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Figure 1. We introduce H3D-Net, a method for high-fidelity 3D head reconstruction in the wild. Our method estimates a signed distance
function (SDF) of the head by optimizing a coordinate-based neural network on a small set of input images. This optimization process is
constrained by a pre-trained probabilistic model of 3D head SDFs to obtain plausible shapes in few-shot setups. The figure shows the 3D
head reconstruction of three scenes obtained with the proposed method from only three images with associated masks and camera poses.

Abstract

Recent learning approaches that implicitly represent sur-
face geometry using coordinate-based neural representa-
tions have shown impressive results in the problem of multi-
view 3D reconstruction. The effectiveness of these tech-
niques is, however, subject to the availability of a large
number (several tens) of input views of the scene, and com-
putationally demanding optimizations. In this paper, we
tackle these limitations for the specific problem of few-shot
full 3D head reconstruction, by endowing coordinate-based
representations with a probabilistic shape prior that en-
ables faster convergence and better generalization when
using few input images (down to three). First, we learn
a shape model of 3D heads from thousands of incomplete
raw scans using implicit representations. At test time, we
jointly overfit two coordinate-based neural networks to the
scene, one modelling the geometry and another estimat-
ing the surface radiance, using implicit differentiable ren-
dering. We devise a two-stage optimization strategy in
which the learned prior is used to initialize and constrain
the geometry during an initial optimization phase. Then,
the prior is unfrozen and fine-tuned to the scene. By do-
ing this, we achieve high-fidelity head reconstructions, in-
cluding hair and shoulders, and with a high level of detail
that consistently outperforms both state-of-the-art 3D Mor-
phable Models methods in the few-shot scenario, and non-
parametric methods when large sets of views are available.

1. Introduction

Recent learning based methods have shown impressive
results in reconstructing 3D shapes from 2D images. These
approaches can be roughly split into two main categories:
model-based [3, 11, 25, 35, 36, 37, 44, 45, 49, 52] and
model-free [9, 10, 16, 18, 21, 31, 33, 34, 39, 50, 51, 53]. The
former incorporate prior knowledge using 3D Morphable
Models (3DMMs) to limit the space of feasible solutions,
making these approaches well suited for few-shot and one-
shot shape estimation. However, most model-based meth-
ods produce shapes that usually lack geometric detail and
cannot handle arbitrary topology changes.

On the other hand, model-free approaches based on dis-
crete representations like voxels, meshes or point-clouds,
have the flexibility to represent a wider spectrum of shapes,
although at the cost of being computationally tractable only
for small resolutions or being restricted to fixed topolo-
gies. These limitations have been overcome by neural im-
plicit representations [8, 23, 24, 27, 32, 38, 41, 56], which
can represent both geometry and appearance as a contin-
uum, encoded in the weights of a neural network. [26, 54]
have shown the success of such representations in learning
detail-rich 3D geometry directly from images, with no 3D
ground truth supervision. Unfortunately, the performance
of these methods is currently conditioned to the availabil-

5620



ity of a large number of input views, which leads to a time
consuming inference.

In this work we introduce H3D-Net, a hybrid scheme
that combines the strengths of model-based and model-free
representations by incorporating prior knowledge into neu-
ral implicit models for category-specific multi-view recon-
struction. We apply this approach to the problem of few-
shot full head reconstruction. In order to build the prior,
we first use several thousands of raw incomplete scans to
learn a space of Signed Distance Functions (SDF) repre-
senting 3D head shapes [27]. At inference, this learnt shape
prior is used to initalize and guide the optimization of an
Implicit Differentiable Renderer (IDR) [54] that, given a po-
tentially reduced number of input images, estimates the full
head geometry. The use of the learned prior enables faster
convergence during optimization and prevents it from being
trapped into local minima, yielding 3D shape estimates that
capture fine details of the face, head and hair from just three
input images (see Figure 1).

