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Abstract

We tackle the problem of action-conditioned generation
of realistic and diverse human motion sequences. In con-
trast to methods that complete, or extend, motion sequences,
this task does not require an initial pose or sequence. Here
we learn an action-aware latent representation for human
motions by training a generative variational autoencoder
(VAE). By sampling from this latent space and querying
a certain duration through a series of positional encod-
ings, we synthesize variable-length motion sequences con-
ditioned on a categorical action. Specifically, we design
a Transformer-based architecture, ACTOR, for encoding
and decoding a sequence of parametric SMPL human body
models estimated from action recognition datasets. We eval-
uate our approach on the NTU RGB+D, HumanAct12 and
UESTC datasets and show improvements over the state of
the art. Furthermore, we present two use cases: improv-
ing action recognition through adding our synthesized data
to training, and motion denoising. Code and models are
available on our project page [53].

1. Introduction

Despite decades of research on modeling human motions
[4, 5], synthesizing realistic and controllable sequences re-
mains extremely challenging. In this work, our goal is to
take a semantic action label like “Throw” and generate an
infinite number of realistic 3D human motion sequences, of
varying length, that look like realistic throwing (Figure 1).
A significant amount of prior work has focused on taking
one pose, or a sequence of poses, and then predicting future
motions [3, 6, 21, 67, 70]. This is an overly constrained
scenario because it assumes that one already has a motion
sequence and just needs more of it. On the other hand,
many applications such as virtual reality and character con-
trol [26, 57] require generating motions of a given type (se-
mantic action label) with a specified duration.

We address this problem by training an action-cond-
itioned generative model with 3D human motion data that
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Fig. 1: Goal: Action-Conditioned TransfORmer VAE (ACTOR)
learns to synthesize human motion sequences conditioned on a
categorical action and a duration, 7". Sequences are generated by
sampling from a single motion representation latent vector, z, as
opposed to the frame-level embedding space in prior work.

has corresponding action labels. In particular, we construct
a Transformer-based encoder-decoder architecture and train
it with the VAE objective. We parameterize the human body
using SMPL [43] as it can output joint locations or the body
surface. This paves the way for better modeling of inter-
action with the environment, as the surface is necessary to
model contact. Moreover, such a representation allows the
use of several reconstruction losses: constraining part rota-
tions in the kinematic tree, joint locations, or surface points.
The literature [37] and our results suggest that a combina-
tion of losses gives the most realistic generated motions.
The key challenge of motion synthesis is to generate se-
quences that are perceptually realistic while being diverse.
Many approaches for motion generation have taken an au-
toregressive approach such as LSTMs [15] and GRUs [46].
However, these methods typically regress to the mean pose
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after some time [46] and are subject to drift. The key nov-
elty in our Transformer model is to provide positional en-
codings to the decoder and to output the full sequence at
once. Positional encoding has been popularized by recent
work on neural radiance fields [47]; we have not seen it
used for motion generation as we do. This allows the gen-
eration of variable length sequences without the problem of
the motions regressing to the mean pose. Moreover, our
approach is, to our knowledge, the first to create an action-
conditioned sequence-level embedding. The closest work is
Action2Motion [20], which, in contrast, presents an autore-
gressive approach where the latent representation is at the
frame-level. Getting a sequence-level embedding requires
pooling the time dimension: we introduce a new way of
combining Transformers and VAEs for this purpose, which
also significantly improves performance over baselines.

A challenge specific to our action-condition generation
problem is that there exists limited motion capture (MoCap)
data paired with distinct action labels, typically on the or-
der of 10 categories [29, 59]. We instead rely on monocu-
lar motion estimation methods [35] to obtain 3D sequences
for actions and present promising results on 40 fine-grained
categories of the UESTC action recognition dataset [30]. In
contrast to [20], we do not require multi-view cameras to
process monocular trajectory estimates, which makes our
model potentially applicable to larger scales. Despite be-
ing noisy, monocular estimates prove sufficient for training
and, as a side benefit of our model, we are able to denoise
the estimated sequences by encoding-decoding through our
learned motion representation.

An action-conditioned generative model can augment
existing MoCap datasets, which are expensive and limited
in size [45, 59]. Recent work, which renders synthetic hu-
man action videos for training action recognition models
[61], shows the importance of motion diversity and large
amounts of data per action. Such approaches can benefit
from an infinite source of action-conditioned motion syn-
thesis. We explore this through our experiments on action
recognition. We observe that, despite a domain gap, the
generated motions can serve as additional training data, spe-
cially in low-data regimes. Finally, a compact action-aware
latent space for human motions can be used as a prior in
other tasks such as human motion estimation from videos.

