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Abstract

Attention mechanism, especially channel attention, has
gained great success in the computer vision field. Many
works focus on how to design efficient channel attention
mechanisms while ignoring a fundamental problem, i.e.,
channel attention mechanism uses scalar to represent chan-
nel, which is difficult due to massive information loss. In
this work, we start from a different view and regard the
channel representation problem as a compression process
using frequency analysis. Based on the frequency analy-
sis, we mathematically prove that the conventional global
average pooling is a special case of the feature decomposi-
tion in the frequency domain. With the proof, we naturally
generalize the compression of the channel attention mecha-
nism in the frequency domain and propose our method with
multi-spectral channel attention, termed as FcaNet. FcaNet
is simple but effective. We can change a few lines of code
in the calculation to implement our method within existing
channel attention methods. Moreover, the proposed method
achieves state-of-the-art results compared with other chan-
nel attention methods on image classification, object detec-
tion, and instance segmentation tasks. Our method could
consistently outperform the baseline SENet, with the same
number of parameters and the same computational cost.
Our code and models are publicly available at https:
//github.com/cfzd/FcaNet.

1. Introduction

As an important and challenging problem in feature
modeling, attention mechanisms for convolutional neural
networks (CNNs) have recently attracted considerable at-
tention and are widely used in many fields like computer vi-
sion [40] and natural language processing [34]. In principle,
they aim at selectively concentrating on some important in-
formation and have many types of variants (e.g., spatial at-
tention, channel attention, and self-attention) corresponding
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Figure 1. Classification accuracy comparison on ImageNet. With
the same number of parameters and computational cost, our
method consistently outperforms the baseline SENet.

to different feature dimensions. Due to the simplicity and
effectiveness in feature modeling, channel attention directly
learns to attach importance weights with different channels,
becoming a popular and powerful tool for the deep learning
community.

Typically, a core step of channel attention approaches
is to use a scalar for each channel to conduct the calcu-
lation due to the constrained computational overhead, and
global average pooling (GAP) becomes the de-facto stan-
dard choice in the deep learning community because of its
simplicity and efficiency. Nevertheless, every rose has its
thorn. The simplicity of GAP makes it hard to well capture
complex information for various inputs. Some methods like
CBAM [39] and SRM [23] further use global max pooling
and global standard deviation pooling to enhance the per-
formance of GAP. Different from previous works, we con-
sider the scalar representation of a channel as a compression
problem. Namely, the information of a channel should be
compactly encoded by a scalar while preserving the repre-
sentation ability of the whole channel as much as possible.
In this way, how to effectively compress a channel with a
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scalar due to the constrained computational overhead is a
major difficulty, and it is crucial to channel attention.

With the above motivation, we propose to use the dis-
crete cosine transform (DCT) to compress channels in the
channel attention mechanism for the following reasons: 1)
DCT is a widely used data compression method in sig-
nal processing, especially with digital images and videos.
Many widely used image and video formats like JPEG,
HEIF, MPEG, and H.26x use DCT to realize data compres-
sion. DCT has a strong energy compaction property [1, 30],
so it could achieve high data compression ratio with high
quality [2, 22]. This property meets the demand of the chan-
nel attention that representing a channel with a scalar. 2)
DCT can be implemented with an element-wise multiplica-
tion, and it is differentiable. In this way, it can be easily
integrated into CNNs. 3) Surprisingly, DCT can be viewed
as a generalization of GAP. Mathematically, GAP (showing
the effectiveness in SENet [21]) is only equivalent to the
lowest frequency components of DCT, leaving many other
potentially useful frequency components unexplored. This
strongly motivates us to tailor DCT for the channel attention
mechanism.

