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Abstract

Gradient-based algorithms are crucial to modern com-
puter-vision and graphics applications, enabling learning-
based optimization and inverse problems. For example,
photorealistic differentiable rendering pipelines for color
images have been proven highly valuable to applications
aiming to map 2D and 3D domains. However, to the best of
our knowledge, no effort has been made so far towards ex-
tending these gradient-based methods to the generation of
depth (2.5D) images, as simulating structured-light depth
sensors implies solving complex light transport and stereo-
matching problems. In this paper, we introduce a novel end-
to-end differentiable simulation pipeline for the generation
of realistic 2.5D scans, built on physics-based 3D rendering
and custom block-matching algorithms. Each module can
be differentiated w.r.t. sensor and scene parameters, €.g.,
to automatically tune the simulation for new devices over
some provided scans or to leverage the pipeline as a 3D-
to-2.5D transformer within larger computer-vision applica-
tions. Applied to the training of deep-learning methods for
various depth-based recognition tasks (classification, pose
estimation, semantic segmentation), our simulation greatly
improves the performance of the resulting models on real
scans, thereby demonstrating the fidelity and value of its
synthetic depth data compared to previous static simula-
tions and learning-based domain adaptation schemes.

1. Introduction

Progress in computer vision has been dominated by deep
neural networks trained over large amount of data, usu-
ally labeled. The deployment of these solutions into real-
world applications is, however, often hindered by the cost
(time, manpower, access, efc.) of capturing and annotat-
ing exhaustive training datasets of target objects or scenes.
To partially or completely bypass this hard data require-
ment, an increasing number of solutions are relying on syn-
thetic images rendered from 3D databases for their train-
ing [15, 51, 36, 46, 61, 45], leveraging advances in com-
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Figure 1: Differentiable Depth Sensor Simulation (DDS)
for the generation of highly-realistic depth scans. DDS
works off-the-shelf, but can be further optimized unsuper-
visedly against real data, yielding synthetic depth scans
valuable to the training of recognition algorithms (demon-
strated here on LineMOD dataset [21]).

puter graphics [50, 44]. Indeed, physics-based rendering
methods are slowly but surely closing the visual gap be-
tween real and synthetic color image distributions, simulat-
ing complex optical phenomena (e.g., realistic light trans-
port, lens aberrations, Bayer demosaicing, efc.). While
these extensive tools still require domain knowledge to be
properly parameterized for each new use-case (w.r.t. scene
content, camera properties, etc.), their positive impact on
the training of color-based visual recognition algorithms has
been well documented already [9, 22].

The same cannot be said about depth-based applica-
tions. Unlike color camera that captures light intensity,
structured-light depth sensors rely on stereo-vision mech-
anisms to measure the per-pixel distance between their fo-
cal plane and elements in the scene. They are useful for
geometry-sensitive applications (e.g., robotics), but little ef-
fort has been made towards closing the realism gap w.r.t.
synthetic depth (2.5D) scans or understanding their im-
pact on the training of depth-based recognition methods.
Some simulation pipelines [19, 33, 46] and domain adap-
tation schemes [55, 16, 54, 5, 63, 61] have been proposed;
but the former methods require extensive domain knowl-
edge [46, 63] to be set up whereas some of the latter need
relevant real images for their training [55, 16, 54, 4], and all
fail to generalize to new sensors [19, 33] or scenes [4, 63].

Borrowing from both simulation and learning-based
principles, we propose herein a novel pipeline that virtually
replicates depth sensors and can be optimized for new use-
cases either manually (e.g., providing known intrinsic pa-

14387



m collect available sim. params

n populate 3D scene

Scene: »

* 3D geometries (meshes) |
+ world positions

* materials (reflectance)
+ clutter / background |

Sensor:

—
* intrinsic parameters
* extrinsic parameters
* baseline distance l o
* statistical noise model

* structured-light pattern(s)

virtual scene content

Eamers) emitter B raytrace emit. pattern into scene
B project result into cam. syst.
n perform soft shadow mapping

B apply sensor noise/distortion models to rendered img’

O

opt. noise
model

realistic depth scan

B split imgs into blocks along epipolar lines
compare stereo-blockmatching volume & reduce

Figure 2: Pipeline overview. DDS differentiably simulates the physics and algorithmic mechanisms of real depth sensors.