Our contributions are fourfold: (i) We introduce
ACTOR, a novel Transformer-based conditional VAE, and
train it to generate action-conditioned human motions by
sampling from a sequence-level latent vector. (ii) We
demonstrate that it is possible to learn to generate realis-
tic 3D human motions using noisy 3D body poses estimated
from monocular video; (iii) We present a comprehensive ab-
lation study of the architecture and loss components, obtain-
ing state-of-the-art performance on multiple datasets; (iv)
We illustrate two use cases for our model on action recog-
nition and MoCap denoising. The code is available on our
project page [53].

2. Related Work

We briefly review relevant literature on motion predic-
tion, motion synthesis, monocular motion estimation, as
well as Transformers in the context of VAEs.

Future human motion prediction. Research on human
motion analysis has a long history dating back to 1980s [5,

, 18, 49]. Given past motion or an initial pose, predicting
future frames has been referred as motion prediction. Statis-
tical models have been employed in earlier studies [7, 17].
Recently, several works show promising results following
progress in generative models with neural networks, such as
GANSs [19] or VAEs [34]. Examples include HP-GAN [6]
and recurrent VAE [2 1] for future motion prediction. Most
work treats the body as a skeleton, though recent work ex-
ploits full 3D body shape models [3, 70]. Similar to [70],
we also go beyond sparse joints and incorporate vertices
on the body surface. DLow [67] focuses on diversifying
the sampling of future motions from a pretrained model.
[10] performs conditional future prediction using contex-
tual cues about the object interaction. Very recently, [39]
presents a Transformer-based method for dance generation
conditioned on music and past motion. Duan et al. [13]
use Transformers for motion completion. There is a related
line of work on motion “in-betweening” that takes both past
and future poses and “inpaints” plausible motions between
them; see [22] for more. In contrast to this prior work, our
goal is to synthesize motions without any past observations.
Human motion synthesis. While there is a vast literature
on future prediction, synthesis from scratch has received
relatively less attention. Very early work used PCA [48] and
GPLVMs [60] to learn statistical models of cyclic motions
like walking and running. Conditioning synthesis on mul-
tiple, varied, actions is much harder. DVGANSs [40] train
a generative model conditioned on a short text representing
actions in MoCap datasets such as Human3.6M [28, 29] and
CMU [59]. Text2Action [1] and Language2Pose [2] simi-
larly explore conditioning the motion generation on textual
descriptions. Music-to-Dance [36] and [38] study music-
conditioned generation. QuaterNet [52] focuses on gen-
erating locomotion actions such as walking and running
given a ground trajectory and average speed. [65] presents
a convolution-based generative model for realistic, but un-
constrained motions without specifying an action. Simi-
larly, [69] synthesizes arbitrary sequences, focusing on un-
bounded motions in time.

Many methods for unconstrained motion synthesis are
often dominated by actions such as walking and running.
In contrast, our model is able to sample from more general,
acyclic, pre-defined action categories, compatible with ac-
tion recognition datasets. In this direction, [71] introduces
a Bayesian approach, where Hidden semi-Markov Models
are used for jointly training generative and discriminative
models. Similar to us, [71] shows that their generated mo-
tions can serve as additional training data for action recog-
nition. However, their generated sequences are pseudo-
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Figure 2: Method overview: We illustrate the encoder (left) and the decoder (right) of our Transformer-based VAE model that generates

action-conditioned motions. Given a sequence of body poses P4, . .
on which we define a KL loss (L 1,). We use extra learnable tokens per action (1, and

., Pr and an action label a, the encoder outputs distribution parameters

token Etoken
a

) as a way to obtain p and X from the

Transformer encoder. Using 1 and X, we sample the motion latent representation z € M. The decoder takes the latent vector z, an action
label a, and a duration 7" as input. The action determines the learnable bZ"kE" additive token, and the duration determines the number of

positional encodings (PE) to input to the decoder. The decoder outputs the whole sequence ﬁh ..

. Pr against which the reconstruction

loss Lp is computed. In addition, we compute vertices with a differentiable SMPL layer to define a vertex loss (Ly). For training z is
obtained as the output of the encoder; for generation it is randomly sampled from a Gaussian distribution.

labelled with actions according to the discriminator classifi-
cation results. On the other hand, our conditional model can
synthesize motions in a controlled way, e.g. balanced train-
ing set. Most similar to our work is Action2Motion [20],
a per-frame VAE on actions, using a GRU-based architec-
ture. Our sequence-level VAE latent space, in conjunction
with the Transformer-based design provides significant ad-
vantages, as shown in our experiments.

