a heavy burden. Active learning
has been proposed to reduce annotation in many computer
vision tasks, but no effort has been made for lane detection.
Through experiments, we find that existing active learning
methods perform poorly for lane detection, and the reasons
are twofold. On one hand, most methods evaluate data un-
certainties based on entropy, which is undesirable in lane
detection because it encourages to select images with very
few lanes or even no lane at all. On the other hand, ex-
isting methods are not aware of the noise of lane annota-
tions, which is caused by heavy occlusion and unclear lane
marks. In this paper, we build a novel knowledge distillation
framework and evaluate the uncertainty of images based on
the knowledge learnt by the student model. We show that
the proposed uncertainty metric overcomes the above two
problems. To reduce data redundancy, we explore the in-
fluence sets of image samples, and propose a new diversity
metric for data selection. Finally we incorporate the uncer-
tainty and diversity metrics, and develop a greedy algorithm
for data selection. The experiments show that our method
achieves new state-of-the-art on the lane detection bench-
marks. In addition, we extend this method to common 2D
object detection and the results show that it is also effective.

1. Introduction
Lane detection is a crucial task for autonomous driving.

Recently, great advances have been made by deep learning
to improve the lane detection performance [33, 31, 8]. How-
ever, a deep model requires a huge amount of training data
in order to yield a satisfying result. Due to the large aspect
ratio and the special shape of lanes, it is highly expensive
and cumbersome to annotate a sufficiently large dataset.

Active learning is a well-known technique to reduce the
annotation cost [34, 42, 25]. It is proposed to select the most
informative data items from the unlabeled dataset according

Figure 1: Examples of noisy annotations. All the lanes ex-
cept the rightmost one are invisible (occluded or unclear) in
the original image. Their locations are annotated by guess-
ing and can be misleading to a lane detection model.

to some policy. The selected data items are then annotated
manually and added to the training set. Various selection
policies have been proposed. Compared to the random se-
lection, these policies manage to reduce the annotation cost
by a large margin, and in the meanwhile, they are able to
achieve a competitive, or even better, training performance.

However, though active learning has been fruitful in im-
age classification [3, 42, 39], object detection [2, 6, 19],
semantic segmentation [38, 41], and other non-computer-
vision areas [30, 15, 32], we find that for the lane detection
task, the existing methods are not so effective. The rea-
sons are twofold. On one hand, entropy is widely used to
estimate the uncertainty of images. The images with high-
est entropy values are considered informative. But in prac-
tice, we observe that entropy-based methods are prone to
selecting images with very few lanes. These images pro-
vide less useful information than normal ones, and there-
fore a model trained using them does not perform well. On
the other hand, lane annotations are often noisy. For ex-
ample, on the CULane dataset [29], many annotations are
made in regions where there are no visible lane marks at
all. An example image is shown in Fig. 1. In these regions,
annotators decide the location of an invisible lane just by
guessing. The guessed annotations are often incorrect and
can bring heavy noise. Existing methods do not model the
noisy lane annotations, and are therefore easily disturbed.
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Figure 2: Framework of our proposed method. We build three models, the large teacher model, the small student model, and
the student model distilled by the teacher (Student-KD in the figure). The prediction gaps of three models on each unlabeled
image are used to estimate the uncertainty. The diversity score of an image is estimated based on its influence set, extracted
from the outcome of the student model. The uncertainty and diversity scores are combined as the final score for data selection.

In this paper, we propose the first active learning method
for lane detection, as shown in Fig. 2. It is able to solve
the two above-mentioned problems (i.e., unsuitable entropy
metric and label noise). To get rid of estimating the entropy,
we propose to use Knowledge Distillation (KD) to explore
uncertain samples. We regard the lane detection model to
be deployed as the student (denoted as Student-KD in Fig.
2), and train it together with a large teacher model. We use
their prediction gap as the basic estimation of uncertainty.