rameters of a new sensor) or automatically via supervised or
unsupervised gradient descent (e.g., optimizing the pipeline
over a target noise model or real scans). Adapting recent
differentiable ray-tracing techniques [35, 64, 27] and im-
plementing novel soft stereo-matching solutions, our simu-
lation is differentiable end-to-end and can therefore be op-
timized via gradient descent, or integrated into more com-
plex applications interleaving 3D graphics and neural net-
works. As demonstrated throughout the paper, our solution
can off-the-shelf render synthetic scans as realistic as non-
differentiable simulation tools [19, 33, 46], outperforming
them after unsupervised optimization. Applied to the train-
ing of deep-learning solutions for various visual tasks, it
also outperforms unconstrained domain adaptation and ran-
domization methods [53, 5, 63, 61], i.e., resulting in higher
task accuracy over real data; with a much smaller set of pa-
rameters to optimize. In summary, our contributions are:
Differentiable Depth Sensor Simulation (DDS) — we in-
troduce DDS, an end-to-end differentiable, physics-based,
simulation pipeline for depth sensors. As detailed in Sec-
tion 3, DDS reproduces the structured-light sensing and
stereo-matching mechanisms of real sensors, off-the-shelf
generating realistic 2.5D scans from virtual 3D scenes.
Optimizable Simulation through Gradient Descent — Be-
cause DDS is differentiable w.r.t. most of the sensor and
scene parameters, it can learn to better simulate new de-
vices or approximate unaccounted-for scene properties in
supervised or unsupervised settings. It can also be tightly
incorporated within larger deep-learning pipeline, e.g., as a
differentiable 3D-to-2.5D mapping function.

Benefits to Deep-Learning Recognition Methods — we
demonstrate in Section 4 that DDS is especially beneficial to
recognition solutions that must rely on synthetic data. The
various methods (for depth-based object classification, pose
estimation, or segmentation) trained with DDS performed
significantly better when tested on real data, compared to
the same methods trained with previous simulation tools or
domain adaptation algorithms surveyed in Section 2.

2. Related work

Physics-based Simulation for Computer Vision. Re-
searchers have already demonstrated the benefits of
physics-based rendering of color images to deep-learning
methods [22, 9], leveraging the extensive progress of com-
puter graphics in the past decades. However, unlike color
cameras, the simulation of depth sensors have not attracted
as much attention. While it is straightforward to ren-
der synthetic 2.5D maps from 3D scenes (c.f. z-buffer
graphics methods [52]), such perfect scans do not reflect
the structural noise and measurement errors impairing real
scans, leaving recognition methods trained on this synthetic
modality ill-prepared to handle real data [46, 63, 45].

Early works [28, 14] tackling this realism gap tried to ap-
proximate the sensors’ noise with statistical functions that
could not model all defects. More recent pipelines [19, 33,

, 49] are leveraging physics-based rendering to mimic
the capture mechanisms of these sensors and render real-
istic depth scans, comprehensively modeling vital factors
such as sensor noise, material reflectance, surface geome-
try, etc. These works also highlighted the value of proper
2.5D simulation for the training of more robust recognition
methods [46, 45]. However, extensive domain knowledge
(w.r.t. sensor and scene parameters) is required to properly
configured these simulation tools. Unspecified information
and unaccounted-for phenomena (e.g., unknown or patented
software run by the target sensors) can only be manually ap-
proximated, impacting the scalability to new use-cases.

With DDS, we mitigate this problem by enabling the
pipeline to learn missing parameters or optimize provided
ones by itself. This is made possible by the recent progress
in differentiable rendering, with techniques modelling com-
plex ray-tracing and light transport phenomena with con-
tinuous functions and adequate sampling [37, 35, 64, 27].
More specifically, we build upon Li ef al. rendering frame-
work [35] based on ray-tracing and Monte-Carlo sampling.
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Figure 3: Gradient-based light transport and block-matching, proposed in this paper to approximate the original methods.

Domain Adaptation and Randomization. Similar to ef-
forts w.r.t. color-image domains, scientists have also been
proposing domain-adaptation solutions specific to depth
data, replacing or complementing simulation tools to train
recognition methods. Most solutions rely on unsupervised
conditional generative adversarial networks (GANs) [18]
to learn a mapping from synthetic to real image distribu-
tions [5, 60, 34] or to extract features supposedly domain-
invariant [17, 63]. Based on deep neural architectures
trained on an unlabeled subset of target real data, these
methods perform well over the specific image distribution
inferred from these samples, but do not generalize beyond
(i.e., they fail to map synthetic images to the real domain if
the input images differ too much w.r.t. training data).