Other recent works [23, 68] use normalizing flows to ad-
dress human motion estimation and generation problems.
Several works [27, 33, 63] learn a motion manifold, and use
it for motion denoising, which is one of our use cases.

There is also a significant graphics literature on the topic,
which tends to focus on animator control. See, for exam-
ple, [25] on learning motion matching and [37] on charac-
ter animation. Most relevant here are the phase-functioned
neural networks [26] and neural state machines [57]. Both
exploit the notion of actions being driven by the phase of
a sinusoidal function. This is related to the idea of posi-
tional encoding, but unlike our approach, their methods re-
quire manual labor to segment actions and build these phase
functions.

Monocular human motion estimation. Motion estima-
tion from videos [32, 35, 44] has recently made significant
progress but is beyond our scope. In this work, we adopt
VIBE [35] to obtain training motion sequences from action-
labelled video datasets.

Transformer VAEs. Recent successes of Transformers in
language tasks has increased interest in attention-based neu-
ral network models. Several works use Transformers in

conjunction with generative VAE training. Particular exam-
ples include story generation [14], sentiment analysis [9],
response generation [41], and music generation [31]. The
work of [31] learns latent embeddings per timeframe, while
[O] averages the hidden states to obtain a single latent code.
On the other hand, [ 4] performs attention averaging to pool
over time. In contrast to these works, we adopt learnable to-
kens as in [1 1, 12] to summarize the input into a sequence-
level embedding.

3. Action-Conditioned Motion Generation

Problem definition. Actions defined by body-motions can
be characterized by the rotations of body parts, independent
of identity-specific body shape. To be able to generate mo-
tions with actors of different morphology, it is desirable to
disentangle the pose and the shape. Consequently, without
loss of generality, we employ the SMPL body model [43],
which is a disentangled body representation (similar to re-
cent models [50, 51, 54, 64]). Ignoring shape, our goal,
is then to generate a sequence of pose parameters. More
formally, given an action label a (from a set of predefined
action categories ¢ € A) and a duration 7', we generate
a sequence of body poses Rji,..., Ry and a sequence of
translations of the root joint represented as displacements,
Di,..., Dy (with D; e R3)Vt € {1,...,T}).

Motion representation. SMPL pose parameters per-frame
represent 23 joint rotations in the kinematic tree and one
global rotation. We adopt the continuous 6D rotation repre-
sentation for training [72], making R; € R?**6. Let P, be
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the combination of R; and D, representing the pose and lo-
cation of the body in a single frame, ¢. The full motion is the
sequence P, ..., Pr. Given a generator output pose F; and
any shape parameter, we can obtain body mesh vertices (V)
and body joint coordinates (.J;) differentiably using [43].

3.1. Conditional Transformer VAE for Motions

We employ a conditional variational autoencoder
(CVAE) model [56] and input the action category infor-
mation to both the encoder and the decoder. More specifi-
cally, our model is an action-conditioned Transformer VAE
(ACTOR), whose encoder and decoder consist of Trans-
former layers (see Figure 2 for an overview).

Encoder. The encoder takes an arbitrary-length sequence
of poses, and an action label @ as input, and outputs distri-
bution parameters x4 and X of the motion latent space. Us-
ing the reparameterization trick [34], we sample from this
distribution a latent vector z € M with M C R%. All
the input pose parameters (R) and translations (D) are first
linearly embedded into a R? space. As we embed arbitrary-
length sequences into one latent space (sequence-level em-
bedding), we need to pool the temporal dimension. In other
domains, a [class] token has been introduced for pool-
ing purposes, e.g., in NLP with BERT [!1] and more re-
cently in computer vision with ViT [12]. Inspired by this
approach, we similarly prepend the inputs with learnable to-
kens, and only use the corresponding encoder outputs as a
way to pool the time dimension. To this end, we include two
extra learnable parameters per action, p!°%¢" and Ytoken,
which we called “distribution parameter tokens”. We ap-
pend the embedded pose sequences to these tokens. The
resulting Transformer encoder input is the summation with
the positional encodings in the form of sinusoidal functions.
We obtain the distribution parameters p and X by taking the
first two outputs of the encoder corresponding to the distri-
bution parameter tokens (i.e., discarding the rest).
Decoder. Given a single latent vector z and an action la-
bel a, the decoder generates a realistic human motion for a
given duration in one shot (i.e., not autoregressive).

