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Abstract

Most successful self-supervised learning methods are
trained to align the representations of two independent views
from the data. State-of-the-art methods in video are inspired
by image techniques, where these two views are similarly
extracted by cropping and augmenting the resulting crop.
However, these methods miss a crucial element in the video
domain: time. We introduce BraVe, a self-supervised learn-
ing framework for video. In BraVe, one of the views has
access to a narrow temporal window of the video while the
other view has a broad access to the video content. Our
models learn to generalise from the narrow view to the gen-
eral content of the video. Furthermore, BraVe processes the
views with different backbones, enabling the use of alterna-
tive augmentations or modalities into the broad view such as
optical flow, randomly convolved RGB frames, audio or their
combinations. We demonstrate that BraVe achieves state-
of-the-art results in self-supervised representation learning
on standard video and audio classification benchmarks in-
cluding UCF101, HMDB51, Kinetics, ESC-50 and AudioSet.

1. Introduction

Over the past few years, self-supervised methods have rev-
olutionized the field of representation learning [17, 36, 68].
These methods directly learn from data without the need
for manually defined labels that are hard to get at scale.
Doing so, one can successfully leverage large amounts of
uncurated data to improve representations. Even more im-
portantly, self-supervised learning enables richer training
tasks to be defined, compared to the standard approach of
trying to categorize diverse visual inputs into a fixed set of
categories. This has led to self-supervised representations
outperforming supervised ones on downstream tasks [33].
Video is a natural domain for self-supervised learning since
data is rich and abundant but hard to annotate at scale due to
the additional temporal complexity. However, most methods
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Figure 1. Given a narrow view corresponding to a video clip of a
few seconds, BraVe is tasked with predicting a broad view that
spans a longer temporal context of the video in different modalities
(here visual and audio). Solving that task requires the representation
to extrapolate what happened before, during and after the narrow
view, and results in state-of-the-art video representations.

in the video domain take direct inspiration from methods
developed for images without fully taking advantage of its
distinctly different dimension: time.

In particular, one common aspect of self-supervised meth-
ods for images is to extract two views from a given instance
using the same general augmentation procedure, feed them
into a shared backbone, and extract a supervisory signal
from the fact that these two views originate from the same
source. This is true for most recent approaches irrespec-
tive of their underlying learning principle: contrastive ap-
proaches [17], clustering-based method [13], or regression
algorithms [68]. The same principle has been followed in
the video domain [4, 67]. Specifically, most video meth-
ods extract the different views from a source video clip in a
symmetric fashion with respect to time: all extracted views
have the same temporal extent in the video [4, 23, 45, 67].
However, doing so does not benefit from learning from in-
formation contained at different time scales.

In this paper, we introduce an algorithm dubbed
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“Broaden your Views” (BraVe), that breaks this symme-
try in order to improve representation learning from videos.
In detail, given a narrow view corresponding to a video clip
of a few seconds, BraVe learns a representation by predict-
ing a broad view that spans the longer temporal context of the
full video clip as illustrated in Figure 1. Solving such a task
requires extrapolating to the general context in which a given
event occurs. In the example of Figure 1, one has to predict
what happened before the person is in the sky (they probably
jumped with the help of some device, given the height), as
well as what is going to happen next (they will probably fall
down somewhere soft) in order to solve the task. This task
arguably requires a good understanding of the structure of
events and is therefore a promising task for learning repre-
sentations. While related local-to-global proxy tasks have
been studied in the image domain via network architectural
designs [9, 37] or multi-size cropping [17], applying these
techniques to videos is not straightforward, because of the
increased computational complexity incurred by the time
dimension and the artifacts introduced when doing similar
resize operations in spatio-temporal volumes. To address
this challenge, we propose to process broad views with a
dedicated model. We demonstrate that under a fixed com-
putational budget, learning from the supervision provided
by our broad views performs better than alternatives relying
on symmetric augmentation procedures. Our algorithm is
simple and does not require a cumbersome creation of ex-
plicit negatives as in contrastive methods. Instead we use
a direct regression-based approach inspired by BYOL [29],
where the views are processed by dedicated backbones and
regress each other. Breaking the symmetry enables the use
of stronger augmentations and different modalities for the
broad view, which improves the quality of the final represen-
tations.