Some attempts to develop more scalable domain adapta-
tion methods, i.e., detached from a specific real image do-
main (and therefore to the need for real training data), led to
domain randomization techniques [53]. These methods ap-
ply randomized transformations (handcrafted [53, 62, 63] or
learned [61]) to augment the training data, i.e., performing
as an adversarial noise source that the recognition methods
are trained against. The empirically substantiated claim be-
hind is that, with enough variability added to the training
set, real data may afterwards appear just as another noisy
variation to the models. We can, however, conceptually
understand the sub-optimal nature of these unconstrained
domain adaptation techniques, which consider any image
transform in the hope that they will be valuable to the task,
regardless of their occurence probability in real data.

By constraining the transforms and their trainable pa-
rameters to the optical and algorithmic phenomena actually
impacting real devices, DDS can converge much faster to-
wards the generation of images that are both valuable to
learning frameworks and photorealistic.

3. Methodology

As illustrated in Figure 3, structured-light devices mea-
sure the scene depth in their field of view by projecting
a light pattern onto the scene with their emitter. Their
camera—tuned to the emitted wavelength(s)—captures the

pattern’s reflection from the scene. Using the original pat-
tern image [, and the captured one I, (usually filtered and
undistorted) as a stereo signal, the devices infer the depth
at every pixel by computing the discrepancy map between
the images, i.e., the pixel displacements along the epipo-
lar lines from one image to the other. The perceived depth
z can be directly computed from the pixel disparity d via
the formula z = %, with b baseline distance between
the two focal centers and f) focal length shared by the
device’s emitter and camera. Note that depth sensors use
light patterns that facilitate the discrepancy estimation, usu-
ally performed by block-matching algorithms [12, 30]. Fi-
nally, most depth sensors perform some post-processing
to computationally refine their measurements (e.g., using
hole-filling techniques to compensate for missing data).

In this paper, we consider the simulation of structured-
light depth sensors as a function Z = G(®), with & =
{®s, P, P} set of simulation parameters. G virtually re-
produces the aforementioned sensing mechanisms, taking
as inputs a virtual 3D scene defined by ®; (e.g., scene ge-
ometry and materials), the camera’s parameters . (e.g., in-
trinsic and extrinsic values) and the emitter’s @, (e.g., light
pattern image or function +,, distance b to the camera); and
returns a synthetic depth scan Z as seen by the sensor, with
realistic image quality/noise. We propose a simulation func-
tion (G differentiable w.r.t. ®, so that given any loss function
L computed over Z (e.g., distance between Z and equiva-
lent scan Z from a real sensor), the simulation parameters
® can be optimized accordingly through gradient descent.
The following section describes the proposed differentiable
pipeline step by step, as shown in Figures 2 and 3.

3.1. Pattern Capture via Differentiable Ray-Tracing

To simulate realistic pattern projection and capture in
a virtual 3D scene, we leverage recent developments in
physics-based differentiable rendering [37, 35, 64, 27].
Each pixel color 7. observed by the device camera is for-
malized as an integration over all light paths from the scene
passing through the camera’s pixel filter (modelled as a con-
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tinuous function k), following the rendering equation:

Ye(P) =///k(m,y7w,¢>c)L(x,y,w; ®) dx dy dw, (1)

with (x,y) continuous 2D coordinates in the viewport sys-
tem, w light path direction, and L the radiance function
modelling the light rays coming from the virtual scene (e.g.,
from ambient light and emissive/reflective surfaces) [35].
At any unit surface V' projected onto (z, y) (in viewport co-
ordinate system), the radiance L with direction w is, there-
fore, itself integrated over the scene content:

L(%Z/NJ; (I)) :/ Ll(x7y7wa (P)fs(‘/aw7w’b) da(wi)
SQ

+Lv(x,y,w; (I)s)a (2)

with Ly radiance emitted by the surface (e.g., for the
structured-light emitter or other light sources embodied in
the scene), L; incident radiance, f, bidirectional reflectance
distribution function [43], do solid-angle measure, and S?
unit sphere [64]. As proposed by Li et al. [35], Monte Carlo
sampling is used to estimate these integrals and their gra-
dients: for continuous components of the integrand (e.g.,
inner surface shading), usual area sampling with automatic
differentiation is applied, whereas discontinuities (e.g., sur-
face edges) are handled via custom edge sampling.