We exhaustively evaluate our approach on a mid-
resolution Multiview-Stereo (MVS) public dataset [29] and
on a high-resolution dataset we collected with a structured-
light scanner, consisting of 10 3D full-head scans. The
results show that we consistently outperform current state-
of-the-art, both in a few-shot setting and when many input
views are available. Importantly, the use of the prior also
makes our approach very efficient, achieving competitive
results in terms of accuracy about 20× faster than IDR [54].
Our key contributions can be summarized as follows:

- We introduce a method for reconstructing high quality
full heads in 3D from small sets of in-the-wild images.

- Our method is the first to use implicit functions for
reconstructing 3D humans heads from multiple images
and also to rival parametric and non-parametric models
in 3D accuracy at the same time.

- We devise a guided optimization approach to introduce
a probabilistic shape prior into neural implicit models.

- We collect and release a new dataset1 containing high-
resolution 3D full head scans, images, masks and
camera poses for evaluation purposes, which we dub
H3DS.

2. Related work
Model-based. 3D Morphable Models [5, 6, 20, 28, 30,
46, 47, 48] have become the de facto representation used
for few-shot 3D face reconstruction in-the-wild given that
they lead to light-weight, fast and robust systems. Adopting
3DMMs as a representation, the 3D reconstruction problem
boils down to estimating the small set of parameters that
best represent a target 3D shape. This makes it possible to

1Project page: https://crisalixsa.github.io/h3d-net

obtain 3D reconstructions from very few images [3, 11, 35,
52] and even a single input [36, 37, 44, 45, 49]. Never-
theless, one of the main limitations of morphable models is
their lack of expressiveness, specially for high frequencies.
This issue has been addressed by learning a post processing
that transfers the fine details from the image domain to the
3D geometry [21, 37, 45]. Another limitation of 3DMMs is
their inability to represent arbitrary shapes and topologies.
Thus, they are not suitable for reconstructing full heads with
hair, beard, facial accessories and upper body clothing.

Model-free. Model-free approaches build upon more
generic representations, such as voxel-grids or meshes,
in order to gain expressiveness and flexibility. Voxel-
grids have been extensively used for 3D reconstruction [10,
14, 16, 18, 53] and concretely for 3D face reconstruc-
tion [16]. Their main limitation is that memory require-
ments grow cubically with resolution, and octrees [14] have
been proposed to address this issue. On the other hand,
meshes [9, 17, 21, 50] are a more efficient representation
for surfaces than voxel-grids, and are suitable for graphics
applications. Meshes have been proposed for 3D face re-
construction [9, 21] in combination with graph neural net-
works [7]. However, similarly to 3DMMs, meshes are also
usually restricted to fixed topologies and are not suitable for
reconstructing other elements beyond the face itself.

Implicit representations. Recently, implicit representa-
tions for surface modelling [22, 23, 27] have been proposed
to jointly address the memory limitations of voxel grids and
the topological rigidity of meshes. These representations
model surfaces as a level-set of a coordinate-based contin-
uous function, e.g. a signed distance function or an occu-
pancy function. Such functions, usually implemented as
multi-layer perceptrons (MLPs), can theoretically express
any shape with infinite resolution and a fixed memory foot-
print. Implicit methods for 3D reconstruction can be di-
vided in those that, at inference time, perform a single for-
ward pass of a previously trained model [8, 23, 38], and
those that overfit a model to a set of input images through an
optimization process using implicit differentiable rendering
[26, 54]. In the later, given that the inference is an opti-
mization process, the obtained 3D reconstructions are more
accurate. However, they are slow and require an important
number of multi-view images, failing in few-shot setups as
those we consider in this work.

Priors for implicit representations. Building priors for
implicit representations of surfaces has been addressed with
two main purposes. The first consists in speeding up con-
vergence of methods that perform an optimization at infer-
ence time [40] using meta-learning techniques [12]. The
second is to find a space of implicit functions that represent
the shape of a certain category using auto-decoders [27, 55].
However, [27, 55] have been used to solve tasks using 3D
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Figure 2. Overview of our method. Left. The two configurations of the prior model at training and inference phases. Right. Integration
of the pre-trained prior model with the implicit differentiable renderer. During the prior-aided 3D reconstruction process, the geometry
network starts off with frozen weights (commuter at position A), constraining the predicted shape to lie within its pre-learnt latent space,
and is eventually unfrozen (commuter at position B) to allow fine-tuning of the fine details.

supervision, and it is still an open problem how to use these
priors when the supervision signal is generated from 2D im-
ages.