We use a Transformer decoder model where we feed
time information as a query (in the form of 7" sinusoidal
positional encodings), and the latent vector combined with
action information, as key and value. To incorporate the ac-
tion information, we simply add a learnable bias bL°*" to
shift the latent representation to an action-dependent space.
The Transformer decoder outputs a sequence of T vectors
in R from which we obtain the final poses P1, .. PT fol-
lowing a linear projection. A differentiable SMPL layer is
used to obtain vertices and joints given the pose parameters
as output by the decoder.

3.2. Training

We define several loss terms to train our model and
present an ablation study in Section 4.2.
Reconstruction loss on pose parameters (L p). We use an

L2 loss between the ground truth poses P, .. PT, and our
predictions Py, ..., Pras Lp = Y, |P — P.J|j3. Note
that this loss contains both the SMPL rotations and the root
translations. When we experiment by discarding the trans-
lations, we break this term into two: L and L p, for rota-
tions and translations, respectively.
Reconstruction loss on vertex coordinates (Ly/). We feed
the SMPL poses P; and P, to a differentiable SMPL layer
(without learnable parameters) with a mean shape (i.e.,
B = 6) to obtain the root-centered vertices of the mesh V;
and TA/t We define an L2 loss by comparing to the ground-
truth vertices V; as Ly = Y1, |Vi — Vi||2 . We further
experiment with a loss £; on a more sparse set of points
such as joint locations jt obtained through the SMPL joint
regressor. However, as will be shown in Section 4.2, we do
not include this term in the final model.
KL loss (Lx1). As in a standard VAE, we regularize the
latent space by encouraging it to be similar to a Gaussian
distribution with g the null vector and X the identity ma-
trix. We minimize the Kullback-Leibler (KL) divergence
between the encoder distribution and this target distribution.
The resulting total loss is defined as the summation of
different terms: £ = Lp + Ly + A Lxr. We empiri-
cally show the importance of weighting with A\, (equiv-
alent to the § term in 3-VAE [24]) in our experiments to
obtain a good trade-off between diversity and realism (see
Section A.1 of the appendix). The remaining loss terms are
simply equally weighed, further improvements are poten-
tially possible with tuning. We use the AdamW optimizer
with a fixed learning rate of 0.0001. The minibatch size
is set to 20 and we found that the performance is sensitive
to this hyperparameter (see Section A.2 of the appendix).
We train our model for 2000, 5000 and 1000 epochs on
NTU-13, HumanActl2 and UESTC datasets, respectively.
Overall, more epochs produce improved performance, but
we stop training to retain a low computational cost. Note
that to allow faster iterations, for ablations on loss and ar-
chitecture, we train our models for 1000 epochs on NTU-13
and 500 epochs on UESTC. The remaining implementation
details can be found in Section C of the appendix.

4. Experiments

We first introduce the datasets and performance mea-
sures used in our experiments (Section 4.1). Next, we
present an ablation study (Section 4.2) and compare to pre-
vious work (Section 4.3). Then, we illustrate use cases in
action recognition (Sections 4.4). Finally, we provide qual-
itative results and discuss limitations (Section 4.5).

4.1. Datasets and evaluation metrics

We use three datasets originally proposed for action
recognition, mainly for skeleton-based inputs. Each dataset
is temporally trimmed around one action per sequence.
Next, we briefly describe them.
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UESTC NTU-13
Loss FIDy,-| FID¢estd Acc.t Div.— Multimod.— FIDy,-| Acc.t Div.— Multimod.—
Real 2'931026 2.7910,29 98'8:EOA1 33'3410.32 14.161006 ‘ 0.0210,00 99.810,0 7'071002 227:&0.01
E‘] 3M* 3M* 3'3102 267'681346.06 153.62150.62 0'4910.00 93.6102 7.041(}04 2.1210.01
£R 292‘54i113A35 316‘29i26‘05 42'4j:137 23.16i0'47 14A37i0A08 0_23i0,00 95.43:0,2 7_08j:0 .04 2.18i0'02
»CV AM* AM* 2_7i0.2 314.66i476'18 169.49i27'90 0.25j:0.0(] 95.8 +0.3 7.08i0‘04 2.0710.01
»CR + EV 20.49i2.31 23.43i2.20 91.1i0.3 31.96i0'36 14.66i0'03 0.19i0.00 96.2i0‘2 7_09:{:0404 Q.OSiO'Ol

Table 1: Reconstruction loss: We define the loss on the SMPL pose parameters which represent the rotations in the kinematic tree (Lr),
their joint coordinates (L r), as well as vertex coordinates (Ly). We show that constraining both rotations and vertex coordinates is critical
to obtain smooth motions. In particular, coordinate-based losses alone do not converge to a meaningful solution on UESTC (*). — means

motions are better when the metric is closer to real.