More specific to our application, we simulate the
structured-light pattern projection onto the scene and its pri-
mary contribution L. to L for each unit surface V as:

Le(z,y,w, ®) = Ye(Te, ye, Pe)n(V, @e), 3)

with (2¢,9e,2.) " = M.,V projection of V into the pat-
tern image coordinate system defined by the projection ma-
trix M., 7. continuous representation of the structured-light
pattern emitted by the sensor, and 7 light intensity (e.g., as
a function of the distance to the emitter). In other words,
for surfaces visible to the camera, we trace rays from them
to the light emitter to measure which elements of its pattern
are lighting the surfaces (c.f. steps 1-3 in Figure 3).

As highlighted in various studies [33, 32, 46, 45], due
to the baseline distance between their emitter and camera,
depth sensors suffer from shadow-related capture failure,
i.e., when a surface V' contributing to 7. does not receive di-
rect light from the emitter due to occlusion of the light rays
by other scene elements (c.f. step 4 in Figure 3). Therefore,
we propose a soft shadow mapping procedure [57, 1] that
we model within the light intensity function 7 as follows:

n(V) =% (1—o(ze — 2 =€), )

e
with o sigmoid operator (replacing the discontinuous step
function used in traditional shadow mapping), 7. emitter in-
tensity, and 2, computed as (Z¢, Ye, Ze) | = M.V, where

Veor is the first surface hit by the virtual ray thrown from
the emitter focal center toward V' (i.e., V., superposed to
V but closer in the emitter 2D coordinate system). We add
an optimizable bias £ € R to prevent shadow acne (shadow
artifacts due to distance approximations) [&].

Estimating ~.(®) accounting for the scene and sensor
properties ®, we obtain the rasterized image I.. To cover
non-modelled physics phenomena (e.g., lens defects) and
according to previous works [19, 46], we also adopt an
optional noise function f, applied to I., e.g., fn(l.) =
I. + AI, with AT = eop, + pns {ttn,on} € @, and
€ ~ N(0,1) (c.f. reparameterization trick [13, 39]).

3.1.1 Differentiable Stereo Block-Matching

Similar to real depth sensors, our pipeline then compares
the computed I, with a rasterized version I, of the orig-
inal pattern (both of size H x W) to identify stereo-
correspondences and infer the disparity map. Differen-
tiable solutions to regress disparity maps from stereo sig-
nals have already been proposed, but these methods rely
on CNN components to perform their task either more ac-
curately [38, 6, 11] or more efficiently [29]. Therefore,
they are bound to the image domain that they were trained
over. Since our goal is to define a scene-agnostic simulation
pipeline, we proposed instead an improved continuous im-
plementation [29] of the classic stereo block-matching al-
gorithm applied to disparity regression [30, 31], illustrated
in Figure 3. The algorithm computes a matching cost vol-
ume C € RIXWxNa by gliding a w x w window over the
two images, comparing each block in I. with the set of Ny
blocks in [, extracted along the same epipolar line. Consid-
ering standard depth sensors with the camera and emitter’s
focal planes parallel, the epipolar lines appear horizontal in
their image coordinate systems (with N; = W), simplify-
ing the equation into:

rt+w Yy+w

Cla,y,0)= > > Lauleijloijs), )

1=z+u j=y+v

with § € [y — Ng — w,y] horizontal pixel displacement
and £;; matching function (we opt for cross-correlation).
Matrix unfolding operations are applied to facilitate volume
inference. Formulating the task as a soft correspondence
search, we reduce C into the disparity map d as follows:
d(x,y) = softargmaxs C(x,y, d) with softargmax; X =
> ijﬁ% and 5 € R optimizable parameter controlling
the temperature of the underlying probability map. From
this, we can infer the simulated depth scan Z = %.
However, as it is, the block-matching method would rely
on an excessively large cost volume H x W x W (i.e.,
with N; = W) making inference and gradient computa-
tion impractical. We optimize the solution by considering
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(e.g., provided by the manufacturer or inferred from focal
length), reducing the correspondence search space accord-
ingly, i.e., with 0 € [dpin, dmaz] = | ;&], L;M” (di-
viding N, tenfold for most sensors). Thgaéffecti\%ndispar-
ity range can be further reduced, e.g., by considering the
min/max z-buffer values in the target 3D scene.