As done with morphable models, implicit shape mod-
els can be used to constrain image-based 3D reconstruction
systems to make them more reliable. Drawing inspiration
from this idea, in this work we leverage implicit shape mod-
els [27] to guide the optimization-based implicit 3D recon-
struction method [54] towards more accurate and robust so-
lutions, even under few-shot in-the-wild scenarios.

3. Method
Given a small set of N ≥ 3 input images Iv , v =

1, . . . , N , with associated head masks Mv and camera pa-
rameters Cv , our goal is to recover the 3D head surface S
using only visual cues as supervision. Formally, we aim to
approximate the signed distance function (SDF) F : x → s
such that S = {x ∈ R3|F(x) = 0}.

In order to approximate F , we propose to optimize a pre-
viously learnt probabilistic model Fz,θ0 , that represents a
prior distribution over 3D head SDFs. z and θ0 are a latent
vector encoding specific shapes and the learnt parameters of
an auto-decoder [42], respectively. Building on DeepSDF
[27], we learn these parameters from thousands of incom-
plete scans. We describe this process in Section 3.1.

At test time, the reconstruction process is reduced to
finding the optimal parameters {z∗, θ∗} such that Fz∗,θ∗ ∼
F . To that end, we compose the prior model Fz,θ0 , which
we also refer to as geometry network, with a rendering net-

work Gϕ : (x,n,v) → c that models the RGB radiance
emitted from a surface point x with normal n in a view-
ing direction v, and minimize a photometric error w.r.t. the
input images Iv , as in [54]. Moreover, we propose a two-
step optimization schedule that prevents the reconstruction
process from getting trapped into local minima and, as we
shall see in the results section, leads to much more accu-
rate, robust and realistic reconstructions. We describe the
reconstruction step in Section 3.2.

3.1. Learning a prior for human head SDFs

Given a set of M scenes with associated raw 3D point
clouds, we use the DeepSDF framework to learn a prior
distribution of signed distance functions representing 3D
heads, Fz,θ0 . While the original DeepSDF formulation re-
quires watertight meshes as training data to use signed dis-
tances as supervision, we use the Eikonal loss [13] to learn
directly from raw, and potentially incomplete, surface point
clouds. In addition, Fourier features are used to overcome
the spectral bias of MLPs towards low frequencies in low
dimensional tasks [43]. We illustrate the training and infer-
ence process of the prior model in Figure 2-left.

For each scene, indexed by i = 1, . . . ,M , we sample a
subset of points P(i)

s on the surface, and another set P(i)
v

uniformly taken from a volume containing the scene, and
minimize the following objective:

argmin
{zi},θ

M∑
i=1

L(i)
Surf + λ0L(i)

Emb + λ1L(i)
Eik, (1)
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where λ0 and λ1 are hyperparameters and L(i)
Surf accounts

for the SDF error at surface points:

L(i)
Surf =

∑
xj∈P(i)

s

|Fzi,θ(xj)| . (2)

L(i)
Emb enforces a zero-mean multivariate-Gaussian dis-

tribution with spherical covariance σ2 over the space of la-
tent vectors:

L(i)
Emb =

1

σ2
||zi||22. (3)

Finally, L(i)
Eik regularizes Fzi,θ with the Eikonal loss to

ensure that it approximates a signed distance function by
keeping its gradients close to unit norm:

L(i)
Eik =

∑
xk∈P(i)

v

(
∥∇xFzi,θ(xk)∥ − 1

)2
. (4)

This regularization across the whole volume is necessary
given that our meshes are not watertight and only a subset
of surface points is available as ground truth [13].