In addition, we also use KD to solve the label noise prob-
lem. We find that useful knowledge can be transferred from
the teacher to the student, but label noise is difficult to trans-
fer. On images with noisy labels, the prediction gaps be-
tween the teacher and the student are generally larger than
those on normal images. However, a large prediction gap
between the teacher and the student does not necessarily in-
dicate high label noise. There can be knowledge, i.e., label
with no noise, which is naturally difficult for the student to
learn. To distinguish noise from hard-to-learn knowledge,
we train another student model (denoted as Student in Fig.
2) that has the same structure as Student-KD. The difference
is that we train it independently without knowledge distilla-
tion from the teacher. We also measure the prediction gap
between the two students. Since label noise is random, on
a noisy image, the prediction gap between any pair of the
three models is likely to be large. On the contrary, a small
prediction gap between any pair of the models indicates that
the label noise is likely to be low. Based on these obser-
vations, we propose a novel uncertainty metric that is able
to capture both the knowledge and the noise. Images with
more knowledge and less noise are selected.

Uncertainty is not the only factor to decide the informa-
tiveness of a sample. Data redundancy can lead to waste in
annotation cost [37]. Therefore, diversity is also a key factor
for efficient data selection. We present a new diversity met-

ric that uses influence sets [23] to estimate the diversity of
a selected set. In the data selection phase, we calculate the
similarity between unlabeled images based on their feature
maps. Given the pair-wise similarity, we build the influence
set for each image based on its reverse nearest neighbors
and estimate the diversity score. Then, the uncertainty score
and diversity score are combined as the final score for data
selection (see Fig. 2). We formulate the data selection as a
set cover problem, and use a greedy algorithm to solve it.

We perform extensive experiments on the most widely
used benchmarks [29, 4]. The results show that our method
achieves state-of-the-art performance on all the datasets. In
addition, we adapt our method to 2D object detection and
test it on a benchmark. The results show that our method
outperforms a recent active learning method specifically de-
signed for 2D object detection, and is therefore extendable
to other visual recognition tasks.

Our contributions are summarized as follows:

1. We propose the first active learning method for lane
detection. A knowledge distillation framework is built
to solve the two specific problems in lane detection,
the unsuitable entropy and label noise problems. We
are also the first to explore knowledge distillation in
the data selection of active learning.

2. We propose a novel uncertainty metric that is able
to capture both knowledge and noise. Besides, we
present a diversity metric based on reverse nearest
neighbors to solve the data redundancy problem. The
combination of the two metrics is not only effective but
also extendable to other visual recognition tasks.

3. The experiments on two widely used lane detection
benchmarks show that our method outperforms recent
active learning methods. We also demonstrate the ef-
fectiveness of our method for object detection.
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2. Related Work
Lane Detection. The lane detection problem has been

studied for decades. Early methods rely on hand-crafted
features and their capability is limited to detecting lanes
in easy cases [40, 5]. In recent years, deep learning im-
proves the lane detection performance by a large margin.
Pan et al. [29] proposed a spatial CNN model to pass in-
formation across rows and columns inside a neural layer,
and used a segmentation head to predict lanes. PINet [21]
first predicted point clouds in the lane regions and then per-
formed clustering in post-processing. PointLaneNet [8] and
FastDraw [31] detected lanes in an object-detection manner.
They both enumerated anchors on feature maps and built
multi-task headers to perform classification and regression,
respectively. The UFLD [33] first built row anchors on an
image and formulated the lane detection problem as to se-
lect certain pixels in each anchor. A very recent work [26]
used a transformer to predict the shape parameters of lanes.
Different from these methods, we focus on active learning
for lane detection and our method is model agnostic.

Active Learning. Active learning aims at selecting most
informative data items to form the training set and improve
the training performance at a very low annotation cost. The
informativeness of a data item is studied from two per-
spectives, uncertainty and diversity. A variety of methods
were proposed to estimate the uncertainty, such as cross en-
tropy [16, 30], best-vs-second-best [18, 36], expected model
change [7, 9, 22], etc. Gal et al. [20, 10, 24] proposed
a series of Bayesian methods, drawing samples from the
dropout distribution of a stochastic neural network. The
uncertainty was evaluated as the mutual information of the
sample outputs. Yoo et al. [42] proposed to directly esti-
mate the uncertainty using a header of the model. Gao et
al. [12] and Zhou et al. [45] added augmentations to in-
put images and evaluated the uncertainty as the consistency
of model predictions. Instead of solving general problems,
Liu et al. [25] incorporated spatial information to the active
learning for human pose estimation. Similar idea was used
by Aghdam et al. [2] in 2D object detection.

