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Abstract

Real world images often gets corrupted due to unwanted

reflections and their removal is highly desirable. A major

share of such images originate from smart phone cameras

capable of very high resolution captures. Most of the exist-

ing methods either focus on restoration quality by compro-

mising on processing speed and memory requirements or,

focus on removing reflections at very low resolutions, there

by limiting their practical deploy-ability. We propose a light

weight deep learning model for reflection removal using a

novel scale space architecture. Our method processes the

corrupted image in two stages, a Low Scale Sub-network

(LSSNet) to process the lowest scale and a Progressive In-

ference (PI) stage to process all the higher scales. In order

to reduce the computational complexity, the sub-networks

in PI stage are designed to be much shallower than LSS-

Net. Moreover, we employ weight sharing between various

scales within the PI stage to limit the model size. This also

allows our method to generalize to very high resolutions

without explicit retraining. Our method is superior both

qualitatively and quantitatively compared to the state of the

art methods and at the same time 20× faster with 50× less

number of parameters compared to the most recent state-

of-the-art algorithm RAGNet. We implemented our method

on an android smart phone, where a high resolution 12 MP

image is restored in under 5 seconds.

1. Introduction

Image capture in the vicinity of a reflective surface such

as glass windows is very challenging due to the formation

of undesirable reflection artifacts. These artifacts not only

affect the perceptual quality of the image, but also impact

high-level tasks such as image recognition and object de-

tection. Hence removal of reflection is very desirable and is

an active area of research in image processing and computer

vision.

Several methods have been proposed in the past to ad-
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Figure 1: High Resolution Performance and Complexity Anal-

ysis. (a) Comparison of our method against current state of the art

for a high resolution 12MP input image. (b) Complexity evalua-

tion on NVIDIA GTX 1080Ti for an image tile of size 540x400.

dress the problem of reflection, The earliest methods try

to solve the problem by imposing additional handcrafted

constraints on the problem definition such as natural scene

statistics [10], sparsity priors [11], gradient smoothness [32]

and ghosting cues [22]. However it has been observed that

solutions based on handcrafted priors do not adapt very well

to the complex reflection patterns often observed in real life.

In order to model real-life reflection patterns, several

data-driven approaches using deep neural networks have

been proposed in the recent past [12] [16] [28] [34] . Even

though these methods achieve state-of-the-art results and

is able to model strong and complex reflections efficiently,

they suffer from two major drawbacks:

a) High computation requirements: Reflection removal

needs a large receptive field to efficiently gather the se-

mantic information required for recovering the transmis-

sion layer. The conventional methods try to increase the

receptive field by stacking up a large number of convolu-

tion filters which tremendously increases the computation

and memory requirements. For example, a recent method

proposed by RAGNet [16] consists of 131 million param-

eters, consumes a peak memory of 2.9 GB and takes 20
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seconds to process a 12 MP image on a NVIDIA 1080Ti

GPU. This makes it impossible to deploy such methods on

a smart phone device with limited computation power and

memory making their real-life applicability extremely lim-

ited.

b) Inability to remove reflections from high resolu-

tion images: Several contemporary smart phone vendors

provide multiple cameras with resolutions varying from 8

megapixels to 108 megapixels. Hence a deploy-able solu-

tion should be able to remove reflections from a wide range

of image resolutions. However, most of the state-of-the-

art methods uses fixed network architectures thus making

its receptive field static. Moreover most of these methods

are trained on low resolution data sets which are less than

a megapixel in size. Since the semantic content of an im-

age in a fixed receptive field varies over resolutions, these

methods are not ’scale invariant’ and hence cannot remove

reflections on high resolution images. Hence these methods

need to be retrained for each resolution to efficiently remove

reflections which is very cumbersome.