After training, we have obtained the parameters θ0 that
represent a space of human head SDFs. We can now draw
signed distance functions of heads from Fz,θ0 by sampling
the latent space z. We use this pre-trained model as the
prior for the 3D reconstruction schedule described in the
following section.

3.2. Prior-aided 3D Reconstruction

Given a new scene, for which no 3D information is pro-
vided at this point, we aim to approximate the SDF that
implicitly encodes the surface of the head by only super-
vising in the image domain. To that end, we compose the
previously learnt geometry probabilistic model Fz,θ0 with
the rendering network Gϕ, and supervise on the photomet-
ric error to find the optimal parameters z∗, θ∗ and ϕ∗. The
reconstruction process is illustrated in Figure 2-right. Note
that, in contrast to [54], the geometry and rendering mod-
ules are perfectly decoupled.

For every pixel coordinate p of each input image Iv , we
march a ray r = {c0 + tv|t ≥ 0}, where c0 is the position
of the associated camera Cv , and v the viewing direction.
The intersection point xi between the ray r and the surface
Sz,θ = {x|Fz,θ(x) = 0} can be efficiently found using
sphere tracing [15]. This intersection point can be made
differentiable w.r.t z and θ without having to store the gra-
dients corresponding to all the forward passes of the geom-
etry network, as shown in [26] and generalized by [54]. The
following expression is exact in value and first derivatives:

xs = xi −
v

∇xFzk,θk(xi) · v
Fz,θ(xi) . (5)

Here zk and θk denote the parameters of Fz,θ at iteration
k, and xs represents the intersection point made differen-
tiable w.r.t. the geometry network parameters.

Next, we evaluate the mapping Gϕ at xs, n =
∇xFz,θ(xs) and v to estimate the color c for the pixel p
in the image Iv:

c = Gϕ(xs,n,v) . (6)

Finally, in order to optimize the surface parameters z and
θ, and the rendering parameters ϕ, we minimize the follow-
ing loss [54]:

L =

N∑
v=1

L(v)
RGB + β0L(v)

Mask + β1L(v)
Eik, (7)

where β0 and β1 are hyperparameters. We next describe
each component of this loss. Let P be a mini-batch of pixels
from view v, PRGB the subset of pixels whose associated
ray intersects Sz,θ and which have a nonzero mask value,
and PMask = P \ PRGB. The L(v)

RGB is the photometric
error, computed as:

L(v)
RGB =

1

|P|
∑

p∈PRGB

|Iv(p)− cv(p)| . (8)

L(v)
Mask accounts for silhouette errors:

L(v)
Mask =

1

α|P|
∑

p∈PMask

CE(Mv(p), sv,α(p)) , (9)

where sv,α = sigmoid(−αmint≥0 Fz,θ(rt)) is the esti-
mated silhouette, CE is the binary cross-entropy and α is
a hyperparameter. Lastly, LEik encourages Fz,θ to approx-
imate a signed distance function as in Equation 4.

Instead of jointly optimizing all the parameters {z, θ, ϕ}
to minimize L we introduce a two-step optimization sched-
ule which is more appropriate for auto-decoders like
DeepSDF. We begin by initializing the geometry network
Fz,θ with the previously learnt prior for human head SDFs,
Fz,θ0 , and a randomly sampled z0 such that ∥z0∥ < ϵ to
stay near the mean of the latent space. In a first phase, we
only optimize z and ϕ as argminz,ϕ L, which is equivalent
to the standard auto-decoder inference. By doing so, the re-
sulting surface Sz∗,θ is forced to stay within the learnt dis-
tribution of 3D heads. Once the geometry and the radiance
mappings have reached an equilibrium, i.e. the optimiza-
tion has converged, we unfreeze the decoder parameters θ
to fine-tune the whole model as argminz,θ,ϕ L.

In Section 5, we empirically prove that by using this op-
timization schedule instead of optimizing all the parameters
at once, the obtained 3D reconstructions are more accurate
and less prone to artifacts, specially in few-shot setups.

