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Abstract
Many existing approaches for unsupervised domain adap-

tation (UDA) focus on adapting under only data distribu-
tion shift and offer limited success under additional cross-
domain label distribution shift. Recent work based on self-
training using target pseudolabels has shown promise, but
on challenging shifts pseudolabels may be highly unreli-
able and using them for self-training may lead to error
accumulation and domain misalignment. We propose Se-
lective Entropy Optimization via Committee Consistency
(SENTRY), a UDA algorithm that judges the reliability of
a target instance based on its predictive consistency un-
der a committee of random image transformations. Our
algorithm then selectively minimizes predictive entropy to
increase confidence on highly consistent target instances,
while maximizing predictive entropy to reduce confidence on
highly inconsistent ones. In combination with pseudolabel-
based approximate target class balancing, our approach
leads to significant improvements over the state-of-the-art
on 27/31 domain shifts from standard UDA benchmarks
as well as benchmarks designed to stress-test adaptation
under label distribution shift. Our code is available at
https://github.com/virajprabhu/SENTRY .

1. Introduction
Unsupervised domain adaptation (UDA) learns to transfer

a predictive model from a labeled source domain to an unla-
beled target domain. The particular instantiation of learning
under covariate shift has been extensively studied within
the computer vision community [13, 18, 25, 34, 44, 45].
However, many modern UDA methods, such as distribu-
tion matching based techniques, implicitly assume that the
task label distribution does not change across domains, i.e
PS(y) = PT (y). When such an assumption is violated,
distribution matching is not expected to succeed [22, 49].

In many real-world adaptation scenarios, one may en-
counter data distribution (i.e. covariate) shift across domains
together with label distribution shift (LDS). For instance, a
source dataset can be curated to have a balanced label distri-
bution while a naturally arising target dataset may follow a
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Figure 1: Top: Conventional entropy-minimization based ap-
proaches for unsupervised domain adaptation (UDA) operate by
increasing model confidence on unlabeled target instances. Under
strong distribution shifts, some instances may initially be mis-
aligned and entropy minimization can lead to error accumulation.
Bottom: We propose Selective Entropy Optimization via Com-
mittee Consistency (SENTRY), a UDA algorithm that i) identifies
reliable target instances based on their predictive consistency under
a set of random image transformations, and ii) selectively optimizes
model entropy on these instances to induce domain alignment.

power law label distribution, as some categories naturally oc-
cur more often than others (e.g. DomainNet [31], LVIS [16],
and MSCOCO [23]). In order to make domain adaptation
broadly applicable, it is critical to develop UDA algorithms
that can operate under joint data and label distribution shift.

Recent works have attempted to address the problem of
joint data and label distribution shift [22, 43], but these ap-
proaches can be unstable as they rely on self-training using
often noisy pseudo-labels or conditional entropy minimiza-
tion [22] over potentially miscalibrated predictions [15, 39].
Thus, when learning with unconstrained self-training, early
mistakes can result in error accumulation [6] and significant
domain misalignment (see Figure 1, top).
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To address the problem of error accumulation arising
from unconstrained self-training, we propose Selective En-
tropy Optimization via Committee Consistency (SENTRY), a
novel selective self-training algorithm for UDA. First, rather
than using model confidence which can be miscalibrated un-
der a domain shift [39], we identify reliable target instances
for self-training based on their predictive consistency under
a committee of random, label-preserving image transforma-
tions. Such consistency checks have been found to be a
reliable way to detect model errors [2]. Having identified
reliable and unreliable target instances, we then perform
selective entropy optimization: we consider a highly con-
sistent target instance as likely correctly aligned, and in-
crease model confidence by minimizing predictive entropy
for such an instance. Similarly, we consider an instance with
high predictive inconsistency over transformations as likely
misaligned, and reduce model confidence by maximizing
predictive entropy. See Figure 1 (bottom).
Contributions. We propose SENTRY, an algorithm for un-
supervised adaptation under simultaneous data and label
distribution shift. We make the following contributions:

1. A novel selection criterion that identifies reliable target
instances for self-training based on predictive consis-
tency over a committee of random, label-preserving
image transformations.

2. A selective entropy optimization objective that min-
imizes predictive entropy (increasing confidence) on
highly consistent target instances, and maximizes it
(reducing confidence) on highly inconsistent ones.

3. We propose using class-balanced sampling on the
source (using labels) and target (using pseudolabels),
and find it to complement adaptation under LDS.

4. SENTRY sets a new state-of-the-art on 27/31 domain
shifts belonging to both standard and LDS versions
of several DA benchmarks for classification, including
DomainNet [31], OfficeHome [46], and VisDA [32].

2. Related Work
Unsupervised Domain Adaptation (UDA). The task of
transferring models from a labeled source to an unlabeled tar-
get domain has seen considerable progress [13, 18, 34, 45].
Many approaches align feature spaces via directly minimiz-
ing domain discrepancy statistics [20, 25, 45]. Recently,
distribution matching (DM) via domain-adversarial learning
has become a prominent UDA paradigm [13, 26, 36, 44, 53].
Such DM-based methods however achieve limited success
in the presence of additional label distribution shift (LDS).