NTU RGB+D dataset [42, 55]. To be able to compare to
the work of [20], we use their subset of 13 action categories.
[20] provides SMPL parameters obtained through VIBE
estimations. Their 3D root translations, obtained through
multi-view constraints, are not publicly available, therefore
we use their approximately origin-centered version. We re-
fer to this data as NTU-13 and use it for training.
HumanAct12 dataset [20]. Similarly, we use this data for
state-of-the-art comparison. HumanAct12 is adapted from
the PHSPD dataset [73] that releases SMPL pose param-
eters and root translations in camera coordinates for 1191
videos. HumanActl2 temporally trims the videos, anno-
tates them into 12 action categories, and only provides their
joint coordinates in a canonical frame. We also process the
SMPL poses to align them to the frontal view.

UESTC dataset [30]. This recent dataset consists of 25K
sequences across 40 action categories (mostly exercises,
and some represent cyclic movements). To obtain SMPL
sequences, we apply VIBE on each video and select the per-
son track that corresponds best to the Kinect skeleton pro-
vided in case there are multiple people. We use all 8 static
viewpoints (we discard the rotating camera) and canoni-
calize all bodies to the frontal view. We use the official
cross-subject protocol to separate train and test splits, in-
stead of the cross-view protocols since generating different
viewpoints is trivial for our model. This results in 10650
training sequences that we use for learning the generative
model, as well as the recognition model: the effective di-
versity of this set can be seen as 33 sequences per action
on average (10K divided by 8 views, 40 actions). The re-
maining 13350 sequences are used for testing. Since the
protocols on NTU-13 and HumanAct12 do not provide test
splits, we rely on UESTC for recognition experiments.
Evaluation metrics. We follow the performance measures
employed in [20] for quantitative evaluations. We mea-
sure FID, action recognition accuracy, overall diversity, and
per-action diversity (referred to as multimodality in [20]).
For all these metrics, a pretrained action recognition model
is used, either for extracting motion features to compute
FID, diversity, and multimodality; or directly the accuracy
of recognition. For experiments on NTU-13 and Human-
Actl2, we directly use the provided recognition models of
[20] that operate on joint coordinates. For UESTC, we train
our own recognition model based on pose parameters ex-

pressed as 6D rotations (we observed that the joint-based
models of [20] are sensitive to global viewpoint changes).
We generate sets of sequences 20 times with different ran-
dom seeds and report the average together with the confi-
dence interval at 95%. We refer to [20] for further details.
One difference in our evaluation is the use of average shape
parameter (3 = 0) when obtaining joint coordinates from
the mesh for both real and generated sequences. Note also
that [20] only reports FID score comparing to the training
split (FIDy,.), since NTU-13 and HumanAct12 datasets do
not provide test splits. On UESTC, we additionally provide
an FID score on the test split as FID;.4;, which we rely most
on to make conclusions.

4.2. Ablation study

We first ablate several components of our approach in a
controlled setup, studying the loss and the architecture.

Loss study. Here, we investigate the influence of the recon-
struction loss formulation when using the parametric SMPL
body model in our VAE. We first experiment with using (i)
only the rotation parameters Lg, (ii) only the joint coor-
dinates L, (iii) only the vertex coordinates Ly, and (iv)
the combination L + Ly . Here, we initially discard the
root translation to only assess the pose representation. Note
that for representing the rotation parameters, we use the 6D
representation from [72] (further studies on losses with dif-
ferent rotation representations can be found in Section A.4
of the appendix). In Table 1, we observe that a single loss
is not sufficient to constrain the problem, especially losses
on the coordinates do not converge to a meaningful solu-
tion on UESTC. On NTU-13, qualitatively, we also observe
invalid body shapes since joint locations alone do not fully
constrain the rotations along limb axes. We provide exam-
ples in our qualitative analysis. We conclude that using a
combined loss significantly improves the results, constrain-
ing the pose space more effectively. We further provide an
experiment on the influence of the weight parameter A\,
controlling the KL divergence loss term L, in Section A.1
of the appendix and note its importance to obtain high di-
versity performance.