A common drawback of the above methods is that they
ignore data redundancy. To deal with this problem, Nguyen
et al. [28] extracted clusters from the unlabeled dataset
and prevented the model from repeatedly selecting samples
from the same cluster. Sener et al. [37] defined the prob-
lem as a core-set selection problem and proposed a k-center
greedy algorithm to solve it. Agarwal et al. [1] combined
this idea with a contextual diversity measurement, encod-
ing spatial context variations in sample selection. Sinha et
al. [39] directly searched for the most representative sam-
ples using an adversarial learning framework.

None of the previous methods is designed specifically for
lane detection. They are either inapplicable to lane detec-
tion or able to solve the problem only partially. In compar-

ison, we propose a framework that works very well for this
task, and it is extendable to other visual recognition tasks.

Knowledge Distillation. Knowledge Distillation
(KD) [13] was firstly proposed to transfer knowledge from
a large model to a small model for model compression.
Recently, researchers started to exploit the competence of
KD in semi-supervised learning and active learning. Gao
et al. [11] used KD in semi-supervised learning to improve
the tolerance to data noise. Yun et al. [44] were the first
to employ KD in active learning. However, they used KD
only in the training phase, while we also use KD in the data
selection phase (see Section 3.2).

3. Proposed Method
In this section, we introduce our method in detail. We

first describe the knowledge distillation method, which is
used to train the models and perform prediction on the un-
labeled dataset. Then we present the calculation of predic-
tion gaps, and propose a novel uncertainty metric to esti-
mate valuable knowledge as well as label noise. After that,
we design a diversity metric to reduce data redundancy. Fi-
nally, we combine the uncertainty and diversity metrics and
develop an algorithm to select most informative samples.

3.1. Knowledge Distillation

We first build three models, a teacher (MT ) and two stu-
dents (MS and MS−KD). The teacher model uses a larger
backbone network, while the two students are of the same
structure. In the training phase, we train MS and MT inde-
pendently on an initial training set. In this step, no informa-
tion is passed between them.

We choose PointLaneNet (PLN) [8] as the primary
model for its simplicity. Other models are also applicable.
PLN has a backbone network to extract visual features, and
builds two headers on the feature map. One header predicts
the class of each feature pixel. The other predicts the co-
ordinates of all the points of the lane passing through this
pixel. The detection loss of PLN consists of a classification
loss and two regression losses, which is defined as:

Ldet =

w∑
i=1

h∑
j=1

(λCEij + µ1ijL
loc
ij + ν1ijL

pos
ij ), (1)

where CE denotes the cross entropy, Lloc and Lpos are two
L2 losses for regression, w and h are respectively the width
and height of the feature map, λ, µ and ν are weights, and
1ij is the indicator function which is 1 if the pixel (i, j) is
selected and otherwise 0. The definitions of these losses are
based on the model predictions and the ground truth. More
details about Eq. (1) refers to [8].

After the initial independent training, we obtain the
trained student model MS and teacher model MT . Then,
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Figure 3: An example of case 4. (a) The original image. (b) The ground truth. (c) The prediction of the teacher. (d) The
prediction of the distilled student. (e) The prediction of the student without distillation. Obviously, the difference DST

between (c) and (d) is large, and DSS between (d) and (e) is also large. The reason is that, as shown in (a), most lane marks
in this image are occluded and it is difficult for the models to detect the lanes. However, though this image presents a difficult
case, we do not want to select it, because in this case, annotators are prone to guessing the locations of the occluded lanes.
As shown in (b), the middle and right lanes are guessed by the annotator. Guessed annotations are often incorrect and thus
misleading the models. Therefore, our uncertainty metric penalizes this by the fraction between DSS and DST in Eq. (5).

we train the other student MS−KD by distilling the knowl-
edge from MT using the same initial training set. Follow-
ing [8], we design a distillation loss Ldis that also consists
of one classification loss and two regression losses. These
losses are similar to those in [8], and the only difference is
that the ground truth in [8] is replaced by the soft prediction
of the teacher MT . Thus, the training loss of MS−KD (i.e.,
KD Loss in Fig. 2) is defined as:

Loss = Ldet + αLdis, (2)

where α is a weighting factor. The difference between
MS−KD and MS is that MS−KD is trained to learn from
both the ground truth and the teacher. It is usually stronger
than MS . Here we also call MS a student because it has the
same structure as the real student MS−KD.