In this paper, we propose a novel method to address the

aforementioned challenges while maintaining output im-

age quality. Inspired by recent success of scale-space ap-

proaches in image deblurring [19] [25], we propose a scale-

space reflection removal approach for increasing the re-

ceptive field with minimal increase in computational over-

head. The corrupted input image is transformed into its

scale space representation, and is processed by identical,

weight-shared deep CNNs at each scale except the lowest

scale. To make our method more efficient, we use a deeper

network at the lowest scale (Low Scale Network - LSSNet)

and a much shallower network for higher scales (High Scale

Network - HSSNet). The output at each scale is up sam-

pled using Convolutional Guided Filters (CGF) [30] and

appended to the input of the immediate higher level to aid

the reflection removal process at each scale. As observed

by [25], the same problem is solved at each scale, and

hence weights can be shared between all the HSSNets and

CGF blocks in the scale space resulting in a very low mem-

ory footprint. This also enables us to dynamically increase

the effective receptive field during inference easily by in-

creasing the number of scales. Hence the proposed method

can remove reflections from high resolution images without

any explicit retraining making it easily adaptable to smart

phones.

A sample output from the proposed method is shown in

Fig. 1. The input image given to the network is of very high

resolution (12 MP) and the state of the art methods train on

images of much lower resolution with a fixed receptive field,

hence fails to remove reflections from the image. Whereas

our method is able to generalize well to high resolution im-

ages even without training on such images. Also in Fig. 1,

we show three plots to demonstrate how the performance

with respect to execution time, memory and network com-

plexity compares to the state-of-the-art methods. We show

in the later sections that our method is able to achieve better

performance than the state of the art methods while being

much more computationally efficient. It runs 20× faster

with a reduction in peak memory usage of 3× compared

to RAGNet [16] on NVIDIA 1080Ti GPU. Further, our

method uses only 2.6 million learnable parameters which

is 50× less than RAGNet [16]. We also implemented our

method on a mobile android device with 8 GB RAM and

Qualcomm Snapdragon 888 processor. We observed that

the proposed method can process a 12 megapixel input data

in under 5 seconds and hence can easily be adapted to smart

phone devices to process even high resolution images under

a reasonable time.

The contributions of our work are as follows:

(1) We propose a fast scale space approach for reflection

removal which can easily be deployed on resource limited

devices such as smart phones.

(2) To make our method computationally efficient, we use

a deeper network only at the lowest scale, while the higher

scales are processed using much shallower networks. This

makes our method 20× faster than the most recent state-of-

the-art method RAGNet.

(3) The proposed algorithm is scalable to handle high res-

olution input images (tested up to 64 MP) without the need

for explicit retraining.

(4) The proposed algorithm can process a 12 MP image in

under 5 seconds on a smart phone with a Qualcomm Snap-

dragon 888 chip set and 8 GB RAM. To the best of our

knowledge, this is the fastest deep learning based method

for reflection removal with state-of-the-art results.

(5) We build a high resolution dataset captured using lat-

est smartphones with real world reflections that can en-

able future evaluations. The dataset will be available at

https://www.github.com/ee19d005/vdesirr.

2. Related Work

Existing methods on reflection removal fall into the fol-

lowing three categories [26] based on the type of inputs used

to generate a reflection free output namely (a) Single im-

age [11] [3] [15] [22] [5] [27] [34] [16] [12] [28] (b) Multi

image[6] [7] [14] [1] [17] [31] [24] (c) Multi modal reflec-

tion removal [20] [2] [13]. We only provide further details

of the single image based methods in this section.

Several methods explored in the past use traditional op-

timization based approaches or more recently deep learn-

ing based approaches. Traditional methods rely on priors

such as gradient sparsity prior depending upon edges [11],

corners [3], layer smoothness priors that use gradient in-

formation of reflection and transmission layers to perform

edge classification [32], different probability distributions

to model transmission and reflection layers [15]. A Gaus-
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Figure 2: Overview of the proposed very fast deep embedded single image reflection removal for high resolution images.

sian mixture model (GMM) patch based prior with an im-

age formation model comprising of reflection and its spatial

shifts and a GMM to model the distributions was used in

[22]. Single image deep learning methods have seen good

amount of progress in the recent past. An end-to-end sin-

gle image deep learning architecture was proposed in [5].