Some prior work has studied the problem of UDA under
LDS, proposing class-weighted domain discrepancy mea-
sures [47, 51], generative approaches for pair-wise feature
matching [42], or asymmetrically-relaxed distribution align-
ment [52]. Some prior work in UDA under LDS addition-
ally assumes that the conditional input distribution does not

change across domains i.e. pS(y) ̸= pT (y), pS(x|y) =
pT (x|y) (referred to as “label shift” [1, 24, 41]). We tackle
the problem of UDA under simultaneous covariate and label
distribution shift, without making additional assumptions.
Self-training for UDA. Recently, training on model predic-
tions or self-training has proved to be a promising approach
for UDA under LDS [22, 43]. This typically involves su-
pervised training on confidently predicted target pseudola-
bels [43], confidence regularization [54], or conditional en-
tropy minimization [14] on target instances [22]. However,
unconstrained self-training can lead to error accumulation.
To address this, we propose a selective self-training strategy
that first identifies reliable instances for self-training and
selectively optimizes model entropy on those.
Predictive Consistency. Predictive consistency under aug-
mentations has been found to be useful in several capac-
ities – as a regularizer in supervised learning [10], self-
supervised representation learning [7], semi-supervised
learning [3, 38, 40, 50], and UDA [22]. Bahat et al. [2]
find consistency under image transformations to be a reliable
indicator of model errors. Unlike prior work which optimizes
for invariance across augmentations, we use predictive con-
sistency under a committee of random image transforms
to detect reliable instances for alignment, and selectively
optimize model entropy on such instances.

3. Approach
We address the problem of unsupervised domain adap-

tation (UDA) of a model trained on a labeled source do-
main to an unlabeled target domain. In addition to covariate
shift across domains, we focus on the practical scenario of
additional cross-domain label distribution shift (LDS), and
present a selective self-training algorithm for UDA that leads
to reliable domain alignment in such a setting.

3.1. Notation
Let X and Y denote input and ouput spaces, with the goal
being to learn a CNN mapping h : X → Y parameterized
by Θ. In unsupervised DA we are given access to labeled
source instances (xS , yS) ∼ PS(X ,Y), and unlabeled tar-
get instances xT ∼ PT (X ), where S and T correspond to
source and target domains. We consider DA in the context
of C-way image classification: the inputs x are images, and
labels y are categorical variables y ∈ {1, 2, .., C}. For an
instance x, let pΘ(y|x) denote the final probabilistic output
from the model. For each target instance xT ∼ PT (X ), we
estimate a pseudolabel ŷ = argmax pΘ(y|xT ).

3.2. Preliminaries: UDA via entropy minimization
Unsupervised domain adaptation typically follows a two-

stage training pipeline: source training, followed by target
adaptation. In the first stage, a model is trained on the labeled
source domain in a supervised fashion, minimizing a cross-
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Figure 2: We propose Selective Entropy Optimization via Committee Consistency (SENTRY) for unsupervised DA. For each target instance,
we generate a committee of random, label-preserving image transformations. A consistency checker then computes the consistency between
model predictions for the original and augmented versions. The algorithm then minimizes predictive entropy (increasing model confidence)
on highly consistent target instances, and maximizes predictive entropy (reducing model confidence) on highly inconsistent ones.

entropy loss with respect to ground truth labels.

LCE = E(xS ,yS)∼PS [LCE(h(xS), yS)] (1)

In the second stage, the trained source model is adapted
to the target with the use of unlabeled target and labeled
source data. Recently, self-training via conditional entropy
minimization (CEM) [14] has been shown to lead to strong
performance for domain adaptation [35]. This approach opti-
mizes model parameters to minimize conditional entropy on
unlabeled target data HΘ(y|x). The entropy minimization
objective LENT is given by:

LENT = ExT ∼PT [HΘ(y|xT )]

= ExT ∼PT

[
C∑

c=1

−pΘ(y=c|xT ) log pΘ(y=c|xT )

]
(2)

However, in many real-world scenarios, in addition to co-
variate shift, label distributions across domains might also
shift. Further, there might also be significant label imbal-
ance within the target domain. In such cases, naive CEM
has been found to potentially encourage trivial solutions of
only predicting the majority class [22]. Li et al. [22] regu-
larize CEM with an “information-entropy” objective LIE

that encourages the model to make diverse predictions over
unlabeled target instances. This is achieved by computing
a distribution over classes predicted by the model for the
last-Q instances, denoted by q(ŷ), and updating parameters
to maximize entropy over these predictions. This method
is shown to help with domain alignment in the presence of
label-distribution shift [22] 1. LIE is defined as:

LIE = ExT ∼PT

[
C∑

c=1

pΘ(y=c|xT ) log q(ŷ=c)

]
(3)

1The objective is referred to as “mutual information maximization” in
Li et al. [22]

CEM and error accumulation. While conditional entropy
minimization has been a part of many successful approaches
for semi-supervised learning [3, 14], few-shot learning [12],
and more recently, UDA [22, 35], it suffers from a key chal-
lenge in the case of domain adaptation. Intuitively, condi-
tional entropy minimization encourages the model to make
confident predictions on unlabeled target data. This makes its
success highly dependent on its initialization. Under a good
initialization, categories may be reasonably aligned across
source and target domains after source training, and such
self-training works well. However, under strong domain
shifts, several categories may initially be misaligned across
domains, often systematically so, and entropy minimization
will only lead to reinforcing such errors.

3.3. SENTRY: Selective Entropy Optimization via
Committee Consistency

Predictive consistency-based selection. To address the
problem of error accumulation under CEM, we propose
selective optimization on well-aligned instances. The ques-
tion then becomes: how can we identify reliable instances?
One possibility is to use top-1 softmax confidence (or alter-
natively, predictive entropy), and only self-train on highly
confident instances, as done in prior work [43]. However,
under a distribution shift, such confidence measures tend
to be miscalibrated and are often unreliable [39]. Instead,
we propose using predictive consistency under a committee
of label-preserving image transformations as a more robust
measure for instance selection.

For a target instance xT ∼ PT , we generate a committee
of k transformed versions {a1(xT ), a2(xT ), ..., ak(xT )}.
We make predictions for each of these k transformed ver-
sions, and measure consistency between the model’s pre-
diction for the original image and for each of its k aug-
mented versions. In practice, we use a simple majority
voting scheme: if the model’s prediction for a majority of
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augmented versions matches its prediction on the original
image, we consider the instance as “consistent”. Similarly, if
the prediction for a majority of augmented versions does not
match the original prediction, we mark it as “inconsistent”.
Selective Entropy Optimization. Having identified consis-
tent and inconsistent instances, we perform Selective En-
tropy Optimization (SENTRY). First, for an instance marked
as consistent, we increase model confidence by minimizing
predictive entropy [14] with respect to one of its consistent
augmented versions.