3.2. Uncertainty

Uncertainty is a natural criterion for data selection.
Cross entropy is a commonly used uncertainty measure-
ment. However, we will show in the experiments that this
method is prone to selecting images with few lanes, which
therefore provide less information for training. Label noise
also causes uncertainty. Fitting to noisy labels reduces the
model performance. In this subsection, we propose a novel
uncertainty metric to solve these two problems.

We first define the prediction gap between two models.
Given an image p and two models M1 and M2, denote the
sets of their predicted lanes as M1(p) and M2(p), respec-
tively. For each lane l1 ∈M1(p), we find its closest lane in
M2(p) with:

l2 = argmin
l∈M2(p)

Dist(l1, l). (3)

The distance Dist() between two lanes is calculated as the
segment-wise Euclidean distance. Then the prediction gap
between M1 and M2 is defined as:

D12(p) = max
l1∈M1(p)

Dist(l1, l2). (4)

To simplify the notation, we use D12(p) and D12 inter-
changeably in the following.

We now have three trained models, the student MS , the
distilled student MS−KD, and the teacher MT . To model
the uncertainty, we calculate the gap DSS between MS

and MS−KD, and the gap DST between MS−KD and MT .
DSS captures the knowledge learned by the distilled student
from the teacher. DST captures the knowledge that is dif-
ficult for the student MS−KD to learn. Based on DSS and
DST , we divide uncertain samples into four typical cases:

1. Small DSS and small DST . This means the model
predictions are stable and consistent. The image is
likely to be an easy sample. There is no need to an-
notate it.

2. Small DSS and large DST . There is a large gap be-
tween the teacher and the distilled student. This means
the student MS−KD cannot well learn from the teacher
for this image, which can be caused either by diffi-
cult knowledge or noise. The small DSS indicates
that the image is unlikely to cause label noise, because
an image easy to cause wrong annotations usually has
unclear lane marks, leading two different models to
guessing randomly with a large gap between their pre-
dictions. Therefore, this image hopefully contains use-
ful knowledge and is valuable to annotate.

3. Large DSS and small DST . A small gap between the
teacher and the distilled student indicates the knowl-
edge is easy to learn. However, a large DSS means
there is a risk to trust the teacher. The teacher can
transfer incorrect knowledge to the student. Therefore,
this image is also valuable to annotate.

4. Large DSS and large DST . The three models cannot
provide consistent predictions on this image. Noisy
images usually cause this problem and we do not want
to select them. Even if this is not due to noise, it is not
an easy sample for all the three models. Considering
the two reasons, though this image can be valuable to
annotate, we do not treat it as the highest priority.

An example of case 4 is shown in Fig. 3. Other cases are
given in the appendix.
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Figure 4: Comparison of the distance-based [25] and our RNN-based strategies. We randomly select five video segments
from the CULane dataset, and in each segment we randomly choose two frames. Then the two strategies are used to select
five from these ten images. The distance-based method chooses images 3, 5, 6, 9, and 10, while ours obtains images 2, 3,
6, 8, and 9. Our selection naturally covers all the five segments, but the distance-based method ignores the first and forth
segments. This indicates that the average distance is not an appropriate metric to evaluate the influence among images.

Combining the above four cases, we propose a simple
yet effective uncertainty metric for image p:

Uncr(p) = (DSS +DST ) ·max{DST

DSS
,
DSS

DST
}. (5)

This metric encourages a large difference between DSS

and DST , so that images of cases 2 and 3 will get large
scores. For easy samples, DSS and DST are both small,
and this metric is small. If DSS and DST are both large
(case 4), (DSS + DST ) is also large, but it is penalized
by max{DST

DSS
, DSS

DST
}. In this way, the images with potential

noise will not get very large uncertainty scores. During data
selection, we simply sort the images in the decreasing order
of their uncertainty values and select those with top values.

3.3. Diversity

In addition to uncertainty, diversity is another important
factor in selecting informative samples. It encourages the
selected samples to be representative of, or in other words,
to be able to influence, a variety of other unlabeled samples.