Usage of perceptual loss was introduced later in [34] and a

multi scale guided concurrent neural network was proposed

in [27]. A non-linear blending model was used to model

realistic reflection in [29]. A bi-directional approach where

an estimated reflection layer is used to refine the transmis-

sion layer was proposed in [33]. An alignment invariant

loss function was introduced in [28] that would reduce the

challenges involved in data acquisition by relaxing the con-

straint that the ground truth reflection free image and the

input degraded image needs to be perfectly aligned for train-

ing the network. More recently, a cascaded two stage archi-

tecture was proposed that uses reflection aware guidance to

further improve single image reflection removal [16].

3. Proposed Scale-Space Architecture

Following sub sections describe the different compo-

nents of the proposed method.

3.1. Pipeline

An overview of the proposed method is provided in Fig.

2. Given a corrupted input image (I) of resolution H ×W ,

the proposed method determines the number of scales N as

N = max(1, ceil(1 + log
2
(
min(H,W )

k
))) (1)

where k has to be greater than the receptive field of all the

sub-networks used in the pipeline, and is chosen as 300 for

the proposed method.

Next, a N-scale space representation of the input image

is constructed using a Gaussian pyramid. The final reflec-

tion free output image is generated from the scale space in
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Figure 3: Network Architecture of the two proposed sub networks

Low Scale Space Network (LSSNet) and High Scale Space Net-

work (HSSNet) along with the Convolution Guided Filter (CGF).

two stages: a) Low scale sub-network (LSSNet) and b) Pro-

gressive Inference (PI) of the higher scales using Convo-

lutional Guided Filter up-sampling (CGF) and High Scale

Sub-network (HSSNet). Each of these components are de-

tailed next in this section.

3.1.1 Low Scale Sub Network - LSSNet

The input image at the lowest scale is passed to LSS-

Net to generate an estimate of the output image (O1) at

scale 1. The network architecture of LSSNet is provided
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in Fig. 3, the design is similar to a U-net [21] with ad-

ditional enhancements. The encoder blocks consist of 2

convolutional blocks of stride 1 followed by 3 convolu-

tional blocks of stride 2. Each convolutional block follows

Conv-Batchnorm-ReLU pattern. The encoder is followed

by 8 Double Convolutional Residual Blocks (DCRB). The

DCRBs are introduced in the lowest level to minimize the

computational complexity. Each DCRB consists of two

convolutional layers with skip connections. This is fol-

lowed by a decoder block to up-sample the features back to

the original resolution. The decoder block consists of 3 de-

convolutional layers of stride 2 followed by 2 convolutional

layers of stride 1. Skip connections are provided between

encoder and decoder blocks to pass information between

feature maps of corresponding spatial dimensions. All the

skip connections are implemented using element-wise ad-

dition that reduces the computational complexity.

3.1.2 Progressive Inference

We introduce an iterative Progressive Inference (PI) scheme

for estimating Os for scales {2, .., N} once O1 is estimated.

The output image for any scale s can iteratively be estimated

as
Os = PI(Is, Is−1, Os−1) (2)

The PI function is implemented using two cascaded blocks:

Convolutional Guided Filter (CGF) for up-sampling Os−1

and High Scale Sub-network (HSSNet) for removing reflec-

tions from each scale.

Convolutional Guided Filter: We use CGF block to up-

sample the Os−1 using higher resolution Is as a guide. The

CGF block, originally introduced by [30], is a fast end-to-

end trainable version of the classical guided filter [8]. CGF

blocks have been successfully used to improve the compu-

tational efficiency of solutions in domains such as dehazing,

image matting and style transfer. The flow diagram of CGF

block is shown in Fig. 2. It accepts 3 images: low resolution

input Is−1, low resolution output Os−1 and high resolution

input Is to generate the high resolution output Os′ . CGF

block generates much sharper output images as opposed to

methods with deconvolutional filters. Moreover, the CGF

block is lightweight and adds minimal computation over-

head to the solution.