In this paper, we further propose a simple, novel, but
effective multi-spectral channel attention (MSCA) frame-
work based on the above discussions. In order to better
compress channels and explore the components left out by
GAP, we propose to tailor DCT and use multiple but lim-
ited frequency components of DCT for the channel atten-
tion mechanism. Note that although we use multi-spectral
channel attention, each channel is still represented by only
one scalar. Along with the MSCA framework, how to se-
lect the frequency component of DCT for each channel is
important. In this way, we propose three kinds of fre-
quency component selection criteria to fulfill and validate
the MSCA framework, which are LF (Low Frequency based
selection), TS (Two-Step selection), and NAS (Neural Ar-
chitecture Search selection). With these selection criteria,
our method achieves state-of-the-art performance against
the other channel attention ones.

In a word, the main contribution of this work can be sum-
marized as follows.

• We regard the channel attention as a compression prob-
lem and introduce DCT in the channel attention. We
then prove that conventional GAP is a special case of
DCT. Based on this proof, we generalize the chan-
nel attention in the frequency domain and propose
our method with the multi-spectral channel attention
framework, termed as FcaNet.

• We propose three kinds of frequency component se-
lection criteria along with the proposed multi-spectral
channel attention framework to fulfill FcaNet.

• Extensive experiments demonstrate the proposed

method achieves state-of-the-art results on both Ima-
geNet and COCO datasets, with the same computa-
tional cost as SENet. The results on ImageNet are
shown in Fig. 1.

2. Related Work
Attention Mechanism in CNNs In [40], a visual atten-
tion method is first proposed to model the importance of
features in the image caption task. Then many methods start
to focus on the attention mechanism. A residual attention
network [35] is proposed with a spatial attention mecha-
nism using downsampling and upsampling. Besides, SENet
[21] proposes the channel attention mechanism. It performs
GAP on the channels and then calculates the weights of
each channel using fully connected layers. What’s more,
GE [20] uses spatial attention to better exploit the feature
context, and A2-Net [7] builds a relation function for image
or video recognition.

Inspired by these works, a series of works like BAM
[28], DAN [9], CBAM [39], scSE [32], and CoordAtten-
tion [19] are proposed to fuse spatial attention [45] and
channel attention. Among them, CBAM claims that GAP
could only get a sub-optimal feature because of the loss
of information. For addressing this problem, it uses both
the GAP and the global max pooling and gains significant
performance improvement. Similarly, SRM [23] also pro-
pose to use GAP with global standard deviation pooling.
Motivated by CBAM, GSoP [11] introduces a second-order
pooling method for downsampling. NonLocal [37] pro-
poses to build a dense spatial feature map. AANet [3] pro-
poses to embed the attention map with position information
into the feature. SkNet [24] introduces a selective chan-
nel aggregation and attention mechanism, and ResNeSt [42]
proposes a similar split attention method. Due to the com-
plicated attention operation, these methods are relatively
large. To improve efficiency, GCNet [4] proposes to use a
simple spatial attention module and replace the original spa-
tial downsampling process. ECANet [36] introduces one-
dimensional convolution layers to reduce the redundancy of
fully connected layers and obtains more efficient results.

Besides these works, many methods try to extend the at-
tention mechanism to specific tasks, like multi-label clas-
sification [14], saliency detection [44], visual explanation
[10], and super-resolution [43].

Frequency Domain Learning Frequency analysis has al-
ways been a powerful tool in the signal processing field.
In recent years, some applications of introducing frequency
analysis in the deep learning field emerge. In [8, 13], fre-
quency analysis is introduced in the CNNs by JPEG encod-
ing. Then, DCT is incorporated in [41] to reduce commu-
nication bandwidth. There are also some applications in the
model compression and pruning tasks like [6, 27, 38].
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3. Method
In this section, we first revisit the formulation of DCT

and channel attention. Then, based on these works, we elab-
orate on the derivation of our multi-spectral channel atten-
tion framework. Meanwhile, along with the multi-spectral
channel attention framework, three kinds of frequency com-
ponents selection methods are proposed.