A recent method [25] evaluates the diversity of a sam-
ple by its average feature distance to other unlabeled sam-
ples. An image with the minimum average distance to all
other unlabeled images is considered as the most influential
sample. However, for lane detection, we can illustrate that
this average distance is not an appropriate metric of the in-
fluence (diversity). In a lane dataset, images are sampled
from video segments, and therefore, there are many simi-
lar images from a scene. A natural way to find an influen-
tial subset is to select one image from every video segment
and then annotate them for training. However, the distance-
based metric [25] cannot achieve this, as shown in the sim-
plified experiment in Fig. 4. The reason is that the dis-
tance between two images calculated in a high-dimensional
feature space is often not equivalent to the perceptual dis-
similarity of them. Another recent work [3] uses the K-
Means++ method for data selection, but its effectiveness on
lane detection has not been validated. In fact, our experi-
ments (Section 4.1 and Section 4.2) show that our diversity
metric proposed below is a superior one.

In this work, we explore the influence set of each image,
and define the diversity of a selected subset as the number
of unlabeled samples it can influence. The influence set is
extracted based on reverse nearest neighbors (RNNs). If

a sample p is the nearest neighbor of a sample q, then re-
versely, q is called the reverse nearest neighbor of p. Given
a sample p, a dataset S, a distance function d(), and an in-
teger k, the reverse k nearest neighbors of p is defined as:

RNNk(p) = {q ∈ S − {p}|p ∈ NNk(q)}, (6)

where NNk(q) denotes the k nearest neighbors of q.
RNNk(p) means that the sample p is closer to all the sam-
ples in RNNk(p) than most of the other samples in the en-
tire dataset S. Therefore, p is likely to be the most influen-
tial sample for all the samples in RNNk(p).

Given the unlabeled dataset SU , the current subset of se-
lected samples V ⊂ SU , and an image p ∈ SU , we de-
fine the diversity of p as the number of its reverse k nearest
neighbors in SU :

Div(p|V, SU ) = |RNNk(p)− V |. (7)

Note that different from nearest neighbors, for different p’s,
the sizes of RNNk(p) can be very different and even much
larger than k. In this work, k is considered as a hyper-
parameter, so it is dropped on the left side of Eq. (7). The
experiments in Fig. 4 and Section 4 show that for lane de-
tection, our RNN-based strategy performs better than the
previous diversity-based methods.

3.4. Active Learning Algorithm

We combine the uncertainty and diversity metrics, and
define the data selection problem as follows:

max
V⊂SU

∑
p∈V

(Uncr(p) + βDiv(p|V, SU )),

s.t. |V | = b,

(8)

where β is a weighting factor and b is the annotation budget
(number of selected samples). The target of this problem is
to select a subset of samples that are of high uncertainty, and
at the same time, can influence a large subset of samples in
the remaining unlabeled dataset.

This optimization is a set cover problem [14]. Though
it is NP-Hard, the objective function is non-decreasing and
submodular, and an O(N2) greedy algorithm is able to en-
sure a (1− 1

e )-approximation to the optimal solution [27].
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Algorithm 1 Active Learning with Knowledge Distillation

Input: Labeled dataset SL, unlabeled dataset SU , number
of rounds r, budget b per round;

Output: Selected dataset V ⊂ SU , with annotations;
1: MS ,MT ← Train(SL);
2: MST ← TrainKD(SL);
3: V ← ∅;
4: while |V | < r · b do
5: for p ∈ SU do
6: PS , PST , PT ← Predict(MS ,MST ,MT , p);
7: Compute DSS and DST with PS , PST , PT ;
8: uncr ← (DSS +DST ) ·max{DST

DSS
, DSS

DST
};

9: div ← Div(p|V, SU );
10: Sscore(p)← uncr + β · div;
11: end for
12: Q← Greedy(SU , Sscore, b);
13: SU ← SU −Q;
14: Q← Annotation(Q);
15: V ← V ∪Q;
16: MS ,MT ← Train(SL ∪ V );
17: MST ← TrainKD(SL ∪ V );
18: end while

The complete active learning algorithm is shown in Alg.
1. We start by training the student and teacher models in
the knowledge distillation framework (lines 1 and 2). Then
given the label budget b of each round, we iteratively cal-
culate the uncertainty and diversity scores of samples (lines
5–11), select b images from the unlabeled dataset using the
greedy algorithm (line 12), annotate them (line 14), and use
the updated training set to train the models (lines 15–17).
The iteration (lines 4–18) repeats until |V | ≥ r · b.