4. Implementation details
Our implementation of the prior model closely follows

the one proposed in [13], with the addition that we apply
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Figure 3. Ablation study of our method in the few-shot setup (3
views). From left to right: (a) Ours with geometric initialization
[2] and no schedule, (b) Ours with small prior initialization (500
subjects) and no schedule, (c) Ours with large prior initialization
(10,000 subjects) and no schedule, (d) Ours with large prior ini-
tialization and schedule and (e) ground truth.

(a) (b) (c) (d)

Face mean distance [mm] 4.04 2.68 1.90 1.49
Full-head mean distance [mm] 16.68 17.08 14.59 12.76

Table 1. Ablation study of our method in the few-shot setup (3
views). The face and full-head mean distances are the averages
over all the subjects in the H3DS dataset. The configurations
a,b,c,d are the same as those described in Figure 3.

a positional encoding γF to the input coordinates x with 6
log-linear spaced frequencies. The encoded 3D coordinates
are concatenated with the z latent vector of size 256 and set
as the input to the decoder. The decoder is a MLP of 8 layers
with 512 neurons in each layer and single skip connection
from the input of the decoder to the output of the 4th layer.
We use Softplus as activation function in every layer except
the last, where no activation is used. The prior model is
trained for 100 epochs using Adam [19] with standard pa-
rameters, learning rate of 10−4 and learning rate step decay
of 0.5 every 15 epochs. The training takes approximately 50
minutes for a small dataset (500 scenes) and 10 hours for a
large one (10,000 scenes).

The 3D reconstruction network is composed by the prior
model described above and a mapping Gϕ that is split into
two sub-networks Qρ and Rη as shown in Figure 2. Qρ

is a MLP implemented exactly as the decoder of the prior

Figure 4. Latent interpolation between different subjects, being
α a linear interpolation factor in z space. (a) uses the small prior
model (500 subjects), and (b) the large prior (10,000 subjects).

model, except for the input layer, which takes in a 3 dimen-
sional vector, and the output layer, which outputs a 256-
dimensional vector l. As in [54], Rη is a smaller MLP com-
posed by 4 layers, each 512 neurons wide, no skip connec-
tions, and ReLU activations except in the output layer which
is tanh. We also apply the positional encodings γQ and γR
to xs with 6 and 4 log-linear spaced frequencies respec-
tively. Each scene is trained for 2000 epochs using Adam
with fixed learning rate of 10−4 and learning rate step de-
cay of 0.5 at epochs 1000 and 1500. The scene reconstruc-
tion process takes approximately 25 minutes for scenes of 3
views and 4 hours and 15 minutes for scenes of 32.

All the experiments for both prior and reconstruction
models have been performed using a single Nvidia RTX
2080Ti.

5. Experiments
In this section, we evaluate quantitatively and qualita-

tively our multi-view 3D reconstruction method. We empir-
ically demonstrate that the proposed solution surpasses the
state of the art in the few-shot [3, 52] and many-shot [54]
scenarios for 3D face and head reconstruction in-the-wild.

5.1. Datasets

Prior training. In order to train the geometry prior, we use
an internal dataset made of 3D head scans from 10,000 in-
dividuals. The dataset is perfectly balanced in gender and
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3DFAW H3DS

3 views 3 views 4 views 8 views 16 views 32 views

face face head face head face head face head face head
MVFNet [52] 1.54 1.66 - - - - - - - - -
DFNRMVS [3] 1.53 1.83 - - - - - - - - -
IDR [54] 3.92 3.52 17.04 2.14 8.04 1.95 8.71 1.43 5.94 1.39 5.86
H3D-Net (Ours) 1.37 1.49 12.76 1.65 7.95 1.38 5.47 1.24 4.80 1.21 4.90

Table 2. 3D reconstruction method comparison. Average surface error in millimeters computed over all the subjects in the 3DFAW and
H3DS datasets. Find the precise definition of the face/head metrics, as well as a description of the distribution of the views, in section 5.2.

diverse in age and ethnicity. The raw data is automatically
processed to remove internal mesh faces and non-human
parts such as background walls. Finally, all the scenes are
aligned by registering a template 3D model with non-rigid
Iterative Closest Point (ICP) [1].