As described previously, some target instances may be
misaligned under a domain shift. Entropy minimization on
such instances would increase model confidence, reinforcing
such errors. Instead, having identified such an instance via
predictive inconsistency, we reduce model confidence by
maximizing predictive entropy [33] with respect to one of its
inconsistent augmented versions. While the former encour-
ages confident predictions on highly consistent instances,
the latter reduces model confidence on highly inconsistent
and likely misaligned instances. In Sec. 4.6, we provide fur-
ther intuition into the behavior of entropy maximization by
illustrating its similarity to a binary cross-entropy loss with
respect to the ground truth label for an incorrectly classified
example in the binary classification case.

Without loss of generality, we minimize/maximize en-
tropy with respect to the last consistent/inconsistent trans-
formed version in our experiments. Our selective entropy
optimization objective LSENTRY is given by:

LSENTRY(xT ) =

{
+HΘ(y|ai(xT )) if consistent
−HΘ(y|aj(xT )) if inconsistent

(4)

Here i and j denote the index of the last consistent and
inconsistent transformed version, respectively.

Such an approach may raise two concerns: First, that en-
tropy minimization only on consistent instances might lead
to the exclusion of a large percentage of target instances.
Second, that indefinite entropy maximization on inconsistent
target instances might prove detrimental to learning. Both
of these concerns are addressed via the augmentation invari-
ance regularizer built into our objective, which leads to an
adaptive selection strategy that we now discuss.
Adaptive selection via augmentation invariance regular-
ization. For instances marked as consistent, our approach
minimizes entropy with respect to its last consistent aug-
mented version rather than with respect to the original image
itself. This yields two benefits: First, this builds data aug-
mentation into the entropy minimization objective, which
helps reduce overfitting. Second, it encourages invariance to
the same set of augmentations that is used for selecting in-
stances. We find that this makes our selection strategy adap-
tive, wherein an increasing percentage of target instances are
selected for entropy minimization over the course of training,
and consequently a decreasing percentage of target instances
are selected for entropy maximization.

Algorithm 1 SENTRY Optimization
1: Input: XS , YS , XT , Q, Θ
2: for all x(i)

T ∈ XT do ▷ Init target pseudo-labels
3: Ŷ(i)

T ← argmax pΘ(y|x(i)
T )

4: SrcLoader← ClassBalancedSampler(XS ,YS )
5: TgtLoader← ClassBalancedSampler(XT , ŶT )
6: q ← Queue(size=Q)
7: for epoch← 1 to MAX_EPOCH do
8: for xS , yS in SrcLoader and xT in TgtLoader do
9: ŷT ← argmax pΘ(y|xT ) ▷ Clean prediction

10: {a1(xT ), . . . , ak(xT )} ← RandAugment(xT )
11: C← {ai(xT )|ŷT = argmax pΘ(y|ai(xT ))}ki=1

12: IC← {ai(xT )|ŷT ̸= argmax pΘ(y|ai(xT ))}ki=1

13: if len(C) > len(IC) then ▷ Consistent
14: LSENTRY = HΘ(y|C.last())
15: else ▷ Inconsistent
16: LSENTRY = −HΘ(y|IC.last())
17: Update(ŶT , ŷT )
18: q.enqueue(ŷT ) ▷ Update pseudo-label queue
19: Minimize LSENTRY + LIE(q) + LCE(xS , yS)
20: TgtLoader← ClassBalancedSampler(XT , ŶT )

3.4. Overcoming LDS via pseudo class balancing

Under LDS, methods often have to adapt in the pres-
ence of severe label imbalance. While label imbalance on
the source domain often leads to poor performance on tail
classes [11, 48], adapting to an imbalanced target often re-
sults in poor performance on head classes [22, 49]. To over-
come this, we employ a simple class-balanced sampling
strategy. On the source domain, we perform class-balanced
sampling using ground truth labels. On the target domain,
we approximate the label distribution via pseudolabels, and
perform approximate class-balanced sampling [55].

Such balancing also complements the target information-
entropy loss LIE [22] (Eq. 3). To recap, LIE encourages
a uniform distribution over predictions. Under severe label
imbalance, it is possible to sample highly label-imbalanced
batches (with most instances belonging to head classes) and
so encouraging a uniform distribution over predictions can
adversely affect learning. However, our class-balanced sam-
pling strategy reduces the probability of such a scenario, and
we find that it consistently improves performance.

Algorithm 1 details our full approach. The complete
objective we optimize is given by:

argmin
Θ

E
(xS ,yS)

bal∼PS
LCE +

E
xT

pbal∼PT
λIELIE + λSENTRYLSENTRY

(5)

where the λ’s denote loss weights, and bal∼ and
pbal∼ denote

balanced and pseudo class-balanced sampling.
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Figure 3: Left: Natural label distribution shift (LDS) on the Clipart→Sketch shift from DomainNet. Right: Manually generated LDS on the
Real World→Clipart shift from OfficeHome RS-UT [43].

4. Experiments
We first describe our experimental setup: datasets and met-
rics (Sec. 4.1), implementation details (Sec. 4.2), and base-
lines (Sec. 4.3). We then present our results (Sec. 4.4), abla-
tion studies (Sec. 4.5), and analyze our approach (Sec. 4.6).