3.1. Revisiting DCT and Channel Attention

We first elaborate on the definitions of discrete cosine
transform and channel attention mechanism.

Discrete Cosine Transform (DCT) Typically, the basis
function of two-dimensional (2D) DCT [1] is:

Bi,j
h,w = cos(

πh

H
(i+

1

2
)) cos(

πw

W
(j +

1

2
)). (1)

Then the 2D DCT can be written as:

f2d
h,w =

H−1∑
i=0

W−1∑
j=0

x2d
i,jB

i,j
h,w

s.t. h ∈ {0, 1, · · · , H − 1}, w ∈ {0, 1, · · · ,W − 1},

(2)

in which f2d ∈ RH×W is the 2D DCT frequency spectrum,
x2d ∈ RH×W is the input, H is the height of x2d, and W
is the width of x2d. Correspondingly, the inverse 2D DCT
can be written as:

x2d
i,j =

H−1∑
h=0

W−1∑
w=0

f2d
h,wB

i,j
h,w,

s.t. i ∈ {0, 1, · · · , H − 1}, j ∈ {0, 1, · · · ,W − 1}.

(3)

Please note that in Eqs. 2 and 3, some constant normaliza-
tion factors are removed for simplicity, which will not affect
the results in this work.

Channel Attention The channel attention mechanism is
widely used in CNNs. It uses scalar to represent and
evaluate the importance of each channel. Suppose X ∈
RC×H×W is the image feature tensor in networks, C is the
number of channels, H is the height of the feature, and W
is the width of the feature. As discussed in Sec. 1, we treat
the scalar representation in channel attention as a compres-
sion problem since it has to represent the whole channel
while only one scalar can be used. In this way, the attention
mechanism can be written as:

att = sigmoid(fc(compress(X))), (4)

where att ∈ RC is the attention vector, sigmoid is the
Sigmoid function, fc represents the mapping functions like
fully connected layer or one-dimensional convolution, and

compress : RC×H×W 7→ RC is a compression method.
After obtaining the attention vector of all C channels, each
channel of input X is scaled by the corresponding attention
value:

X̃:,i,:,: = attiX:,i,:,:, s.t. i ∈ {0, 1, · · · , C − 1}, (5)

in which X̃ is the output of attention mechanism, atti is
the i-th element of attention vector, and X:,i,:,: is the i-th
channel of input.

Typically, global average pooling is the de-facto com-
pression method [21, 36] for its simplicity and effective-
ness. There are also compression methods like global max
pooling [39] and global standard deviation pooling [23].

3.2. Multi-Spectral Channel Attention

In this section, we first theoretically discuss the problem
of existing channel attention mechanisms. Based on the the-
oretical analysis, we then elaborate on the network design
of the proposed method.

Theoretical Analysis of Channel Attention As dis-
cussed in Sec. 3.1, DCT can be viewed as a weighted sum
of inputs. We further prove that GAP is actually a special
case of 2D DCT.

Theorem 1. GAP is a special case of 2D DCT, and its result
is proportional to the lowest frequency component of 2D
DCT.

Proof. Suppose h and w in Eq. 2 are 0, we have:

f2d
0,0 =

H−1∑
i=0

W−1∑
j=0

x2d
i,j cos(

0

H
(i+

1

2
)) cos(

0

W
(j +

1

2
))

=
H−1∑
i=0

W−1∑
j=0

x2d
i,j

= gap(x2d)HW.
(6)

In Eq. 6, f2d
0,0 represents the lowest frequency component

of 2D DCT, and it is proportional to GAP. In this way, The-
orem 1 is proved. ■

Multi-Spectral Channel Attention Module Based on
the theoretical analysis and Theorem 1, we can see that us-
ing GAP in the channel attention mechanism means only the
lowest frequency information is preserved. And all com-
ponents from other frequencies are discarded, which also
encode the useful information patterns in representing the
channels and should not be left out.