3DFAW [29]. We evaluate our method in the 3DFAW
dataset. This dataset provides videos recorded in front, and
around, the head of a person in static position as well as
mid-resolution 3D ground truth of the facial region. We se-
lect 5 male and 5 female scenes and use them to evaluate
only the facial region.

Figure 5. 3D reconstruction convergence comparison between
H3D-Net and IDR [54] using 32 views. Metrics are computed over
all the samples in the H3DS dataset. The dotted lines indicate the
time when our method first surpasses the best mean error attained
by IDR over the entire optimization. Top. Mean surface error in
the face. Bottom. Mean surface error in the full head.

H3DS. We introduce and release a new dataset called
H3DS, the first dataset containing high resolution full head
3D textured scans and 360º images with associated ground
truth camera poses and ground truth masks. The 3D geome-
try has been captured using a structured light scanner, which
leads to more precise ground truth geometries than the ones
from 3DFAW [29], which were generated using Multi-View
Stereo (MVS). The dataset consists of 10 individuals, 50%
man and 50% woman. We use this dataset to evaluate the
accuracy of the different methods in both the full head and
the facial regions.

5.2. Experiments setup

We use the 3DMM-based methods MVFNet [52] and
DFNRMVS [3], and the model-free method IDR [54] as
baselines to compare against H3D-Net.

In the few-shot scenario (3 views), all the methods are
evaluated on the 3DFAW and H3DS datasets. To bench-
mark our method when more than 3 views are available, we
compare it against IDR on the H3DS dataset.

The evaluation criteria have been the same for all meth-
ods and in all the experiments. The predicted 3D recon-
struction is roughly aligned with the ground truth mesh us-
ing manually annotated landmarks, and then refined with
rigid ICP [4]. Then, we compute the unidirectional Cham-
fer distance from the predicted reconstruction to the ground
truth. All the distances are computed in millimeters.

We report metrics in two different regions, the face and
the full head. For the finer evaluation in the face region,
we cut both the reconstructions and the ground truth using a
sphere of 95 mm radius and with center at the tip of the nose
of the ground truth mesh, and refine the alignment with ICP
as in [29, 49]. Then, we compute the Chamfer distance in
this sub-region. For the full head evaluation, the ICP align-
ment is performed using an annotated region that includes
the face, the ears, and the neck, since it is a region visi-
ble in all view configurations (3, 4, 8, 16 and 32). These
configurations are defined by their yaw angles as follow:
V3 = {0,±45}, V4 = {±45,±90} and VN = { 360

N i}Ni=1

for N = 8, 16, 32. In this case, the Chamfer distance is
computed for all the vertices of the reconstruction.
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Figure 6. Qualitative results obtained for 4 subjects from the 3DFAW dataset [29] with only three input views. First and third rows show
the reconstructed geometry and second and fourth rows show the surface error with the color code being in millimeters.

5.3. Ablation study

We conduct an ablation study on the H3DS dataset in the
few-shot scenario (3 views) and show the numerical results
in Table 1, and the qualitative results in Figure 3. First, we
reconstruct the scenes without prior and without schedule
(a). In this case, the geometry network is initialized using
geometric initialization [2], representing a sphere of radius
one at the beginning of the optimization. Then, we initial-
ize the geometry network with two different priors, a small
one trained on 500 subjects (b), and a large one trained on
10,000 subjects (c), and perform the reconstructions with-
out schedule. As it can be observed, initializing the geome-
try network with a previously learnt prior leads to smoother
and more plausible surfaces, specially when more subjects
have been used to train it. It is important to note that the
benefits of the initialization are not only due to a better ini-
tial shape, but also to the ability of the initial weights to gen-
eralize to unseen shapes, which is greater in the large prior
model. Finally, we initialize the geometry network with the
large prior and use the proposed optimization schedule dur-
ing the reconstruction process. It can be observed how the
resulting 3D heads resemble much more to the ground truth
in terms of finer facial details.