4.1. Datasets and Metrics
We report results on a mix of standard UDA benchmarks
and specialized benchmarks designed to stress-test UDA
methods under label distribution shift.
DomainNet. DomainNet [31] is a large UDA benchmark for
image classification, containing 0.6 million images belong-
ing to 6 domains spanning 345 categories. Due to labeling
noise prevalent in its full version, we instead use the subset
proposed in Tan et al. [43], which uses 40-commonly seen
classes from 4 domains: Real (R), Clipart (C), Painting (P),
and Sketch (S). As seen in Fig. 3 (left), there exists a natu-
ral label distribution shift across domains, which makes it
suitable for testing our method without manual subsampling.
OfficeHome. OfficeHome [46] is an image classification-
based benchmark containing 65 categories of objects found
in office and home environments, spanning 4 domains: Real-
world (Rw), Clipart (Cl), Product (Pr), and Art (Ar). We
report performance on two versions: i) standard: the original
dataset proposed in Venkateswara et al. [46], and ii) RS-
UT: The Reverse-unbalanced Source (RS) and Unbalanced-
Target (UT) version from Tan et al. [43], wherein source
and target label distributions are manually long-tailed to be
reversed versions of one another (see Fig. 3 (right)).
VisDA. VisDA2017 [32] is a large dataset for synthetic→real
adaptation with 12 classes and >200k images.
DIGITS. We use the SVHN [29]→MNIST [21] shift for
10-way digit recognition.
Metric. On LDS DA benchmarks (DomainNet and Office-
Home RS-UT), consistent with prior work in UDA under
LDS [19, 43], we compute a mean of per-class accuracy
on the target test split as our metric, that weights perfor-
mance on all classes equally. On standard DA benchmarks
(OfficeHome and VisDA2017) we report standard accuracy.

4.2. Implementation details
We use PyTorch [30] for all experiments. On Domain-
Net, OfficeHome, and VisDA2017, we modify the standard
ResNet50 [17] CNN architecture to a few-shot variant used
in recent DA work [8, 35, 43]: we replace the last linear
layer with a C− way (for C classes) fully-connected layer
with Xavier-initialized weights and no bias. We then L2-
normalize activations flowing into this layer and feed its
output to a softmax layer with a temperature T = 0.05. We
match optimization details to Tan et al. [43]. On DIGITS,
we make similar modifications to the LeNet architecture and
use T = 0.01 [18]. For augmenting images for consistency
checking, we use RandAugment [10], which sequentially
applies N label-preserving image transformations randomly
sampled from a set of 14 transforms. We set N = 3, use
transformation severity M = 2.0, and use a committee of
k = 3 transforms. We use class-balanced sampling on the
source domain and pseudo class-balanced sampling on the
target. We set λIE and λSENTRY to 0.1 and 1.0, and match
InstaPBM to set Q=256 for the information entropy loss.

4.3. Baselines
As our primary baselines we use four state-of-the art UDA
methods from prior work specifically designed for DA
under LDS: i) COAL [43]: Co-aligns feature and label
distributions, using prototype-based conditional alignment
via MME [35], and self-training on confidently-predicted
pseudo-labels. ii) MDD + Implicit Alignment (I.A) [19]:
Uses target pseudolabels to construct N−way (# classes
per-batch) K−shot (# examples per class) dataloaders that
are “aligned” (i.e. sample the same set of classes within
a batch for both source and target), in conjunction with
Margin Disparity Discrepancy [53], a strong UDA method,
iii) InstaPBM [22]: Proposes “predictive-behavior” match-
ing, which entails matching properties of pΘ(y|x) between
source and target. This is achieved via optimizing a com-
bination of mutual information maximization, contrastive,
and mixup losses, and iv) F-DANN [49]: Proposes an
asymmetrically-relaxed distribution matching-based version
of DANN [13] to deal with LDS. COAL, InstaPBM, and
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Method R→ C R→ P R→ S C→ R C→ P C→ S P→ R P→ C P→ S S→ R S→ C S→ P AVG

source 65.75 68.84 59.15 77.71 60.60 57.87 84.45 62.35 65.07 77.10 63.00 59.72 66.80

BBSE [24] 55.38 63.62 47.44 64.58 42.18 42.36 81.55 49.04 54.10 68.54 48.19 46.07 55.25
PADA [4] 65.91 67.13 58.43 74.69 53.09 52.86 79.84 59.33 57.87 76.52 66.97 61.08 64.48
MCD [37] 61.97 69.33 56.26 79.78 56.61 53.66 83.38 58.31 60.98 81.74 56.27 66.78 65.42
DAN [25] 64.36 70.65 58.44 79.44 56.78 60.05 84.56 61.62 62.21 79.69 65.01 62.04 67.07
F-DANN [49] 66.15 71.80 61.53 81.85 60.06 61.22 84.46 66.81 62.84 81.38 69.62 66.50 69.52
UAN [52] 71.10 68.90 67.10 83.15 63.30 64.66 83.95 65.35 67.06 82.22 70.64 68.09 72.05
JAN [28] 65.57 73.58 67.61 85.02 64.96 67.17 87.06 67.92 66.10 84.54 72.77 67.51 72.48
ETN [5] 69.22 72.14 63.63 86.54 65.33 63.34 85.04 65.69 68.78 84.93 72.17 68.99 73.99
BSP [9] 67.29 73.47 69.31 86.50 67.52 70.90 86.83 70.33 68.75 84.34 72.40 71.47 74.09
DANN [13] 63.37 73.56 72.63 86.47 65.73 70.58 86.94 73.19 70.15 85.73 75.16 70.04 74.46
COAL [43] 73.85 75.37 70.50 89.63 69.98 71.29 89.81 68.01 70.49 87.97 73.21 70.53 75.89
InstaPBM [22] 80.10 75.87 70.84 89.67 70.21 72.76 89.60 74.41 72.19 87.00 79.66 71.75 77.84

SENTRY (Ours) 83.89 76.72 74.43 90.61 76.02 79.47 90.27 82.91 75.60 90.41 82.40 73.98 81.39

Table 1: Per-class average accuracies on DomainNet. Bold and underscore denote the best and second-best performing methods respectively.