High Scale Sub-network: The high resolution output

Os′ generated by the CGF block needs to be further refined

to generate the output image Os for scale s. We use HSSNet

for this purpose. HSSNet also follows an encoder-decoder

architecture similar to LSSNet. However, since HSSNet op-

erates on higher scales, DCRB blocks are not used in order

to reduce computational complexity.

It should be noted that the weights for CGF and HSSNet

are shared across all the scales. The weight sharing enables

reusing the PI block iteratively over multiple scales, ben-

efit of which is two-fold. First, weight sharing drastically

reduces the number of parameters required for a N-scale

space pyramid especially when N is large, hence reducing

the memory footprint of the solution. Second, since the PI

blocks can be reused over scales, the proposed solution can

realistically remove reflections from a wide range of input

resolutions without the need for retraining, by simply vary-

ing N . Moreover, the proposed solution can increase the

receptive field by a factor of 2N while the computation time

increases only by 4

3
.(1 − 1

4

N
) where N is the number of

scales. This enables efficient reflection removal from very

high resolution images while keeping the computation and

memory constraints and hence can be deployed on an em-

bedded device with ease.

The proposed scale space approach has both computa-

tional as well as performance benefits over a conventional

pyramid proposed in [28] that extract features at different

scales. Firstly, the method in [28] has a fixed number of

MACs/pixel (9.48M) for any given input resolution. How-

ever in our method, the MACs/pixel is a function of num-

ber of scale levels N . The complexity does not scale ex-

ponentially with increase in input resolution. Further com-

putational advantage can be obtained by simplifying the PI

stage. Secondly, [28] extract pyramidal features using im-

ages of size 224x224. We found that the reflection removal

performance of [28] is satisfactory up to 1MP after which

it deteriorates significantly. Our method (LSSNet) even

though has been trained using similar resolution (256x256),

the scale space level at which LSSNet operates is dynami-

cally chosen and hence ensures that the network has a full

view of input image.

3.2. Loss Function

Both the sub networks LSSNet and HSSNet are trained

using a combination of different loss functions that com-

prise of pixel and feature losses. The pixel wise intensity

difference is penalized using a combination of three com-

ponent losses as given in Equation 3.

Lp = α||Ô −O||2
2
+ β||Ô −O||1

+ γ(||▽xÔ − ▽xO||1 + ||▽yÔ − ▽yO||1). (3)

where, ▽x and ▽y are the gradient operators along x and

y directions respectively and Ô and O are respectively the

estimated transmission output and ground truth. We also

use contextual loss [18] given below.

Lc = −log(CX(φl(Ô), φl(O))) (4)

where, φl(.) and φl(.) are the feature maps extracted from

layer l of the perceptual network, which in our case is

VGG19 network [23]. The function CX defines the con-

textual similarity as described in [18]. The contextual loss

helped in minimizing color artifacts while training with
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(a) Input (b) BDN [33] (c)Zhang.et.al[34] (d) IBCLN [12] (e) ERRNet[28] (f) RAGNet[16] (g) Ours (h) Ground Truth

Figure 4: Qualitative Comparisons on Public Datasets: The columns (b) to (f) are the results from the latest state of the art methods.

The column (g) shows the result from the proposed method and column (h) contains the corresponding ground truth images. The last two

rows show comparisons on the Berkeley real45 dataset [34] where a reference ground truth is not available. Our method is either superior

or at par with the state of the art methods with significantly lower complexity - see Table 3.

aligned data and also provided the stability during training.

The total loss is a combination of both the pixel loss and

contextual loss.

L = Lp + δLc (5)

In our experiments, we empirically set α = 0.2, β = 0.2,

γ = 0.4 and δ = 0.8.