The computational budget saved through this scheme can
instead be spent refining the depth map. Modern stereo
block-matching algorithms perform fine-tuning steps to
achieve sub-pixel disparity accuracy, though usually based
on global optimization operations that are not directly dif-
ferentiable [24, 4 1]. To improve the accuracy of our method
without trading off its differentiability, we propose the fol-
lowing method adapted from [33]: Let n4,; be an hyperpa-
rameter representing the desired pixel fraction accuracy. We
create {1, ; },~%" lookup table of pattern images with a hor-
izontal shift of i/n,, px. Each I, ; is pre-rendered (once)
via Equation 1 with ®,; defining a virtual scene contain-
ing a single flat surface parallel to the sensor focal planes
placed at distance df 2b with Amin,i = dmin + ﬁ (hence

min,i

a global disparity of i/n,.; between I, and I, ;). At sim-
ulation time, block-matching is performed between I. and
each I, ;, interlacing the resulting cost volumes and reduc-
ing them at once into the refined disparity map.

Finally, similar to the noise function optionally applied
to I. after capture, our pipeline allows Z to be post-
processed, if non-modelled functions need to be accounted
for (e.g., device’s hole-filling operation). In the following
experiments, we present different simple post-processing
examples (none, normal noise, or shallow CNN).

4. Experiments

Through various experiments, we evaluate the photoreal-
ism of depth images rendered by DDS and their value w.r.t.
training recognition method or solving inverse problems.

4.1. Realism Study
First, we qualitatively and quantitatively compare DDS

results with real sensor scans and data from other pipelines.

Qualitative Comparison. Visual results are shared in
Figures | and 4 (w.r.t. Microsoft Kinect VI simulation),
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Figure 5: Sensor noise study. Given a flat surface placed
at various distances z and tilt angles o w.r.t. the sensor, we
plot the standard depth error as a function of r distance to
the focal center in screen space, of z, and of «; for actual
and simulated Kinect VI scans and statistical sensor models.

as well as in the supplementary material (w.r.t. Matterport
Pro2). We can observe that off-the-shelf DDS reproduces
the image quality of standard depth sensors (e.g., Kinect
VI): DDS scans contain shadow noise, quantization noise,
stereo block-mismatching, efc., similar to real images and
previous simulations [19, 46] (c.f. empirical study of depth
sensors’ noise performed by Planche et al. [40]). Figure
4 and supplementary material further highlight how, unlike
static simulations, ours can learn to tune up or down its in-
herent noise to better model sensors of various quality.

Quantitative Comparison. Reproducing the experimen-
tal protocol of previous 2.5D simulation methods [32, 46],
we statistically model the depth error incurred by DDS as
function of various scene parameters, and compare with em-
pirical and statistical models from real sensor data.
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* Protocol. Studying the Microsoft Kinect VI sensor, Lan-
dau et al. [33, 32] proposed the following protocol (further
illustrated in the supplementary material). In real and sim-
ulated world, a flat surface is placed in front of the sen-
sor. The surface is considered as a plane (P, U, 7) with
P =(0,0,z2), q = (1,0,0), and v = (0, sin «v, cos @) in
camera coordinate system (i.e., a plane at distance z and tilt
angle a w.r.t. focal plane). For each image captured in this
setup, the standard depth error for each pixel ¢ is computed
as function of the distance z, the tilt angle «, and the radial
distance r to the focal center. Like Landau et al. [33, 32]
and Planche er al. [46], we compare the noise functions
of our method with those of the actual Kinect VI sensor,
as well as the noise functions computed for other state-of-
the-art simulation tools (BlenSor [19], Landau’s [33], and
DepthSynth [46]) and noise models proposed by researchers
studying this sensor (Menna et al. [40], Nguyen et al. [42]
and Choo et al. [7, 32]).

* Results. In Figure 5, we first plot the error as a function
of the radial distance r to the focal center. DDS performs
realistically: like other physics-based simulations [19, 46],
it reproduces the noise oscillations, with their amplitude in-
creasing along with distance z—a phenomenon impairing
real sensors, caused by pattern distortion.

We also plot the standard error as a function of the dis-
tance z and of the incidence angle . While our simulated
results are close to the real ones w.r.t. distance, we can ob-
serve that noise is slightly over-induced w.r.t. tilt angle. The
larger the angle, the more stretched the pattern appears on
the surface, impairing the block-matching procedure. Most
algorithms fail matching overly-stretched patterns (c.f. ex-
ponential error in the figure), but our custom differentiable
block-matching solution is unsurprisingly less robust to
block skewing than the multi-pass methods used in other
simulations [19, 46]. This could be tackled by adopt-
ing some more advanced block-matching strategies from
the literature and rewriting them as continuous functions.
This would however increase the computational footprint of
the overall simulation and would only benefit applications
where high photorealism is the end target. In the next ex-
periments, we instead focus on deep-learning applications.