Root translation. Since we estimate the 3D human body
motion from a monocular camera, obtaining the 3D trajec-
tory of the root joint is not trivial for real training sequences,
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UESTC

Div.— Multimod.— ’ FID,,.| Acc.? Div.—

NTU-13

Architecture FIDy,-| FID;cs: Acc.T Multimod.—
Real 2.03%0.26 2.79%0.29 08.810-1  33.34%0.32 14.16£0-06 ‘ 0.02%10.00 99 8+0.0 7 7£0.02 9.97+0.01
Fully connected 562.09%48:12 548 13+38:34 105105 19 96+011 0. 87H0-05 | 47%0:00  gg 706 §.93+0.03 3 (5+0.01
GRU 25_96:t3.02 27.0812,98 87.3i0'4 30_6610.33 15_24:&0,08 0.281000 94_810.2 7.0810,04 242010'01
Transformer 20.49%231 2343220 91.1%03 3196036 14661003 (.19%0-00  9g.2+02 79004 9 ogH0.01
a) w/ autoreg. decoder 55.75%2:62 60.10F487 88406 33 46+0-69  10.62%010 | 9,62+001 g8 005 6.g0*0-03 1 76+0.01
b) w/out Mflolcen’ EZDken 2746j:343 31'37;{:3(}4 86.2i0'4 31.82i0’38 15'71;{:()‘12 0.26i0‘00 94'7j:0,2 7.09i0‘03 2‘15i0.01
C) w/out bf’,loken 24.38i2'37 28.52i2'55 89‘4i0'7 32.11i0.33 14.52i0.09 0.16i0'00 96.2i0.2 7.08i0'04 2‘19i0.(12

Table 2: Architecture: We compare various architectural designs, such as the encoder and the decoder of the VAE, and different compo-

nents of the Transformer model, on both NTU-13 and UESTC datasets.

and is subject to depth ambiguity. We assume a fixed focal
length and approximate the distance from the camera based
on the ratio between the 3D body height and the 2D pro-
jected height. Similar to [61], we observe reliable transla-
tion in xy image plane, but considerable noise in z depth.
Nevertheless, we still train with this type of data and vi-
sualize generated examples in Figure 3 with and without
the loss on translation L£p. Certain actions are defined by
their trajectory (e.g., ‘Left Stretching’) and we are able to
generate the semantically relevant translations despite noisy
data. Compared to the real sequences, we observe much
less noise in our generated sequences (see the supplemental
video at [53]).

Architecture design. Next, we ablate several architectural
choices. The first question is whether an attention-based
design (i.e., Transformer) has advantages over the more
widely used alternatives such as a simple fully-connected
autoencoder or a GRU-based recurrent neural network. In
Table 2, we see that our Transformer model outperforms
both fully-connected and GRU encoder-decoder architec-
tures on two datasets by a large margin.  In contrast to
the fully-connected architecture, we are also able to han-
dle variable-length sequences. We further note that our
sequence-level decoding strategy is key to obtain an im-
provement with Transformers, as opposed to an autoregres-
sive Transformer decoder as in [62] (Table 2, a). At training
time, the autoregressive model uses teacher forcing, i.e., us-
ing the ground-truth pose for the previous frame. This cre-
ates a gap with test time, where we observed poor autoen-
coding reconstructions such as decoding a left-hand waving
encoding into a right-hand waving.

We also provide a controlled experiment by changing
certain blocks of our Transformer VAE. Specifically, we
remove the p‘°*¢" and !°k¢" distribution parameter to-
kens and instead obtain p and X by averaging the outputs
of the encoder, followed by two linear layers (Table 2, b).
This results in considerable drop in performance. More-
over, we investigate the additive b.°**" token and replace it
with a one-hot encoding of the action label concatenated to
the latent vector, followed by a linear projection (Table 2,
c). Although this improves a bit the results on the NTU-13
dataset, we observe a large decrease in performance on the
UESTC dataset which has a larger number of action classes.

Based on an architectural ablation of the number of
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Figure 3: Generating the 3D root translation: Despite our model
learning from noisy 3D trajectories, we show that our generations
are smooth and they capture the semantics of the action. Examples
are provided from the UESTC dataset for translations in x (‘Left
Stretching’), y (Rope Skipping), and z (‘Forward Lugging’) with
and without the loss on the root displacement Lp.
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Figure 4: Generating variable-length sequences: We evaluate
the capability of the models trained on UESTC with (left) fixed-
size 60 frames and (right) variable-size between [60, 100] frames
on generating various durations. We report accuracy and FID met-
rics. For the fixed model, we observe that the best performance
is when tested at the seen duration of 60, but over 85% accuracy
is retained even at ranges between [40, 120] frames. The perfor-
mance is overall improved when the model has previously seen
duration variations in training; there is a smaller drop in perfor-
mance beyond the seen range (denoted with dashed lines).