3.5. Extension to 2D Object Detection

Though our method is initially designed for lane detec-
tion, it is easy to extend it to other active learning tasks. In
this paper, we explore 2D object detection.

We use the same KD framework, and the same defini-
tions of uncertainty and diversity. We only slightly change
the definition of the prediction gap between two models.
Given an image p and two models M1 and M2, we first
match the two sets of bounding boxes detected by M1 and
M2, respectively. That is, for each predicted box b1 ∈
M1(p), find b2 ∈M2(p) with the largest IoU(b1, b2). Then
the prediction gap is defined as:

D12(p) =
∑

{b1,b2}

(1− IoU(b1, b2)) · (1 + γ1(c1 ̸= c2)),

(9)
where γ > 0 is a hyper-parameter, and c1 and c2 are the
predicted classes of b1 and b2, respectively.

4. Experiments
Datasets. We perform experiments on two most popular

datasets, CULane [29] and LLAMAS [4]. CULane con-
tains 88880 training images and 34680 test images. These
images are annotated by humans. The LLAMAS dataset
is annotated automatically using Lidar maps. It contains
58269 training images and 20844 validation images.

Models. We test our method using two different lane de-
tection models, PointLaneNet (PLN) [8] and UFLD [33].
For PLN, we use a pruned ResNet-122 as the backbone net-
work for the student model, and a SENet-154 [17] for the
teacher model. SGD is used to train the models with the
batch size of 32. The learning rate is set to 0.02. The pa-
rameters λ, µ, and ν in Eq. (1) are respectively set to 1,
0.01, and 0.1; α in Eq. (2) is set to 1; k in Eq. (7) is set to
3; β in Eq. (8) is set to 5. We use the output of the last con-
volutional layer of the backbone network as the feature of
an image. Either the students or the teacher can be used to
extract features, and there is almost no difference between
their effects. Here we use the student model without distil-
lation (MS). On each dataset, the models are firstly trained
for 30 epochs on a randomly selected training set, contain-
ing about 5% samples of the entire training set. Then we
iteratively select a subset of the unlabeled images for anno-
tation, and fine-tune the models for 10 epochs. We repeat
these until the budget is used up. To make a fair compari-
son with other methods, we use MS to perform evaluation,
though we prefer to deploy MS−KD in practice. The exper-
iment is repeated for five times and the curve of the mean
evaluation results is reported. For UFLD, we use ResNet-
18 for the student model and ResNet-101 for the teacher
model. The same parameter values are set as recommended
by the authors of UFLD. All the experiments are performed
on a GPU server with 8 NVIDIA Tesla V100 cards.

Evaluation metrics. We use F1-Score for evaluation.
Given a fixed lane width, a predicted lane and an annotated
lane are considered matched if their IoU is greater than 0.5.
Then the F1-Score is defined as: F1 = 2×P×R

P+R , where P is
the precision and R is the recall.

Compared methods. We compare our work with the
following six methods:

1. Random (Rand). The baseline random selection.

2. Entropy (Ent). This method selects samples based on
the cross entropy.

3. Ensemble (Ens). We use the student and teacher mod-
els, MS and MT , to predict lanes on each unlabeled
image. Then we select the images with largest predic-
tion gaps between MS and MT .

4. ACD [2]. This method is designed specifically for ob-
ject detection. It incorporates the spatial information
to estimate the entropy.
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Figure 5: Results of the seven methods on the CULane and LLAMAS datasets. (a) and (b) show the results with Point-
LaneNet. (c) and (d) show the results with UFLD.

5. LLoss [42]. This method adds a header to the net-
work to estimate the loss of each sample. Samples with
largest predicted losses are selected.

6. BADGE [3]. This method combines an uncertainty
metric (gradient norm) and a diversity metric (K-
Means++) to select samples.

The methods 2–5 consider only uncertainty.

4.1. Results

The results are shown in Fig. 5. Figures (a) and (b) show
the results with PLN. We find that our method achieves the
best performance on the two datasets. Given the same la-
bel budget, the training sets selected by our method are the
most informative, making the model trained with these sets
yield the highest F1-Score on the test datasets. The BADGE
method achieves the second best performance. The reason
is that it also takes both uncertainty and diversity into con-
sideration in the data selection process. The other methods
only focus on uncertainty, and therefore perform worse.