4. Experimental Results

4.1. Datasets

We generate 7400 images with synthetic reflections from

the PASCAL-VOC dataset [4] using the method proposed

in [28]. This dataset is used for pretraining both the sub-

networks. We also use the Berkeley real dataset [34] con-

sisting of 110 real image pairs captured using a a Canon

600D camera and a portable glass to introduce reflections.

We use 90 images from this set for training, while 20 im-

ages are used for evaluation and choice of these images

are similar to the strategy followed in [28]. We further

use the SIRR2 benchmark dataset [26] that consists of

460 image pairs split across 3 categories namely solid ob-

jects, post card and wild scenes. This dataset is exclusively

used for testing purpose. The solid object and post card

datasets consists of images taken in indoor controlled envi-

ronment while wild scenes consists of real life scenes in un-

constrained scenarios. We also capture a set of high resolu-

tion images (12MP and 64MP) using a smart-phone camera

for the purpose of evaluation of our method against latest

state of the art methods. Among these, several of them are

captured using a portable glass to introduce reflection while

the remaining sets consists of reflections in the wild such as

glass walls in malls, museums, coffee shops, etc. A polar-

izer is used to obtain a reference ground truth image without

reflection similar to [9].

4.2. Training Details

The proposed method is implemented in Pytorch run-

ning on a PC with Intel Xeon E5-2620v3 with 128GB RAM

and an NVIDIA GTX 1080Ti GPU with 12GB memory for

training purpose. Firstly, LSSNet is initially trained on the
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(a) Input (12MP) Image. (b) Input Zoomed (c) ERRNet [28] (d) RAGNet[16] (e) Ours (g) Ground Truth.

Figure 5: Qualitative comparisons on high resolution 12MP images: The columns (a), (b) contains the input showing the entire high

resolution field of view and its zoomed version. The columns (c), (d) show the results of the best performing state of the art methods [28]

and [16], respectively. The column (e) shows the our results. The first 4 rows contain sets captured with and without glass, and the ground

truth for the last row is captured using a polarizer, see Section 4.1. The ground truth captured using the polarizer is only used for visual

reference.

PASCAL VOC synthetic dataset for about 200 epochs with

a batch size of 8 using Adam optimizer. The initial learn-

ing rate was set to 0.0001. Next the output from LSSNet is

generated to train HSSNet and CGF module. Both the sub

networks were initialized with Xavier weights for all con-

volutional layers. For training, randomly cropped patches

of size 256x256 with random horizontal and vertical flip-

ping were utilized. Finally, the LSSNet is fine tuned on the

Berkeley real dataset [34] for 1000 epochs to achieve model

convergence. The image IDs we used for training are same

as what was used in [28] [34]. During training, we resize the

images depending upon the scale level N (Eq. 1) to which

the training image belong to.

4.3. Qualitative Evaluation

We first provide image comparison study of the our

method against state of the art methods in Fig. 4 on publicly

available datasets. The methods proposed in BDN [33],

Zhang [34], IBCLN [12], ERRNet [28] and RAGNet [16]

are used for this comparison. In Fig. 4 the publicly avail-

able datasets by SIR Solid Object, Wild Scene, Postcard and

Berkeley Real 20 and Real 45 datasets are used. It should

be be noted that for Real 45 dataset, the ground truths are

not provided. Our method chooses the number of levels re-

quired for inference using Eq. 1.