Method Rw ) Pr Rw ) Cl Pr ) Rw Pr ) Cl Cl ) Rw Cl ) Pr AVG

source 70.74 44.24 67.33 38.68 53.51 51.85 54.39

BSP [9] 72.80 23.82 66.19 20.05 32.59 30.36 40.97
PADA [4] 60.77 32.28 57.09 26.76 40.71 38.34 42.66
BBSE [24] 61.10 33.27 62.66 31.15 39.70 38.08 44.33
MCD [37] 66.03 33.17 62.95 29.99 44.47 39.01 45.94
DAN [25] 69.35 40.84 66.93 34.66 53.55 52.09 52.90
F-DANN [49] 68.56 40.57 67.32 37.33 55.84 53.67 53.88
JAN [28] 67.20 43.60 68.87 39.21 57.98 48.57 54.24
DANN [13] 71.62 46.51 68.40 38.07 58.83 58.05 56.91
MDD [53] 71.21 44.78 69.31 42.56 52.10 52.70 55.44
COAL [43] 73.65 42.58 73.26 40.61 59.22 57.33 58.40
InstaPBM [22] 75.56 42.93 70.30 39.32 61.87 63.40 58.90
MDD+I.A [19] 76.08 50.04 74.21 45.38 61.15 63.15 61.67

SENTRY (Ours) 76.12 56.80 73.60 54.75 65.94 64.29 65.25

Table 2: Per-class average accuracies on OfficeHome RS→UT
(right) benchmarks. Bold and underscore denote the best and
second-best performing methods respectively.

MDD+I.A. all make use of target pseudolabels, and COAL
and InstaPBM are self-training based approaches.

For completeness, we also include results for additional
baselines from Tan et al. [43]: i) Conventional feature
alignment-based UDA methods: DAN [25], JAN [28],
DANN [13], MCD [35], and MDD [53], ii) BBSE [22]
which only aligns label distributions, iii) Methods that as-
sume non-overlapping labeling spaces: PADA [4], ETN [5],
and UAN [52]. We also report results for FixMatch [40],
a state-of-the-art self-training method for semi-supervised
learning, on two benchmarks.

4.4. Results

Results on label-shifted DA benchmarks. We present re-
sults on 12 shifts from DomainNet (Table 1) and 6 shifts from
OfficeHome RS→UT (Table 2). On DomainNet, SENTRY
outperforms the next best performing method InstaPBM [22]

on every shift, and by 3.55% mean accuracy averaged across
shifts. On OfficeHome RS-UT, SENTRY outperforms the
next best performing method MDD+I.A [19] on 5 out of 6
shifts, and on average by 3.58% mean accuracy. Our method
also significantly outperforms F-DANN [49] (by 11.87%
and 11.37%) and COAL [43] (by 5.50% and 6.85%), which
are both UDA strategies designed for adaptation under LDS.

Method acc (%)

Source 46.1

DAN [25] 56.3
DANN [13] 57.6
JAN [28] 58.3
CDAN [26] 65.8
BSP [9] 66.3
MDD [53] 68.1
FixMatch [40] 59.0
InstaPBM [22] 69.2
MDD+I.A [19] 69.5

SENTRY (Ours) 72.2

(a) OfficeHome (12 shift avg)

Method acc (%)

Source 41.0

JAN [25] 61.6
MCD [37] 69.8
CDAN [26] 70.0
FixMatch [40] 64.9
MDD [53] 74.6
MDD+I.A [19] 75.8
InstaPBM [22] 76.3

SENTRY (Ours) 76.7

(b) VisDA2017

Table 3: Accuracies on standard DA benchmarks.

Results on standard DA benchmarks. Table 3 presents
results on 2 standard DA benchmarks: OfficeHome and
VisDA 2017. As seen, SENTRY improves mean accuracy
over the next best method by 2.7% averaged over 12 shifts
(full table in supp.) on OfficeHome, and by 0.4% on VisDA.
Varying degree of label imbalance. To perform a con-
trolled study of adapting to targets with varying degrees
of label imbalance, we use the SVHN→MNIST shift. Since
MNIST is class-balanced, we manually long-tail its train-
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SVHN→MNIST-LT
Method IF=1 IF=20 IF=50 IF=100 AVG

source 68.1 68.1 68.1 68.1 68.1
MMD [27] 53.4±0.9 56.7±1.2 56.2±1.4 55.1±0.7 55.4±1.1

DANN [13] 68.0±0.9 71.5±1.0 66.9±0.5 60.6±2.2 66.8±1.5

COAL [43] 78.8±1.0 67.1±1.4 70.2±1.5 70.0±1.8 71.5±1.4

InstaPBM [22] 90.7±0.2 77.9±3.5 68.9±1.3 65.9±2.2 75.9±1.8

SENTRY (Ours) 92.9±0.3 93.9±2.2 85.6±4.5 85.6±1.1 89.5±2.0

1 2 3 4 5 6 7 8 0 9
0

0.5k

1.0k

1.5k
IF=1 (total=14.5k)

1 2 3 4 5 6 7 8 0 9
0

2.0k

4.0k

IF=20 (total=14.5k)

1 2 3 4 5 6 7 8 0 9
0

2.0k

4.0k

6.0k
IF=50 (total=14.5k)

1 2 3 4 5 6 7 8 0 9
0

2.0k
4.0k
6.0k

IF=100 (total=14.5k)

Table 4: Left: Per-class average accuracy after adapting from SVHN to manually long-tailed (-LT) training sets of MNIST (test set is
unchanged). The degree of label imbalance is measured by the imbalance factor (IF). All long-tailed versions use an identical amount of
data. For each IF, we construct 3 long-tailed versions and report mean and 1 standard deviation. Right: Label distribution for each IF.

ing split, and use it as our unlabeled target train set (test
set is unchanged). The long-tailing is performed by sam-
pling from a Pareto distribution and subsampling, with class
cardinality following the same sorted order as the source
label distribution for simplicity. To systematically vary the
degree of imbalance, we modulate the parameters of the
Pareto distribution so as to generate a desired Imbalance
Factor (IF) [11], computed as the ratio of the cardinality
of the largest and smallest classes. Larger IF’s represent a
higher degree of imbalance. We thus create 3 splits with IF
∈ {20, 50, 100}, corresponding to varying label imbalance
but with an identical amount of data (=14.5k instances). Fur-
ther, we create a control version that also has 14.5k instances
but possesses a balanced label distribution. Table 4 (right)
shows the resulting label distributions.