Transformer layers (see Section A.3 of the appendix), we
set this parameter to 8.

Training with sequences of variable durations. A key
advantage of sequence-modeling with architectures such as
Transformers is to be able to handle variable-length mo-
tions. At generation time, we control how long the model
should synthesize, by specifying a sequence of positional
encodings to the decoder. We can trivially generate more
diversity by synthesizing sequences of different durations.
However, so far we have trained our models with fixed-size
inputs, i.e., 60 frames. Here, we first analyze whether a
fixed-size trained model can directly generate variable sizes.
This is presented in Figure 4 (left). We plot the performance
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NTU-13 HumanAct12
Method FID,..| Acc.? Div.— Multimod.— FID,..} Acc.t Div.— Multimod.—
Real[ ] 0‘03:§:O.[J0 gg.gi(ll 7.11i0405 2.19i0.03 0.0Qi0.0l 99.7i()41 6.85i(]'05 2.45:{:[)404
Real* 0.0Qi0.00 99'8i0A0 7.07i0A02 2_25i0A01 O_OQiOAOO 99.4i0.0 6.86i0'03 2.60i0'01
CondGRU ([2011) 28.31%0-14 7801 356£0.02  358+0.03 | 40 g1E0-14 g 02 9 38+0.02 9 3440.04
Two—stage GAN [8] ([ ]T) 1386:‘:0'09 20.2i()‘3 5.33i0404 3.49i0.03 10.48i0'09 42.1i046 5.96i(]'(J5 2.81i0‘04
Act-MoCoGAN [58] ([20]1)  2.72%0-02 g9 7+0.1  §.g9+0.06 (5 g1+0.01 5.61F0-11 79 3+0.4 @ 75007 7 5+0.02
Action2Motion [20] 0.33%001 94 9+01 77004 2 5+0.03 2.46%008  92.3+0-2  7,03+0-04 2 gyH0.04
ACTOR (OUFS) 0.11i0'00 97_1:k0.2 7.08i0'04 2_0810.01 ‘ 0.12i0A00 95.5i048 6.84:t0'03 2.53:E0.02

Table 3: State-of-the-art comparison: We compare to the recent work of [

] on the NTU-13 and HumanAct12 datasets. Note that due

to differences in implementation (e.g., random sampling, using zero shape parameter), our metrics for the ground truth real data (Real*)
are slightly different than the ones reported in their paper. The performance improvement with our Transformer-based model shows a clear

gap from Action2Motion. T Baselines implemented by [20].

over several sets of generations of different lengths between
40 and 120 frames (with a step size of 5). Since our recog-
nition model used for evaluation metrics is trained on fixed-
size 60-frame inputs, we naturally observe performance de-
crease outside of this length. However, the accuracy still
remains high which indicates that our model is already ca-
pable of generating diverse durations.

Next, we train our generative model with variable-length
inputs by randomly sampling a sequence between 60 and
100 frames. However, simply training this way from ran-
dom weight initialization converges to a poor solution, lead-
ing all generated motions to be frozen in time. We address
this by pretraining at 60-frame fixed size and finetuning at
variable sizes. We see in Figure 4 (right) that the perfor-
mance is greatly improved with this model.

Furthermore, we investigate how the generations longer
or shorter than their average durations behave. We observe
qualitatively that shorter generations produce partial actions
e.g., picking up without reaching the floor, and longer gen-
erations slow down somewhat non-uniformly in time. We
refer to the supplemental video [53] for qualitative results.

4.3. Comparison to the state of the art

Action2Motion [20] is the only prior work that gener-
ates action-conditioned motions. We compare to them in
Table 3 on their NTU-13 and HumanAct12 datasets. On
both datasets, we obtain significant improvements over this
prior work that uses autoregressive GRU blocks, as well
as other baselines implemented by [20] by adapting other
works [8, 58]. The improvements over [20] can be ex-
plained mainly by removing autoregression and adding the
proposed learnable tokens (Table 2). Note that our GRU
implementation obtains similar performance as [20], while
using the same hyperparameters as the Transformer. In ad-
dition to the quantitative performance improvement, mea-
sured with recognition models based on joint coordinates,
our model can directly output human meshes, which can
further be diversified with varying the shape parameters.
[20] instead applies an optimization step to fit SMPL mod-
els on their generated joint coordinates, which is typically
substantially slower than a neural network forward pass.