Given the notable effect that the number of samples has
in the learnt prior representations and in the resulting 3D
reconstructions as well, we visualize latent space interpola-

tions in Figure 4. To that end, we optimize the latent vector
for two ground truth 3D scans as shown in Figure 2-left-
bottom in order minimize Equation 1. Then, we interpolate
between the two optimal latent vectors. As it can be ob-
served, the 3D reconstructions resulting from the interpo-
lation in z space of the large prior model are more detailed
and plausible than the ones from the small prior model, sug-
gesting that the later achieves poorer generalization.

5.4. Quantitative results

Quantitative results in terms of surface error are re-
ported in Table 2. Remarkably, H3D-Net outperforms both
3DMM-based methods in the few-shot regime, and the
model-free method IDR when the largest number of views
(32) are available. It is worth noting how the enhance-
ment due to the prior is more significant as the number of
views decreases. Nevertheless, the prior does not prevent
the model from becoming more accurate when more views
are available, which is a current limitation of model-based
approaches.

We also analyze the trade-off between the optimization
time and the accuracy in IDR and H3D-Net for the case of
32 views, which we illustrate in Figure 5. It can be observed
that, despite reaching similar errors asymptotically, in aver-
age our method achieves the best performance attained by
IDR much faster. In particular, we report convergence gains
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Figure 7. Qualitative results obtained for 2 subjects from the H3DS dataset when varying the number of views. The first and second rows
correspond with the results of IDR and the third and the forth with H3D-Net results (ours). The surface error is represented with the color
code in millimeters.

of 20× for the facial region error and 4× for the full head.
Moreover, the smaller variance observed in H3D-Net (blue)
indicates that it is a more stable method.

5.5. Qualitative results

Quantitative results show improvements over the base-
lines in both few-shot and many-shot setups. Here, we study
how this is translated into the reconstructed 3D shape.

In Figure 6, we qualitatively evaluate the three baselines
and H3D-Net for the case of 3 input views. As expected,
IDR [54] is the worst performing model in this scenario,
generating reconstructions with artifacts and with no re-
semblance to human faces. On the other hand, 3DMM-
based models [3, 52] achieve more plausible shapes, but
they struggle to capture fine anatomical details, specially in
difficult areas such as the nose, eyebrows, cheeks and chin.
H3D-Net, in contrast, is able to capture much more detail
and reduce significantly the errors over the whole face.

We also evaluate the impact that varying the number of
available views has on the reconstructed surface, and com-
pare our method to IDR [54]. As shown in Figure 7, H3D-
Net is able to obtain surfaces with less error (greener) with
far fewer views, which is consistent with the quantitative
results reported in Table 2. Notably, it can also be observed
that, even when errors are numerically similar (first and
third columns), the reconstructions from H3D-Net are much
more realistic. In addition, H3D-Net improvements are es-
pecially notable within the face region. We attribute this
to the fact that training data used to build the prior model is

more rich in this area, whereas training examples frequently
present holes in other parts of the head.

6. Conclusions
In this work we have presented H3D-Net, a method for

high-fidelity 3D head reconstruction from small sets of in-
the-wild images with associated head masks and camera
poses. Our method combines a pre-trained probabilistic
model, which represents a distribution of head SDFs, with
an implicit differentiable renderer that allows direct super-
vision in the image domain. By constraining the reconstruc-
tion process with the prior model, we are able to robustly
recover detailed 3D human heads, including hair and shoul-
ders, from only three input images. After a thorough quanti-
tative and qualitative evaluation, our experiments show that
our method outperforms both model-based methods in the
few-shot setup and model-free methods when a large num-
ber of views are available. One limitation of our method is
that it still requires several minutes to generate 3D recon-
structions. An interesting direction for future work is to use
more efficient representations for SDFs and color priors in
order to speed up the optimization process.
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