We report per-class average accuracies in Table 4 (left).
As baselines, we include a domain discrepancy based method
(MMD [27]), an adversarial DA method (DANN [13]), as
well as COAL [43] and InstaPBM [22]. Across methods,
performance at higher imbalance factors is worse, illustrat-
ing the difficulty of adapting under severe label imbalance.
However, SENTRY significantly outperforms baselines, even
at higher imbalance factors, achieving 13.6% higher mean
accuracy than the next competing method.

4.5. Ablations

We now present ablations of SENTRY, our proposed ap-
proach, on the Clipart→Sketch from DomainNet and the
Real World→Clipart shift from OfficeHome RS-UT.
Selective optimization helps significantly (Tab. 5). We
first measure the effect of performing entropy minimization
on all samples, as done in prior work. We find this to perform
significantly worse (by 10.7%, 11.9%) than our method!
Clearly, consistency-based selective optimization is crucial.
Entropy maximization helps consistently (Tab. 5). Next,
we opt to only minimize entropy on consistent target in-
stances, but do not perform entropy maximization. We find
this to underperform against our min-max optimization (by
1.8%, 1.5%). Further, as an oracle approach, we use ground

select for select for DomainNet OH (RS-UT)
entmin entmax C→S Rw→Cl

all none 68.8 44.9
consistent none 77.7 55.3
consistent inconsistent 79.5 56.8

correct none 84.3 77.7
correct incorrect 86.3 80.1

Table 5: Ablations of our selection strategy on DomainNet C→S
and OfficeHome RS-UT Rw→Cl. Gray row is our method. Last
two rows are oracle approaches that use target labels.

N=1 N=3 N=5
k=1 78.2 78.6 78.9
k=3 76.8 79.5 77.8
k=5 77.5 78.4 77.7

(a) C→S

N=1 N=3 N=5
k=1 53.8 57.5 55.6
k=3 55.3 56.8 56.2
k=5 54.7 58.4 54.5

(b) Rw→Cl

voting C→S Rw→Cl

maj. 79.5 56.8
unan. 77.8 52.2

(c) Vary voting

Table 6: Ablating the consistency checker on C→S and Rw→Cl:
a-b) Varying committee size (k) and num. consecutive transforms
in RandAugment (N ). c) Varying voting strategy: maj. and unan.
denote majority and unanimous. Gray is our method.

truth target labels to determine whether an instance is cor-
rectly or incorrectly classified, and perform two experiments:
entropy minimization on correct instances (and no maxi-
mization), and min-max entropy optimization on correct and
incorrect instances. Selective min-max optimization again
outperforms just minimization by 2% and 2.4%, showing
that reducing confidence on misaligned instances helps.
Ablating consistency checker. In Tables 6a, 6b, we vary the
committee size k and number of RandAugment transforms
N used by our consistency checker. We do not find our
method to be very sensitive to either hyperparameter. In
Table 6c, we vary the voting strategy used to judge committee
consistency and inconsistency. We experiment with majority
voting (atleast k

2 + 1 votes needed) and unanimous voting
(k votes needed), and find the former to generalize better.
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Figure 4: Analysis of SENTRY on Clipart→Sketch. Left: % of seen target instances selected for entropy minimization and maximization
over epochs. Middle: % of seen target data chosen for entropy minimization at the end of first and last epochs of adaptation, broken down by
class. Right: Ground truth precision of SENTRY’s committee consistency strategy at identifying correct and incorrect instances over epochs.

Gains are not simply due to stronger augmentation. To
verify this, we continue using RandAugment (with N=1)
for consistency checking, but backpropagate on the original
(rather than augmented) target instances, effectively remov-
ing data augmentation entirely. On C→S and Rw→Cl, this
achieves 73.1% and 52.6%, which is still 0.3% and 2.6%
better than the next best baseline on each shift, despite not
using any data augmentation for optimization at all.
Pseudo class-balanced sampling helps. We find that class-
balanced sampling using pseudolabels on the target improves
per-class average accuracy over random sampling by 0.91%
and 0.52% on C→S and Rw→Cl. In the absence of the target
information entropy regularizer LIE , this performance gap
grows to 2.9% and 3.7%. As explained in Sec 3.4, both
objectives contribute towards overcoming LDS in similar
ways, and we find here that using both together works best.

4.6. Analysis
% of target instances selected over time. Fig. 4 (left)
shows that the % of seen target instances selected for en-
tropy minimization steadily increases over time, while that
selected for entropy maximization decreases. This adaptive
nature is a result of the augmentation invariance regulariza-
tion built into our method (Sec. 3). In Fig. 4 (middle), we
measure the % of target instances selected for entropy mini-
mization, per-class, at the end of the first and last epoch of
adaptation. Despite no explicit class-conditioning, we find
that this measure increases for all classes.
Precision of consistency checker. Fig 4 (right) shows the
precision of our consistency and inconsistency-based se-
lection strategies at identifying instances that are actually
correct and incorrect. As seen, committee-based consistency
and inconsistency are both 75-80% precise at identifying
correct and incorrect instances respectively.
Per-class accuracy change. In the supplementary, we re-
port the per-class accuracy after adaptation using our method,
and contrast it against InstaPBM [22]. On the C→S shift,
SENTRY outperforms InstaPBM across 37/40 categories.