Test accuracy (%)
Realm"ig Rea]denoised
Realy 44 91.8 93.2
Realjenoised 83.8 97.0
Realinterpolated 77.6 93.9
Generated 80.7 97.0
Real,,;, + Generated 91.9 98.3

Table 4: Action recognition: We employ a standard architecture
(ST-GCN [66]) and perform action recognition experiments using
several sets of training data on the UESTC cross-subject proto-
col [30]. Training only with generated samples obtains 80% ac-
curacy on the real test set which is another indication our action-
conditioning performs well. Nevertheless, we observe a domain
gap between generated and real samples, mainly due to the noise
present in the real data. We show that simply by encoding-
decoding the test sequences, we observe a denoising effect, which
in turn shows better performance. However, one should note
that the last-column experiments are not meant to improve perfor-
mance in the benchmark since it uses the action label information.

4.4. Use cases in action recognition

In this section, we test the limits of our approach by illus-
trating the benefits of our generative model and our learned
latent representation for the skeleton-based action recogni-
tion task. We adopt a standard architecture, ST-GCN [66],
that employs spatio-temporal graph convolutions to classify
actions. We show that we can use our latent encoding for
denoising motion estimates and our generated sequences as
data augmentation to action recognition models.

Use case I: Human motion denoising. In the case when
our motion data source relies on monocular motion esti-
mation such as [35], the training motions remain noisy.
We observe that by simply encoding-decoding the real mo-
tions through our learned embedding space, we obtain much
cleaner motions. Since it is difficult to show motion quality
results on static figures, we refer to our supplemental video
at [53] to see this effect. We measure the denoising capabil-
ity of our model through an action recognition experiment
in Table 4. We change both the training and test set motions
with the encoded-decoded versions. We show improved
performance when trained and tested on Realgey,piseq MO-
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Figure 5: Qualitative results: We illustrate the diversity of our generations on the ‘Throw’ action from NTU-13 by showing 3 sequences.
The horizontal axis represent the time axis and 20 equally spaced frames are visualized out of 60-frame generations. We demonstrate that
our model is capable of generating different ways of performing a given action. More results can be found in Section B of the appendix

and the supplemental video at [53].
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Figure 6: Data augmentation: We show the benefit of augment-
ing the real data with our generative model (real+gen), especially
at low-data regime. We have limited gains when the real data is
sufficiently large.

tions (97.0%) compared to Real,,;; (91.8). Note that this
result on its own is not sufficient for this claim, but is only
an indication since our decoder might produce less diversity
than real motions. Moreover, the action label is given at de-
noising time. We believe that such denoising can be ben-
eficial in certain scenarios where the action is known, e.g.,
occlusion or missing markers during MoCap collection.

Use case II: Augmentation for action recognition. Next,
we augment the real training data (Real,,;4), by adding gen-
erated motions to the training. We first measure the action
recognition performance without using real sequences. We
consider interpolating existing Real,,;; motions that fall
within the same action category in our embedding space
to create intra-class variations (Real;,terpotated). We then
synthesize motions by sampling noise vectors conditioned
on each action category (Generated). Table 4 summarizes
the results. Training only on synthetic data performs 80.7%
on the real test set, which is promising. However, there
is a domain gap between the noisy real motions and our
smooth generations. Consequently, adding generated mo-
tions to real training only marginally improves the perfor-
mance. In Figure 6, we investigate whether the augmented
training helps for low-data regimes by training at several
fractions of the data. In each minibatch we equally sample
real and generated motions. However, in theory we have
access to infinitely many generations. We see that the im-

provement is more visible at low-data regime.
4.5. Qualitative results

In Figure 5, we visualize several examples from our gen-
erations. We observe a great diversity in the way a given
action is performed. For example, the ‘Throw’ action is
performed with left or right hand. We notice that the model
keeps the essence of the action semantics while changing
nuances (angles, speed, phase) or action-irrelevant body
parts. We refer to the supplemental video at [53] and Sec-
tion B of the appendix for further qualitative analyses.

One limitation of our model is that the maximum du-
ration it can generate depends on computational resources
since we output all the sequence at once. Moreover, the
actions are from a predefined set. Future work will ex-
plore open-vocabulary actions, which might become pos-
sible with further progress in 3D motion estimation from
unconstrained videos.

5. Conclusions

We presented a new Transformer-based VAE model to
synthesize action-conditioned human motions. We pro-
vided a detailed analysis to assess different components
of our proposed approach. We obtained state-of-the-art
performance on action-conditioned motion generation, sig-
nificantly improving over prior work. Furthermore, we
explored various use cases in motion denoising and ac-
tion recognition. One especially attractive property of our
method is that it operates on a sequence-level latent space.
Future work can therefore exploit our model to impose pri-
ors on motion estimation or action recognition problems.
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