To better compress channels and introduce more infor-
mation, we propose to generalize GAP to more frequency
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Figure 2. Illustration of existing channel attention and multi-spectral channel attention. For simplicity, the 2D DCT indices are represented
in the one-dimensional format. We can see that our method uses multiple frequency components with the selected DCT bases, while SENet
only uses GAP in channel attention. Best viewed in color.

components of 2D DCT and compress more information
with multiple frequency components of 2D DCT, including
the lowest frequency component, i.e., GAP.

First, the input X is split into many parts along the chan-
nel dimension. Denote [X0, X1, · · · , Xn−1] as the parts, in

which Xi ∈ RC′×H×W , i ∈ {0, 1, · · · , n − 1}, C ′ =
C

n
,

and C should be divisible by n. For each part, a correspond-
ing 2D DCT frequency component is assigned, and the 2D
DCT results can be used as the compression results of chan-
nel attention. In this way, we have:

Freqi = 2DDCTui,vi(Xi),

=

H−1∑
h=0

W−1∑
w=0

Xi
:,h,wB

ui,vi
h,w

s.t. i ∈ {0, 1, · · · , n− 1},

(7)

in which [ui, vi] are the frequency component 2D in-
dices corresponding to Xi, and Freqi ∈ RC′

is the C ′-
dimensional vector after the compression. The whole com-

pression vector can be obtained by concatenation:

Freq =compress(X)

=cat([Freq0, F req1, · · · , F reqn−1]),
(8)

in which Freq ∈ RC is the obtained multi-spectral vector.
The whole multi-spectral channel attention framework can
be written as:

ms att = sigmoid(fc(Freq)). (9)

From Eqs. 8 and 9, we can see that our method general-
izes the original GAP method to a framework with multiple
frequency components. By doing so, the channel informa-
tion after compression is effectively enriched for represen-
tation. The overall illustration of our method is shown in
Fig. 2.

Criteria for Choosing Frequency Components There
exists an important problem of how to choose frequency
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component indices [ui, vi] for each part Xi. In order to ful-
fill the multi-spectral channel attention, we propose three
kinds of criteria, which are FcaNet-LF (Low Frequency),
FcaNet-TS (Two-Step selection), and FcaNet-NAS (Neural
Architecture Search).

FcaNet-LF means FcaNet with low-frequency compo-
nents. As we all know, many compression methods use
low-frequency information of DCT to compress informa-
tion. Moreover, some methods [21, 41] have shown CNNs
prefer low-frequency information. In this way, the first cri-
terion for choosing frequency components is to only select
low-frequency components.

FcaNet-TS means FcaNet selects components within a
two-step selection scheme. Its main idea is to first deter-
mine the importance of each frequency component and then
investigate the effects of using different numbers of fre-
quency components. Namely, we evaluate the results of
each frequency component in channel attention individu-
ally. Finally, we choose the Top-k highest performance fre-
quency components based on the evaluation results.

FcaNet-NAS means FcaNet with searched components.
For this criterion, we use neural architecture search to
search the best frequency component for channels. For each
part Xi, a set of continuous variables α = {α(u,v)} are as-
signed to search components. The frequency components
of this part can be written as:

Freqinas =
∑

(u,v)∈O

exp(α(u,v))∑
(u′,v′)∈O

exp(α(u′,v′))
2DDCTu,v(Xi),

(10)
in which O is the set containing all 2D DCT frequency com-
ponent indices. After training, the frequency component for
Xi is derived by (u∗

i , v
∗
i ) = argmax(u,v)∈O{α(u,v)}.

The ablation studies about these criteria can be seen in
Sec. 4.2.

4. Experiments
In this section, we first elaborate on the details of our

experiments. Second, we show the ablation studies about
FcaNet. Third, we give discussions about how the informa-
tion is compressed in our framework, complexity, and code
implementation. At last, we investigate the effectiveness of
our method on the task of image classification, object de-
tection, and instance segmentation.