Next, we provide qualitative evaluation of our method

on high resolution images. Figure 5 shows a comparison

against the latest state of the art methods on our high reso-

lution 12MP images. Despite the fact that the the existing

state of the art methods work very well on smaller image

resolutions, they fail to remove reflections on higher res-

olutions and their performance significantly degrades with

increase in image resolution. Our method with the help of

dynamic choice of the levels in the scale space is able to
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Sl No Method
Solid Object Post Card Wild Scene Real20 Average

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 CEILNet 23.37 0.875 20.09 0.786 18.87 0.805 21.54 0.692 21.41 0.822

2 Zhang.et.al 22.68 0.879 16.81 0.797 21.52 0.832 22.55 0.788 20.10 0.836

3 BDN 22.73 0.853 20.71 0.857 22.34 0.821 18.81 0.737 21.68 0.846

4 ERRNet 24.85 0.894 21.99 0.874 24.16 0.847 23.19 0.817 23.51 0.877

5 IBCLN 24.88 0.893 23.39 0.875 24.71 0.886 22.04 0.772 24.12 0.88

6 RAGNet 26.03 0.903 23.66 0.879 25.52 0.88 21.26 0.766 24.79 0.885

7 Ours 26.78 0.906 26.26 0.906 26.41 0.885 25.06 0.816 26.45 0.899

Table 1: Quantitative Comparison on Public Datasets: Our method achieves an overall improvement of 1.5dB over the

state of the art RAGNet [16] at significantly lower computational complexity, see Table 3. The best results are shown in

boldface and the second best is underlined.

(a) Input (b) N = 1 (c) N = 2 (d) N = 3 (e) N = 4 (f) N = 5

Figure 6: Scale space evaluation for a ultra high resolution image of 64MP. The columns (b) - (f) show the results of varying number of

levels in the scale space. The model inference with N = 1 comprises of LSSNet only, N = 2 comprises of LSSNet followed by HSSNet,

N = 3 has LSSNet followed by two HSSNets and so on. The CGF block is used for all our experiments.

handle different image resolutions without compromising

on the speed and memory requirements.

4.4. Quantitative Evaluation

We provide a quantitative comparison study of the pro-

posed method against the state-of-the-art methods in Table

1. The study is conducted on the same methods and datasets

chosen for qualitative studies. We use PSNR and SSIM as

the objective metrics for the study. From Table 1, it is ev-

ident that the proposed method is able to generate output

images with best PSNR scores on all the datasets consid-

ered. Moreover the proposed method is able to provide an

overall improvement of 1.5dB on PSNR averaged over all

the four datasets. The proposed scale space approach pro-

vides a full view of the input image by virtue of its large

receptive field, there by enabling us to achieve superior per-

formance on lower resolution images present in the public

test sets.

4.5. Ablation Studies

In this section, we provide ablation studies for our

method on the real datasets [26], [34] and [5] that are the

publicly available. Firstly, network component analysis is

presented which describes the advantages and disadvan-

tages of different design strategies. Secondly, scale space

analysis that evaluates the progressive improvement that is

achieved with different choices of the number of levels in

the scale space (N ).

Sl No Network PSNR SSIM

1 LSSNet Only 24.789 0.878

2 LSSNet + HSSNet 25.069 0.897

3 LSSNet + LSSNet 25.412 0.895

4 LSSNet + HSSNet + CGF 26.323 0.898

5 LSSNet + LSSNet + CGF 26.45 0.899

Table 2: Ablation study of our network architecture:

The first row experiment uses only LSSNet by explicitly

setting N = 1. The second row uses LSSNet for the lowest

scale and HSSNet for higher scales for any choice of N .

4.5.1 Network Component Analysis

We evaluate the proposed network architecture by evaluat-

ing 5 different design strategies as shown in Table 2. First,

we evaluate the performance when only LSSNet is used. In

the subsequent experiments, we introduce different choices

of networks for higher scales. And finally we evaluate the

impact of CGF blocks. Our method when used with LSS-

Net for both the lower and higher levels of the scale space

yields the best results, however using HSSNet shows only

a marginal degradation in PSNR but provides an improve-

ment of 2.5× in terms of processing speed and memory re-

quirements. It is also evident from Table 2 that the presence

of CGF blocks helps in further improvement of the overall

performance of the model.
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Sl No Method
No of Parameters

(Millions)
MAC Operations

Processing Time

(seconds)