Computational efficiency. Compared to standard entropy
minimization, SENTRY requires k (for committee size k)
forward passes per iteration (to determine consistency), but
no additional backward passes. SENTRY thus does not add
a sizeable computational overhead over prior work.
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1 p (y = 0)

Figure 5: ∇pL v/s p

Correctness of entropy
maximization. For sim-
plicity, consider 2-way
classification. For out-
put score p and true
class y, entropy maxi-
mization loss LEM =
p log p + (1 − p) log(1 − p),
and binary cross-
entropy (BCE) loss
LBCE = − [y log(p) + (1− y) log(1− p)]. Without
loss of generality, assume an incorrect prediction with
y = 0 and 0.5 ≤ p < 1. In Fig. 5 we show that in
this case, gradients (∇pL) for entropy maximization and
BCE (wrt true class) are strongly correlated. Thus, after
identifying misaligned target instances based on predictive
inconsistency, entropy maximization has a similar effect as
supervised training with respective to the true class.

5. Conclusion
We propose SENTRY, an algorithm for unsupervised do-
main adaptation (UDA) under simultaneous data and label
distribution shift. Unlike prior work that suffers from er-
ror accumulation arising from unconstrained self-training,
SENTRY first judges the reliability of a target instance based
on its predictive consistency under a committee of random
image transforms, and then selectively minimizes entropy
(increasing confidence) on consistent instances, while maxi-
mizing entropy (reducing confidence) on inconsistent ones.
We show that SENTRY significantly improves upon the state-
of-the-art across 27/31 shifts from several UDA benchmarks.
Acknowledgements. This work was supported in part by
funding from the DARPA LwLL project.

8565



References
[1] Kamyar Azizzadenesheli, Anqi Liu, Fanny Yang, and An-

imashree Anandkumar. Regularized learning for domain
adaptation under label shifts. In International Conference on
Learning Representations, 2018. 2

[2] Yuval Bahat, Michal Irani, and Gregory Shakhnarovich. Nat-
ural and adversarial error detection using invariance to image
transformations. arXiv preprint arXiv:1902.00236, 2019. 2

[3] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas
Papernot, Avital Oliver, and Colin A Raffel. Mixmatch: A
holistic approach to semi-supervised learning. In Advances
in Neural Information Processing Systems, pages 5049–5059,
2019. 2, 3

[4] Zhangjie Cao, Lijia Ma, Mingsheng Long, and Jianmin Wang.
Partial adversarial domain adaptation. In Proceedings of the
European Conference on Computer Vision (ECCV), pages
135–150, 2018. 6

[5] Zhangjie Cao, Kaichao You, Mingsheng Long, Jianmin Wang,
and Qiang Yang. Learning to transfer examples for partial
domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2985–2994,
2019. 6

[6] Chaoqi Chen, Weiping Xie, Wenbing Huang, Yu Rong, Xing-
hao Ding, Yue Huang, Tingyang Xu, and Junzhou Huang.
Progressive feature alignment for unsupervised domain adap-
tation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 627–636, 2019. 1

[7] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. arXiv preprint arXiv:2002.05709,
2020. 2

[8] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank
Wang, and Jia-Bin Huang. A closer look at few-shot classifi-
cation. In International Conference on Learning Representa-
tions, 2018. 5

[9] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin
Wang. Transferability vs. discriminability: Batch spectral pe-
nalization for adversarial domain adaptation. In International
Conference on Machine Learning, pages 1081–1090, 2019. 6

[10] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le.
Randaugment: Practical automated data augmentation with a
reduced search space. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Work-
shops, pages 702–703, 2020. 2, 5

[11] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge
Belongie. Class-balanced loss based on effective number of
samples. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 9268–9277, 2019. 4, 7

[12] Guneet Singh Dhillon, Pratik Chaudhari, Avinash Ravichan-
dran, and Stefano Soatto. A baseline for few-shot image
classification. In International Conference on Learning Rep-
resentations, 2019. 3

[13] Yaroslav Ganin and Victor Lempitsky. Unsupervised domain
adaptation by backpropagation. In International Conference
on Machine Learning, pages 1180–1189, 2015. 1, 2, 5, 6, 7

[14] Yves Grandvalet, Yoshua Bengio, et al. Semi-supervised
learning by entropy minimization. In CAP, pages 281–296,
2005. 2, 3, 4

[15] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger.

On calibration of modern neural networks. In International
Conference on Machine Learning, pages 1321–1330, 2017. 1

[16] Agrim Gupta, Piotr Dollar, and Ross Girshick. Lvis: A dataset
for large vocabulary instance segmentation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 5356–5364, 2019. 1

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5

[18] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,
Phillip Isola, Kate Saenko, Alexei Efros, and Trevor Dar-
rell. Cycada: Cycle-consistent adversarial domain adaptation.
In International Conference on Machine Learning, pages
1989–1998, 2018. 1, 2, 5

[19] Xiang Jiang, Qicheng Lao, Stan Matwin, and Mohammad
Havaei. Implicit class-conditioned domain alignment for
unsupervised domain adaptation. In International Conference
on Machine Learning, 2020. 5, 6

[20] Guoliang Kang, Lu Jiang, Yi Yang, and Alexander G Haupt-
mann. Contrastive adaptation network for unsupervised do-
main adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 4893–4902,
2019. 2

[21] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
5

[22] Bo Li, Yezhen Wang, Tong Che, Shanghang Zhang, Sicheng
Zhao, Pengfei Xu, Wei Zhou, Yoshua Bengio, and Kurt
Keutzer. Rethinking distributional matching based domain
adaptation. arXiv preprint arXiv:2006.13352, 2020. 1, 2, 3,
4, 5, 6, 7, 8

[23] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1

[24] Zachary Lipton, Yu-Xiang Wang, and Alexander Smola. De-
tecting and correcting for label shift with black box predic-
tors. In International Conference on Machine Learning, pages
3122–3130, 2018. 2, 6

[25] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jor-
dan. Learning transferable features with deep adaptation
networks. In International conference on machine learning,
pages 97–105. PMLR, 2015. 1, 2, 6