4.1. Implementation Details

To evaluate the results of the proposed FcaNet on Ima-
geNet [33], we employ four widely used CNNs as backbone
models, including ResNet-34, ResNet-50, ResNet-101, and
ResNet-152. We follow the data augmentation and hyper-
parameter settings in [16] and [17]. Concretely, the input
images are cropped randomly to 224×224 with random hor-
izontal flipping. We use an SGD optimizer with a momen-

tum of 0.9, a weight decay of 1e-4, and a batch size of 128
per GPU at training time. For large models like ResNet-101
and ResNet-152, the batch size is set to 64. The learning
rate is set to 0.1 for a batch size of 256 with the linear scal-
ing rule [12]. All models are trained within 100 epochs with
cosine learning rate decay and label smoothing. Notably,
for training efficiency, we use the Nvidia APEX mixed pre-
cision training toolkit.

To evaluate our method on MS COCO [26] using Faster
R-CNN [31] and Mask R-CNN [15], we use the implemen-
tation of detectors from the MMDetection [5] toolkit and
employ its default settings. During training, the shorter side
of the input image is resized to 800. All models are opti-
mized using SGD with a weight decay of 1e-4, a momen-
tum of 0.9, and a batch size of 2 per GPU within 12 epochs.
The learning rate is initialized to 0.01 and is decreased by
the factor of 10 at the 8th and 11th epochs, respectively.

All models are implemented in PyTorch [29] framework
and with eight Nvidia RTX 2080Ti GPUs.

4.2. Ablation Study

As discussed in Sec. 3.2, we propose three kinds of cri-
teria, including FcaNet-LF (Low Frequency), FcaNet-TS
(Two-Step selection), and FcaNet-NAS (Neural Architec-
ture Search). In this section, we first show the ablations
about these variants. Then we discuss the relation between
FcaNet and fully learnable channel attention.

The effects of individual frequency components For
FcaNet-TS, the first step is to determine the importance of
each frequency component. To investigate the effects of
different frequency components individually in channel at-
tention, we only use one frequency component at a time.
We divide the whole 2D DCT frequency space into 7 × 7
parts since the smallest feature map size is 7 × 7 on Ima-
geNet. In this way, there are in total of 49 experiments. To
speed up the experiments, we first train a standard ResNet-
50 network for 100 epochs as the base model. Then we
add channel attention to the base model with different fre-
quency components to verify the effects. All added models
are trained within 20 epochs with a similar optimization set-
ting in Sec. 4.1, while the learning rate is set to 0.02.

As shown in Fig. 3, we can see that using lower fre-
quency could have better performance, which is intuitive
and verifies the success of SENet. This also verifies the con-
clusion [41] that deep networks prefer low-frequency infor-
mation. Nevertheless, interestingly, we can see that nearly
all frequency components (except the highest component)
have very small gaps (<= 0.5% Top-1 accuracy) between
the lowest one, i.e., vanilla channel attention with GAP. This
shows that other frequency components can also cope well
with the channel attention mechanism, and it is effective to
generalize the channel attention in the frequency domain.
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Figure 3. Top-1 accuracies on ImageNet using different frequency
components in channel attention individually.

The effects of different numbers of frequency compo-
nents For FcaNet-LF, we verify the results of using K
lowest-frequency components. For FcaNet-TS, we select
Top-K highest performance frequency components in Fig.
3. For simplicity, K could be 1, 2, 4, 8, 16, or 32.
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Figure 4. Top1 accuracy with different numbers of components.
Since FcaNet-NAS searches and determines frequency compo-
nents automatically, it is not included in this experiment.

As shown in Fig. 4, we can see two phenomena. 1) All
experiments with multi-spectral attention have a significant
performance gain compared with the one only using the
GAP in channel attention. This verifies our idea of using
multiple frequency components in channel attention. 2) For
FcaNet-LF and FcaNet-TS, the settings with 2 and 16 fre-
quency components gain the best performance, respectively.
In this way, we use these settings in our method and all other
experiments.