4.2. Applications to Deep Learning

We now illustrate how deep-learning solutions can ben-
efit from our simulation method. We opt for various key
recognition tasks over standard datasets, comparing the per-
formance of well-known CNNss as a function of the data and
the domain adaptation framework used to train them.

2.5D Semantic Segmentation. We start by comparing the
impact of simulation tools on the training of a standard
CNN for depth-based semantic segmentation.

¢ Dataset. For this task, we choose the 2D-3D-Semantic

Table 1: Comparative study w.r.t. training usage, measur-
ing the accuracy of a CNN [20, 56, 59] performing semantic
segmentation on real 2.5D scans from the indoor 2D-3D-S
dataset [3], as a function of the method used to render its
training data (1 = the higher the value, the better).

Train. | Mean Intersection-Over-Union (mloU)" | Pixel
Data +
T Ace.
Source ‘ “0815 & e\&\é x %&o‘ & & ‘ e
clean ‘ .003 .018 .002 .087 .012 .052 .091 .351 ‘ 35.3%
BlenSorpio1 | .110 534 119 .167 .148 561 .082 412 | 51.6%
DepthS. 116 | 184 .691 185 221 243 722 235 561 | 65.3%
DDS 218 705 201 225 240 742 259 583 | 62.9%
DDS (train.) | 243 711 .264 255 269 .794 271 .602 | 69.8%
real ‘ 135 770 214 277 302 .803 .275 .661 ‘ 73.5%

dataset by Armeni et al. [3] as it contains RGB-D indoor
scans shot with a Matterport Pro2 sensor, as well as the
camera pose annotations and the reconstructed 3D models
of the 6 scenes. It is, therefore, possible to render synthetic
images aligned with the real ones. We split the data into
training/testing sets as suggested by 2D-3D-S authors [3]
(fold #1, i.e., 5 training scenes and 1 testing one). For the
training set, we assume that only the 3D models, images and
their pose labels are available (not the ground-truth seman-
tic masks). Note also that for the task, we consider only the
8 semantic classes (out of 13) that are discernible in depth
scans (e.g., board are indistinguishable from wall in 2.5D
scans) and present in the training scenes.

* Protocol. Using the 3D models of the 5 training scenes,
we render synthetic 2.5D images and their corresponding
semantic masks using a variety of methods from the litera-
ture [2, 19, 46]. DDS is both applied off-the-shelf (only en-
tering the Pro2 sensor’s intrinsic information), and after be-
ing optimized via supervised gradient descent (combining
Huber and depth-gradient losses [23, 26]) against the real
scans from one training scene (scene #3). Each synthetic
dataset, and the dataset of real scans as upper-bound target,
is then used to train an instance of a standard ResNet-based
CNN [20, 56, 59] for semantic segmentation (we choose the
Dice loss to make up for class imbalance [10]).

* Results. We measure the performance of each model
instance in terms of per-class mean intersection-over-
union [25, 48] and pixel accuracy. Results are shared in
Table 1. We can observe how data from both untrained and
trained DDS result in the most accurate recognition models
(among those trained on purely synthetic data), with values
on par or above those of the models trained on real anno-
tated data for some classes. Even though DDS may not per-
fectly simulate the complex, multi-shot Matterport sensor,
its ability to render larger and more diverse datasets can be
easily leveraged to achieve high recognition accuracy.

Classification and Pose Estimation. We now perform an
extensive comparison, as well as partial ablation study, w.r.t.
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the ubiquitous computer vision task of instance classifica-
tion and pose estimation (ICPE) [58, 5, 62, 63].
e Dataset. For this task, we select the commonly-used
Cropped LineMOD dataset [2 1, 58, 5], composed of 64 x 64
RGB-D image patches of 11 objects under various poses,
captured by a Kinect VI sensor, in cluttered environments.
Disregarding the RGB modality for this experiment, we
split the dataset into a non-annotated training set X;.,, of
11,644 depth images, and a testing set X/, of 2,919 depth
images with their class and pose labels. The LineMOD
dataset also provides a reconstructed 3D model of each ob-
ject, used to render annotated synthetic training images. For
fair comparison, all 3D rendering methods considered in
this experiment are provided the same set of 47,268 view-
points from which to render the images. These viewpoints
are sampled from a virtual half-icosahedron centered on
each target object, with 3 different in-plane rotations (i.e.,
rotating the camera around its optical axis) [58, 62, 63, 47].
* Protocol. For this experiment, we opt for the
generic task CNN from [16], trained for object classi-
fication and rotation estimation via the loss L =
Ez, (y.q) [fyT log 3y + & log (1 - |qT(j|)], where the first
term is the class-related cross-entropy and the second term
is the log of a 3D rotation metric for quaternions [5, 61],
with ¢ pose loss factor, x input depth image, {y,q}
resp. ground-truth one-hot class vector and quaternion, and
{9, G} resp. predicted values. Again, we measure the net-
work’s classification accuracy and rotational error as a func-
tion of the data that it was trained on, extending the compar-
ison to different online or offline augmentation and domain
adaptation schemes (c.f. Figure 4 for visual comparison).
For domain adaptation solutions such as Pixel/DA [5] and
DeceptionNet [01], the recognition network 7T is trained
against a generative network G whose task is to augment
the input synthetic images before passing them to 7". This
adversarial training framework, with G trained unsupervis-