In particular, the CULane dataset contains a variety of
scenes such as crowd, night, shadow, etc. We observe that
on this dataset, the methods with only uncertainty achieve a
mild improvement, compared with the baseline Rand. One
important reason is that these methods are prone to select-
ing samples with few lanes, as shown in Fig. 6. In the first
iteration, the samples selected by Ent contain only 1.5 lanes
per image, while for the entire dataset, the average number
of lanes per image is 3.0. Other uncertainty-only methods,
i.e., Ens, LLoss, and ACD, also have this problem. These
selected samples provide too few positive annotations, lead-
ing the model to not being trained sufficiently. By compar-
ison, the average lane number per image selected by our
method is 3.1. However, this does not mean that we should
simply select images with the most lanes. We have tested
this idea but the result is worse than Rand.

ACD extends the calculation of entropy by taking the
spatial neighborhood of each pixel into consideration. This
idea is useful for object detection because it provides a more
accurate estimation of uncertainty for each pixel. However,
it is not so effective for lane detection because lanes are too
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(b)
Figure 6: (a) Average number of lanes per image in the
dataset selected by each method. The last bar (Entire) de-
notes the average number of lanes per image in the entire
dataset. (b) An example of images with no lanes that are
likely to be selected by the uncertainty-only methods.

thin, and a foreground pixel does not have as many fore-
ground neighbor pixels as those in object detection. There-
fore, the estimation of pixel-level uncertainty cannot be en-
hanced and ACD does not obtain the best performance. The
LLoss method performs even worse than Rand on CULane.
The reason is that in the first 4 or 5 iterations, this method
focuses on selecting night images; 70% of the selected im-
ages are in night scenes. This leads to a high redundancy
in the selected training set. Though in the later iterations
it starts to focus on other scenes, this cannot resolve the re-
dundancy problem caused by so many night images selected
already. Therefore, the performance of LLoss is worst.

In the LLAMAS dataset, the average number of lanes per
image is 5.2. Most of the images each contains at least two
lanes. The uncertainty-only methods are not likely to se-
lect images with few lanes, as those on the CULane dataset.
Therefore, though performing worse than ours, they are able
to outperform Rand by a large margin. In this dataset, most
images are collected from scenes in daytime without cross-
ing and heavy shadow, so that LLoss does not suffer from
selecting too many night images. Its performance is much
better than that on CULane.

In Fig. 5, (c) and (d) show the results with UFLD. Sim-
ilar to those with PLN, our method achieves the best per-
formance on the two datasets. The methods considering
both uncertainty and diversity outperform those using only
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Figure 7: Results of the ablation study.

uncertainty, on both datasets. On CULane, LLoss still fo-
cuses on selecting night images, and therefore performs the
worst. Ent is prone to selecting images with few lanes in
the beginning, so on the CULane dataset, its performance is
worse than Rand in the first two iterations. On LLAMAS,
all methods manage to outperform Rand.

These comparisons show that our method is effective in
reducing the annotation cost for lane detection. The PLN
and UFLD make different formulations to the lane detection
problems. But our method achieves good performance with
both of them. This shows that our method is model agnostic
and is suitable for a variety of lane detection models.

4.2. Ablation Study

We now validate the effectiveness of our uncertainty
metric and diversity metric. We first build a KD-only ver-
sion of our method, i.e., we perform data selection only
based on our uncertainty metric. Then to validate the di-
versity metric, we build a combination of the KD-only ver-
sion and the widely used K-Means++ method [3], denoted
as KD+KM. Due to limited space, we only perform ex-
periments on CULane with PointLaneNet. The results are
shown in Fig. 7. We find that even if we only use our un-
certainty metric for data selection, its performance is still
better than Ens, which performs best overall on CULane
among the four uncertainty-only methods. The KD+KM
method achieves a better performance. But this perfor-
mance is worse than the combination of KD-only with our
diversity metric based on reverse nearest neighbors (Ours).

These results show that both our uncertainty metric and
diversity metric are effective for data selection. The combi-
nation of them obtains the best performance.

4.3. Extension to Object Detection

In this subsection, we extend our method to 2D object
detection. We use the Faster-RCNN [35] as the base model,
with ResNet-18 as the backbone for the student model, and
ResNet-101 for the teacher model. The experiments are
conducted on the BDD100K dataset [43]. It contains 70000
images in the training set, and 10000 images in the valida-
tion set. Our method is compared with three methods, Rand,
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Figure 8: Results of 2D object detection.