[26] Mingsheng Long, Zhangjie Cao, Jianmin Wang, and
Michael I Jordan. Conditional adversarial domain adapta-
tion. In Advances in Neural Information Processing Systems,
pages 1640–1650, 2018. 2, 6

[27] Mingsheng Long, Jianmin Wang, Guiguang Ding, Jiaguang
Sun, and Philip S Yu. Transfer feature learning with joint dis-
tribution adaptation. In Proceedings of the IEEE international
conference on computer vision, pages 2200–2207, 2013. 7

[28] Mingsheng Long, Han Zhu, Jianmin Wang, and Michael I
Jordan. Deep transfer learning with joint adaptation networks.
In International conference on machine learning, pages 2208–
2217. PMLR, 2017. 6

[29] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

8566



Bo Wu, and Andrew Y Ng. Reading digits in natural images
with unsupervised feature learning. 2011. 5

[30] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 5

[31] Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate
Saenko, and Bo Wang. Moment matching for multi-source
domain adaptation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1406–1415, 2019. 1,
2, 5

[32] Xingchao Peng, Ben Usman, Neela Kaushik, Judy Hoffman,
Dequan Wang, and Kate Saenko. Visda: The visual domain
adaptation challenge. arXiv preprint arXiv:1710.06924, 2017.
2, 5

[33] Gabriel Pereyra, George Tucker, Jan Chorowski, Łukasz
Kaiser, and Geoffrey Hinton. Regularizing neural networks
by penalizing confident output distributions. ICLR, 2017. 4

[34] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Dar-
rell. Adapting visual category models to new domains. In
European conference on computer vision, pages 213–226.
Springer, 2010. 1, 2

[35] Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Darrell,
and Kate Saenko. Semi-supervised domain adaptation via
minimax entropy. In Proceedings of the IEEE International
Conference on Computer Vision, pages 8050–8058, 2019. 3,
5, 6

[36] Kuniaki Saito, Yoshitaka Ushiku, Tatsuya Harada, and Kate
Saenko. Adversarial dropout regularization. In International
Conference on Learning Representations, 2018. 2

[37] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3723–3732, 2018. 6

[38] Mehdi Sajjadi, Mehran Javanmardi, and Tolga Tasdizen.
Regularization with stochastic transformations and pertur-
bations for deep semi-supervised learning. arXiv preprint
arXiv:1606.04586, 2016. 2

[39] Jasper Snoek, Yaniv Ovadia, Emily Fertig, Balaji Lakshmi-
narayanan, Sebastian Nowozin, D Sculley, Joshua Dillon, Jie
Ren, and Zachary Nado. Can you trust your model’s uncer-
tainty? evaluating predictive uncertainty under dataset shift.
In Advances in Neural Information Processing Systems, pages
13969–13980, 2019. 1, 2, 3

[40] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang,
Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Han Zhang,
and Colin Raffel. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. arXiv preprint
arXiv:2001.07685, 2020. 2, 6

[41] Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and
Geoffrey J Gordon. Domain adaptation with conditional
distribution matching and generalized label shift. Advances
in Neural Information Processing Systems, 33, 2020. 2

[42] Ryuhei Takahashi, Atsushi Hashimoto, Motoharu Sono-
gashira, and Masaaki Iiyama. Partially-shared variational
auto-encoders for unsupervised domain adaptation with tar-

get shift. In The European Conference on Computer Vision
(ECCV), 2020. 2

[43] Shuhan Tan, Xingchao Peng, and Kate Saenko. Class-
imbalanced domain adaptation: An empirical odyssey. In
Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, September 2020. 1, 2, 3, 5, 6, 7

[44] Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell.
Adversarial discriminative domain adaptation. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 7167–7176, 2017. 1, 2

[45] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and
Trevor Darrell. Deep domain confusion: Maximizing for
domain invariance. arXiv preprint arXiv:1412.3474, 2014. 1,
2

[46] Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty,
and Sethuraman Panchanathan. Deep hashing network for
unsupervised domain adaptation. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 5018–5027, 2017. 2, 5

[47] Jindong Wang, Yiqiang Chen, Shuji Hao, Wenjie Feng, and
Zhiqi Shen. Balanced distribution adaptation for transfer
learning. In 2017 IEEE International Conference on Data
Mining (ICDM), pages 1129–1134. IEEE, 2017. 2

[48] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learn-
ing to model the tail. In Advances in Neural Information
Processing Systems, pages 7029–7039, 2017. 4

[49] Yifan Wu, Ezra Winston, Divyansh Kaushik, and Zachary
Lipton. Domain adaptation with asymmetrically-relaxed dis-
tribution alignment. In International Conference on Machine
Learning, pages 6872–6881, 2019. 1, 4, 5, 6

[50] Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Luong,
and Quoc V. Le. Unsupervised data augmentation for con-
sistency training. arXiv preprint arXiv:1904.12848, 2020.
2

[51] Hongliang Yan, Yukang Ding, Peihua Li, Qilong Wang,
Yong Xu, and Wangmeng Zuo. Mind the class weight bias:
Weighted maximum mean discrepancy for unsupervised do-
main adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2272–2281,
2017. 2

[52] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang,
and Michael I Jordan. Universal domain adaptation. In
Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 2720–2729, 2019. 2, 6

[53] Yuchen Zhang, Tianle Liu, Mingsheng Long, and Michael
Jordan. Bridging theory and algorithm for domain adaptation.
In International Conference on Machine Learning, pages
7404–7413, 2019. 2, 5, 6

[54] Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jin-
song Wang. Confidence regularized self-training. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 5982–5991, 2019. 2

[55] Yang Zou, Zhiding Yu, BVK Vijaya Kumar, and Jinsong
Wang. Unsupervised domain adaptation for semantic seg-
mentation via class-balanced self-training. In Proceedings of
the European conference on computer vision (ECCV), pages
289–305, 2018. 4

8567