edly against 7" [6 1] and/or a discriminator network D [5, 63]
using non-annotated real images X/, better prepares T’ for

its task on real data, i.e., training it on noisier and/or more
realistic synthetic images. To further demonstrate the train-
ing of our simulation, this time in a less constrained, un-
supervised setting, we reuse PixelDA training framework,
replacing its ResNet-based [20] generator by DDS. Our
method is, therefore, unsupervisedly trained along with the
task network, so that DDS learns to render synthetic images
increasingly optimized to help 7" with its training. Three in-
stance of DDS are thus compared: (a) off-the-shelf, (b) with
b = {¢&, pn,0n, B} (i.e., parameters w.r.t. shadows, nor-
mal noise, and softargmax) optimized unsupervisedly, and
(c) same as the previous but adding 2 trainable convolution
layers as post-processing (|]®| = 2,535 only in total).

* Results. Table 2 presents a detailed picture of state-of-
the-art training solutions for scarce-data scenarios (basic

Table 2: Comparative and ablative study, measuring the
impact of unsupervised domain adaptation, sensor simula-
tion (Sim), and domain randomization (DR, i.e., using ran-
domized 2.5D transforms c.f. [63, 61]) on the training of a
CNN [16] for depth-based instance classification and pose
estimation on the Cropped LineMOD dataset [21, 5, 61].

‘ Augmentations ‘ Sim/DA Regq. ‘ Class. Rot.
‘Accur.T Error*

| offline online | X7, |®|

Basic 468%  67.0°

: DR 707%  53.1°

o PixelDAs) | GAN | v 196M | 857%  40.5°
=]

= GAN v 123M | 680%  60.8°
<<

P DRIT++1 | GAN DR v 123M | 877%  39.8°

& Decep.Net(s1] | DR | 1.54M | 80.2%  S54.1°

Sim 715%  52.1°

. Depth$- 101 | i pR 76.6%  45.4°

7 Sim 675%  63.4°

5 BlenSorio) Sim DR 82.6%  41.4°
=

A DDS Sim 69.7% 67.6°

(untrained) Sim DR 89.6% 39.7°

Sim v 4 812%  49.1°

~ DS Sim DR v 4 90.5%  39.4°

g Simmicony V2535 | 855%  45.4°

£ Simsow DR V2535 | 93.0%  313°

© pps+(x,v),, | Simwow DR | v 2535 | 97.8%  25.1°

(X, V)0 | | v | 954%  35.0°

or simulation-based image generation, static or GAN-based
offline or online image transformations, efc.) and their per-
formance on the task at hand. The various schemes are fur-
ther sorted based on their requirements w.r.t. unlabeled real
images and on the size of their parameter space.

The table confirms the benefits of rendering realistic
data, with the recognition models trained against previous
simulation methods [19, 46] performing almost as well as
the instances trained with GAN-based domain adaptation
techniques [5, 34] having access to a large set of relevant
real images. In contrast to the latter methods, simulation
tools have, therefore, superior generalization capability. A
second interesting observation from the table is the value
of online data augmentation (e.g., random distortion, occlu-
sion, efc.) [63], regardless of the quality of synthetic images.
It provides a significant accuracy boost on both tasks, vir-
tually and inexpensively increasing the training set size and
variability c.f. domain randomization theory [53]. In that
regard, DeceptionNet [601], a learning-based domain ran-
domization framework, performs satisfyingly well without
the need for real data (though domain knowledge is required
to adequately set the 2.5D transforms’ hyperparameters).