Comparison with fully learnable channel attention As
shown in Eq. 7, we use the 2D DCT basis functions to com-

press channels. The 2D DCT basis functions Bui,vi

h,w can be
simply regarded as a tensor containing DCT coefficients. In
this way, a natural question is that how about directly learn-
ing a tensor to compress channels. We compare our method
with three different kinds of tensors, which are Fixed ten-
sor with Random initialization (FR), Learned tensor with
Random initialization (LR), and Learned tensor with DCT
initialization (LD). In this case, our method can be viewed
as a Fixed tensor with DCT initialization (FD).

SENet FR LR LD FD (Ours)

77.6

77.8

78.0

78.2

78.4

78.6
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cc

ur
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77.86 77.74
± 0.12
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78.35
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Figure 5. Comparison with fully learnable channel attention. FR
means a Fixed tensor with Random initialization, LR means a
Learned tensor with Random initialization, LD means a Learned
tensor with DCT initialization, and FD means a Fixed tensor with
DCT initialization, which is our method. For settings with the ran-
dom initialization, the error bars are shown.

The comparison is shown in Fig. 5. We can see that all
settings with the DCT initialization (LD, FD) outperform
the ones without DCT (FR, LR). Moreover, the setting with
fixed DCT initialization (ours) even outperforms the fully
learnable channel attention methods (LR, LD), which shows
the effectiveness of using DCT to compress channels.

4.3. Discussion

How the multi-spectral framework compresses and em-
beds more information In Sec. 3.2, we show that only
using GAP in channel attention is actually discarding infor-
mation of all other frequency components except the low-
est one, i.e., GAP. In this way, generalizing channel atten-
tion in the frequency domain and using the multi-spectral
framework could naturally embed more information in the
channel attention mechanism.

Besides the above derivation, we also give a thought ex-
periment to show that more information could be embed-
ded. As we all know, deep networks are redundant [18, 46].
If two channels are redundant for each other, we can only
get the same information using GAP. However, in our multi-
spectral framework, it is possible to extract more informa-
tion from redundant channels because different frequency
components contain different information. In this way, the
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Table 1. Comparison of different attention methods on ImageNet. All results are reproduced and trained with the same training setting
except AANet, which has no official code.

Method Years Backbone Parameters FLOPS Train FPS Test FPS Top-1 acc Top-5 acc
ResNet [16] CVPR16

ResNet-34

21.80 M 3.68 G 2898 3840 74.58 92.05
SENet [21] CVPR18 21.95 M 3.68 G 2729 3489 74.83 92.23
ECANet [36] CVPR20 21.80 M 3.68 G 2703 3682 74.65 92.21
FcaNet-LF 21.95 M 3.68 G 2717 3356 74.95 92.16
FcaNet-TS 21.95 M 3.68 G 2717 3356 75.02 92.07
FcaNet-NAS 21.95 M 3.68 G 2717 3356 74.97 92.34
ResNet [16] CVPR16

ResNet-50

25.56 M 4.12 G 1644 3622 77.27 93.52
SENet [21] CVPR18 28.07 M 4.13 G 1457 3417 77.86 93.87
CBAM [39] ECCV18 28.07 M 4.14 G 1132 3319 78.24 93.81
GSoPNet1*[11] CVPR19 28.29 M 6.41 G 1095 3029 79.01 94.35
GCNet [4] ICCVW19 28.11 M 4.13 G 1477 3315 77.70 93.66
AANet [3] ICCV19 25.80 M 4.15 G - - 77.70 93.80
ECANet [36] CVPR20 25.56 M 4.13 G 1468 3435 77.99 93.85
FcaNet-LF 28.07 M 4.13 G 1430 3331 78.43 94.15
FcaNet-TS 28.07 M 4.13 G 1430 3331 78.57 94.10
FcaNet-NAS 28.07 M 4.13 G 1430 3331 78.46 94.09
ResNet [16] CVPR16