Peak Memory

(GB)

Model Size

(MB)

1 Zhang.et.al 77.6 601K 0.41 2.46 381

2 BDN 75.2 3.91M 0.62 1.69 299

3 IBCLN 21.6 4.81M 0.42 1.42 83

4 ERRNet 18.9 9.46M 0.524 4.23 331

5 RAGNet 130.9 758K 0.331 2.87 560

6 Ours 2.6 49K 0.0149 0.74 32

7 Ours (Smart-phone) 2.6 49K 0.097 0.27 9

Table 3: Model Complexity Analysis: Comparison of different practical considerations of the proposed method against the

latest state of the art. The first 6 rows show the evaluation on NVIDIA GTX 1080Ti GPU and the last row on an embedded

smart-phone device. The best results are shown in boldface and the second best is underlined.

4.5.2 Scale Space Analysis

We evaluate the proposed method on very high resolution

input images (64MP) for different choices of N . A choice

of N = 1 suffers from significant degradation in reflection

removal quality as shown in Figure 6. With the increase

in N , the overall quality progressively improves and even-

tually saturates at N = 5. An intelligent choice of N as

described in Equation 1 for a given input image resolution

yields optimal results.

4.6. Complexity Evaluation of Proposed Method

A detailed comparison of different practical considera-

tions against state of the art methods is shown in the Table

3. We evaluated several aspects such as processing time,

peak memory consumption, number of multiply and accu-

mulate (MAC) operations and also the no of the learnable

parameters. It is quite evident from the Table 3 that our

method is at least 20× faster in terms of processing time

which has been achieved using a model with least number

of learnable parameters and MAC operations. The proposed

method being light weight is also suitable for deploying on

low memory devices to achieve real time performance.

4.7. Embedded Device Deployment

In order to deploy the proposed method on a low power

device such as a smart-phone, we first quantize the mod-

els of both the sub networks using the publicly available

Qualcomm Neural Processing SDK for AI. The quantized

models are then deployed on a smart-phone with a sup-

porting system on chip. In our experiments, we used the

latest available SDK version from Qualomm and deployed

on a android smart-phone. The quantized model shows a

marginal quality degradation that is visually very similar

to the non-quantized model output as shown in Figure 7.

We used Qualcomm’s enhanced quantizer that uses a pro-

prietary algorithm to determine the optimal range and is

especially useful for models with long tail distribution of

the data being quantized. The quantized model is able to

achieve a remarkable performance of 97 msecs for a tile of

size 540x400 for N = 2 levels. A high resolution image

(Ex: 12MP) takes roughly about 5 seconds of processing

time on a smart-phone device.

Input 12 MP Input Zoomed Regular Quantizer Enhanced Quantizer Non-Quantized

Figure 7: Qualitative Evaluation of quantized model outputs

generated on a smart phone. The enhanced quantizer shows im-

age quality comparable to non-quantized output.

5. Conclusions

In this paper, we propose a novel, light-weight scale

space architecture for single image reflection removal. To

reduce the number of computations, we use a deeper archi-

tecture only at the lowest scale while the higher scales are

processed using shallower networks. We use convolutional

guided filters to upsample lower scale outputs to provide as

guide to higher scales. We also share the weights between

the sub networks used in the higher levels which helps re-

duce the memory. The scale space architecture along with

shared weights enables us to increase the effective recep-

tive field during inference and hence our method general-

izes well to high resolution images. We have shown that

our method can remove reflections on very high resolu-

tion images (even 64 MP) even though the network was

trained on much smaller resolutions. Moreover, our method

out performs the state of the art methods both qualitatively

and quantitatively and also runs 20× faster with 50× less

parameters than the most recent state of the art algorithm

RAGNet [16]. We also implemented a quantized version of

our solution on an android smart-phone powered by Qual-

comm snapdragon 888 chipset with 8 GB on-board RAM

where a high resolution 12MP is restored in under 5 sec-

onds.
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