But overall, results highlight the benefits of combining
all these techniques, which DDS can do seamlessly thanks
to its gradient-based structure. Off-the-shelf, manually-
parameterized DDS yields results similar to previous sim-
ulation tools when images are not further augmented but
rises above all other methods when adding online augmen-
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Figure 6: Optimization of scene and sensor parameters via simulation, to improve sensor precision in controlled use-cases.
A. Experimental setup c.f. Section 4.1; B. Optimization of the scene parameters (e.g., pose) to reduce sensor standard error;
C. Optimization of the sensor (e.g. pattern structure and frequencies) to improve its accuracy w.r.t. such scenes/materials.

tations. Training DDS unsupervisedly along with 7" further
increases the performance, especially when intermittently
applying a learned post-processing composed only of two
convolutions. Opting for simple post-processing modules to
compensate for non-modelled phenomena, we preserve the
key role of simulation within DDS and, therefore, its gen-
eralization capability. Finally, we can note that, while the
instance of 7" trained with DDS still performs slightly worse
than the one trained on real annotated images w.r.t. the clas-
sification task, it outperforms it on the pose estimation task.
This is likely due to the finer pose distribution in the ren-
dered dataset (47,268 different images covering every angle
of the objects) compared to the smaller real dataset. The
best performance w.r.t. both tasks is achieved by combin-
ing the information in the real dataset with simulation-based
data (c.f. penultimate line in Table 2).

Though computationally more intensive (a matter that
can be offset by rendering images offline), our differentiable
solution outperforms all other learning-based domain adap-
tation schemes, with a fraction of the parameters to train
(therefore requiring fewer iterations to converge). More-
over, it is out-of-the-box as valuable as other depth simula-
tion methods and outperforms them too when used within
supervised or unsupervised training frameworks.

4.3. Optimization of Scene and Sensor Parameters

So far, we mostly focused on optimizing the simulation
itself (e.g., shadow bias and noise parameters) in order to
render more realistic images and improve CNNs training,
rather than optimizing the scene or sensor parameters. To il-
lustrate DDS capability w.r.t. such use-cases, we developed
and performed a toy experiment, presented in Figure 6.

* Protocol. We consider the same scene setup as in Sub-
section 4.1 but assume that the target surface is tilted w.r.t.
optical plan and only reflects red light frequencies, and that
the depth sensor relies on a randomly generated dot pattern
emitted with pseudo white light (mixture of wavelengths).

* Results. First, in Figure 6.B, we demonstrate how the
scene geometry (i.e., the pose of the flat surface here) can
be optimized via gradient descent to reduce the standard
error of the simulated device (i.e., using the L1 distance

between simulated depth maps and ground-truth noiseless
ones as loss function). As expected, the surface is rotated
back to be parallel to the focal plane, effectively preventing
the stretching of the projected pattern and, therefore, block-
matching issues (c.f. discussion in Subsection 4.1). In a
second experiment, we consider the scene parameters fixed
and instead try optimizing the depth sensor, focusing on its
light pattern (i.e., to reduce sensing errors w.r.t. this kind of
scenes, composed of tilted, red surfaces). Figure 6.C shows
how the pattern image is optimized, quickly switching to
red light frequencies, as well as more slowly adopting local
patterns less impacted by projection-induced stretching.

We believe these toy examples illustrate the possible ap-
plications of simulation-based optimization of scene param-
eters (e.g., to reduce noise from surroundings when scan-
ning an object) or sensor parameters (e.g., to build a sensor
optimized to specific scene conditions).

5. Conclusion

In this paper we presented a novel simulation pipeline
for structured-light depth sensors, based on custom differ-
entiable rendering and block-matching operations. While
directly performing as well as other simulation tools w.r.t.
generating realistic training images for computer-vision ap-
plications, our method can also be further optimized and
leveraged within a variety of supervised or unsupervised
training frameworks, thanks to its end-to-end differentiabil-
ity. Such gradient-based optimization can compensate for
missing simulation parameters or non-modelled phenom-
ena. Through various studies, we demonstrate the realis-
tic quality of the synthetic depth images that DDS gener-
ates, and how depth-based recognition methods can greatly
benefit from it to improve their end performance on real
data, compared to other simulation tools or learning-based
schemes used in scarce-data scenarios. Our results sug-
gest that the proposed differentiable simulation and its stan-
dalone components further bridge the gap between real and
synthetic depth data distributions, and will prove useful to
larger computer-vision pipelines, as a transformer function
mapping 3D data and realistic 2.5D scans.
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