ResNet-101

44.55 M 7.85 G 816 3187 78.72 94.30
SENet [21] CVPR18 49.29 M 7.86 G 716 2944 79.19 94.50
AANet [3] ICCV19 45.40 M 8.05 G - - 78.70 94.40
ECANet [36] CVPR20 44.55 M 7.86 G 721 3000 79.09 94.38
FcaNet-LF 49.29 M 7.86 G 705 2936 79.46 94.60
FcaNet-TS 49.29 M 7.86 G 705 2936 79.63 94.63
FcaNet-NAS 49.29 M 7.86 G 705 2936 79.53 94.64
ResNet [16] CVPR16

ResNet-152

60.19 M 11.58 G 559 2721 79.39 94.74
SENet [21] CVPR18 66.77 M 11.60 G 508 2566 79.84 94.82
AANet [3] ICCV19 61.60 M 11.90 G - - 79.10 94.60
ECANet [36] CVPR20 60.19 M 11.59 G 515 2619 79.86 94.80
FcaNet-LF 66.77 M 11.60 G 502 2387 80.13 94.90
FcaNet-TS 66.77 M 11.60 G 502 2387 80.02 94.89
FcaNet-NAS 66.77 M 11.60 G 502 2387 79.96 94.94
* Please note that although GSoPNet1 has higher performance, the computational cost is 1.5 times larger than ours.

proposed multi-spectral framework could embed more in-
formation in the channel attention mechanism.

Complexity analysis We analyze the complexity of our
method from two aspects: the number of parameters and
the computational cost. For the number of parameters, our
method has no extra parameters compared with the baseline
because the weights of DCT are predefined constants.

For the computational cost, our method has a negligible
extra cost and can be viewed as having the same computa-
tional cost as SENet. With ResNet-34, ResNet-50, ResNet-
101, and ResNet-152 backbones, the relative computational
cost increases of our method are 0.04%, 0.13%, 0.11%, and
0.11% compared with SENet, respectively. More results
can be found in Table 1.

A Few lines of code change Another important property
of the proposed multi-spectral framework is that it can be
easily carried out with existing channel attention implemen-

tations. The only difference between our method and SENet
is the channel compression method (GAP vs. multi-spectral
2D DCT). As described in Sec. 3.1 and Eq. 7, 2D DCT can
be viewed as a weighted sum of inputs. It can be simply
implemented by element-wise multiplication and summa-
tion. In this way, our method could be easily integrated into
arbitrary channel attention methods.

4.4. Image Classification on ImageNet

We compare our FcaNet with the state-of-the-art meth-
ods using ResNet-34, ResNet-50, ResNet-101, and ResNet-
152 backbones on ImageNet, including SENet [21],
CBAM [39], GSoP-Net1 [11], GCNet [4], AANet [3], and
ECANet [36]. The evaluation metrics include both effi-
ciency (i.e., network parameters, floating point operations
per second (FLOPs), and frame per second (FPS)) and ef-
fectiveness (i.e., Top-1/Top-5 accuracy). As shown in Ta-
ble 1, our method achieves the best performance nearly in
all experimental settings.
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Table 2. Object detection results of different methods on COCO val 2017.

Method Detector Parameters FLOPs AP AP50 AP75 APS APM APL

ResNet-50

Faster-RCNN

41.53 M 215.51 G 36.4 58.2 39.2 21.8 40.0 46.2
SENet 44.02 M 215.63 G 37.7 60.1 40.9 22.9 41.9 48.2
ECANet 41.53 M 215.63 G 38.0 60.6 40.9 23.4 42.1 48.0
FcaNet-LF 44.02 M 215.63 G 39.0 61.3 41.9 23.4 42.5 49.7
FcaNet-TS 44.02 M 215.63 G 39.0 61.1 42.3 23.7 42.8 49.6
FcaNet-NAS 44.02 M 215.63 G 39.0 60.9 42.3 23.0 42.9 49.9
ResNet-101