Ent, and ACD [2]. ACD is a recent active learning method
specifically designed for 2D object detection. The pipeline
of the experiments is similar to that of the lane detection.
Each method starts from training the models using an initial
training set, which is formed via randomly sampling 5000
images from the original training set. Then in each iteration,
each method selects 5000 images, adds them to the training
set, and fine-tunes the models. The initial training takes 12
epochs and the fine-tuning takes 8 epochs, with SGD opti-
mization and a learning rate of 0.02. The batch size is set
to 32; γ in Eq. (9) is set to 5; α in Eq. (2) is set to 10. The
iteration repeats until the annotation budget is used up. This
experiment is conducted for five times. We use the average
mAP of the five experiments to evaluate the performance.

The results are shown in Fig. 8. Ent obtains a good im-
provement over Rand in the first three iterations. But its
improvement decreases significantly in the later iterations.
ACD outperforms Ent by a large margin because it consid-
ers the spatial information when calculating the entropy. It
provides a more accurate pixel-level estimation of the un-
certainty. Our method achieves an improvement that is even
larger than that of ACD. These results show that our method
is extendable to 2D object detection.

5. Conclusion
In this paper, we present the first active learning method

for lane detection. We find that two problems restrict the
performance of existing methods, namely the unsuitable en-
tropy and label noise. To solve these problems, we pro-
pose to employ knowledge distillation to evaluate both the
data uncertainty and the potential label noise. We also pro-
pose a diversity metric based on reverse nearest neighbors.
This metric can help reduce the redundancy of the selected
dataset. The experiments show that both the metrics are able
to improve the lane detection performance, and the com-
bination of them achieves the best results on two popular
benchmarks. In addition, our method is extendable to other
visual recognition tasks, and in this paper, we show its ef-
fectiveness on 2D object detection. In the future, we will
extend this active learning framework to a wider range of
recognition tasks to further examine its capability.
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José Miguel Hernández-Lobato. Bayesian batch active learn-
ing as sparse subset approximation. In NeurIPS, 2019.

[33] Zequn Qin, Huanyu Wang, and Xi Li. Ultra fast structure-
aware deep lane detection. arXiv preprint arXiv:2004.11757,
2020.

[34] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang,
Zhihui Li, Xiaojiang Chen, and Xin Wang. A survey of deep
active learning. arXiv preprint arXiv:2009.00236, 2020.

[35] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: towards real-time object detection with region
proposal networks. TPAMI, 2016.

[36] Dan Roth and Kevin Small. Margin-based active learning for
structured output spaces. In ECML, 2006.

[37] Ozan Sener and Silvio Savarese. Active learning for convolu-
tional neural networks: A core-set approach. arXiv preprint
arXiv:1708.00489, 2017.

[38] Yawar Siddiqui, Julien Valentin, and Matthias Nießner.
Viewal: Active learning with viewpoint entropy for semantic
segmentation. In CVPR, 2020.

15160



[39] Samarth Sinha, Sayna Ebrahimi, and Trevor Darrell. Varia-
tional adversarial active learning. In ICCV, 2019.

[40] Luo-Wei Tsai, Jun-Wei Hsieh, Chi-Hung Chuang, and Kuo-
Chin Fan. Lane detection using directional random walks. In
IEEE Intelligent Vehicles Symposium, 2008.

[41] Alexander Vezhnevets, Joachim M Buhmann, and Vittorio
Ferrari. Active learning for semantic segmentation with ex-
pected change. In CVPR, 2012.

[42] Donggeun Yoo and In So Kweon. Learning loss for active
learning. In CVPR, 2019.

[43] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying
Chen, Fangchen Liu, Vashisht Madhavan, and Trevor Dar-
rell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In CVPR, 2020.

[44] Juseung Yun, Byungjoo Kim, and Junmo Kim. Weight decay
scheduling and knowledge distillation for active learning. In
ECCV, 2020.

[45] Zongwei Zhou, Jae Shin, Lei Zhang, Suryakanth Gurudu,
Michael Gotway, and Jianming Liang. Fine-tuning convo-
lutional neural networks for biomedical image analysis: ac-
tively and incrementally. In CVPR, 2017.

15161