Faster-RCNN

60.52 M 295.39 G 38.7 60.6 41.9 22.7 43.2 50.4
SENet 65.24 M 295.58 G 39.6 62.0 43.1 23.7 44.0 51.4
ECANet 60.52 M 295.58 G 40.3 62.9 44.0 24.5 44.7 51.3
FcaNet-LF 65.24 M 295.58 G 41.3 63.4 44.9 24.6 45.6 53.6
FcaNet-TS 65.24 M 295.58 G 41.2 63.3 44.6 23.8 45.2 53.1
FcaNet-NAS 65.24 M 295.58 G 41.2 63.3 44.9 24.7 45.2 53.0
ResNet-50

Mask-RCNN

44.17 M 261.81 G 37.2 58.9 40.3 22.2 40.7 48.0
SENet 46.66 M 261.93 G 38.7 60.9 42.1 23.4 42.7 50.0
GCNet 46.69 M 261.94 G 39.4 61.6 42.4 - - -
ECANet 44.17 M 261.93 G 39.0 61.3 42.1 24.2 42.8 49.9
FcaNet-LF 46.66 M 261.93 G 40.3 61.9 43.9 24.9 43.6 52.2
FcaNet-TS 46.66 M 261.93 G 40.3 62.0 44.1 25.2 43.9 52.0
FcaNet-NAS 46.66 M 261.93 G 40.3 61.9 43.9 24.9 43.6 52.2

4.5. Object Detection on MS COCO

Besides the classification task on ImageNet, we also
evaluate our method on object detection task to verify its
effectiveness and generalization ability. We use our FcaNet
with FPN [25] as the backbone (ResNet-50 and ResNet-
101) of Faster R-CNN and Mask R-CNN and test their per-
formance on the MS COCO dataset. SENet, CBAM, GC-
Net, and ECANet are used for comparison.

As shown in Table 2, our method could also achieve
the best performance with both Faster-RCNN and Mask-
RCNN framework. Identical to the classification task on
ImageNet, FcaNet could also outperform SENet by a large
margin with the same number of parameters and compu-
tational cost. Compared with the SOTA method ECANet,
FcaNet could outperform it by 0.9-1.3% in terms of AP.

4.6. Instance Segmentation on MS COCO

Besides the object detection, we then test our method on
the instance segmentation task. As shown in Table 3, our
method outperforms other methods by a more considerable
margin. Specifically, FcaNet outperforms GCNet by 0.5%
AP, while the gaps between other methods are roughly 0.1-
0.2%. These results verify the effectiveness of our method.

5. Conclusion
In this paper, we study a fundamental problem of chan-

nel attention, that is, how to represent channels and regard
this problem as a compression process. We have proved
that GAP is a special case of DCT and proposed the FcaNet
with the multi-spectral attention module, which generalizes

Table 3. Instance segmentation results of different methods using
Mask R-CNN on COCO val 2017.

Method AP AP50 AP75

ResNet-50 34.1 55.5 36.2
SENet 35.4 57.4 37.8
GCNet 35.7 58.4 37.6
ECANet 35.6 58.1 37.7
FcaNet-LF 36.3 58.3 38.6
FcaNet-TS 36.2 58.6 38.1
FcaNet-NAS 36.3 58.3 38.6

the existing channel attention mechanism in the frequency
domain. Meanwhile, we have explored different combina-
tions of frequency components in our multi-spectral frame-
work and proposed three criteria for frequency components
selection. With the same number of parameters and com-
putational cost, our method could consistently outperform
SENet. We also have achieved state-of-the-art performance
on image classification, object detection, and instance seg-
mentation compared with other channel attention methods.
Moreover, FcaNet is simple yet effective. Our method could
be implemented with only a few lines of code change.
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