Contributions. We make the following contributions:
(i) We propose a novel framework for representation learning,
called BraVe, which generates views at different time scales
and learns representations via simple regression across views,
(ii) We explore using different augmentations and modalities
in the broad view such as audio, flow or randomly convolved
RGB frames. (iii) We evaluate this framework in the video
domain, both with and without audio as an auxiliary supervi-
sory signal, where we obtain state-of-the-art results on video
and audio classification benchmarks UCF101, HMDB51,
Kinetics, ESC-50 and AudioSet.

2. Related work
Image-based self-supervised learning. Most successful
self-supervised methods learn a representation by defining
a pretext task, whose resolution typically entails learning
useful representations [13, 14, 19, 20, 28, 58, 61, 89]. In
particular, contrastive methods have provided spectacular

performance [10, 17, 21, 33, 36, 39, 47, 55, 78, 79]. Con-
trastive methods learn by pulling representations of differ-
ent transformations of the same image (positive instances)
closer, and pushing representations of different images (neg-
atives) apart [10, 59]. The main drawbacks of contrastive ap-
proaches are that they require a careful choice of positive and
negative pairs [79] and that they often rely on large number
of such negatives, inducing a high computational cost [17].
Alternatives to the contrastive approach, such as clustering
and regression, avoid the need and cost of multiple negatives.
Clustering-based methods [5, 8, 11, 13, 14, 38, 77, 84] alter-
nate between learning representations using clusters as tar-
gets, and clustering using the current representations (either
online or offline). Most related to our work are regression-
based methods that instead try to directly regress a represen-
tation extracted from a different view of the image [27, 68].
BraVe is directly inspired from [29] but the views come
from different modalities and augmentations, are processed
by dedicated backbones and regress each other.

Video-based self-supervised learning. In the video do-
main, the pretext tasks for self-supervision have included
predicting the future in pixel space by minimising an MSE
loss [62, 74, 81] or adversarial losses [52, 80]. However, the
predictions of these models are usually blurred and cannot
go beyond predicting short clips into the future. To avoid
these difficulties, other works focus on learning representa-
tions in a more abstract space, by using pretext tasks that
predict the temporal order of video frames [56] or the arrow
of time [83]. In this direction also, video contrastive methods
have been very successful [18, 31, 32, 67]. In addition to
data augmentations used for images, these works use tempo-
ral cues to build positive pairs. Yet the costs of training such
systems are significant and complex hard-negative mining
strategies are needed to improve the training efficiency [22].
Concurrent to our work, [23] introduces ρBYOL which con-
sists in directly applying BYOL, an image self-supervised
technique, to video. Although ρBYOL circumvents the use
of negatives, it still requires an EMA (Exponential Mov-
ing Average) network to generate the targets, increasing the
computational complexity. Our method avoids this computa-
tional overhead while obtaining state-of-the-art performance
on popular video benchmarks. Furthermore, our approach
may leverage predictive tasks, such as predicting other crops
in the video or optical flow, reminiscent of earlier predictive
work [74, 82]; but predicting in a learned feature space by
building on a more recent self-supervised approach [29].

Audio-video self-supervised learning. Video and audio
have been used as a rich source of self-supervision [5, 6, 7,
45, 57, 60, 63, 70]. A simple but effective approach to train
representations consists in classifying whether a video clip
and an audio sample correspond to each other [6, 7, 45, 60,
70]. Some works propose to use language obtained from
speech recognition as an additional supervisory signal [3,
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Figure 2. BraVe. Given a narrow view xn spanning a few seconds at high resolution and broad views x1b and x2b covering a larger temporal
extent in the video for different modalities, we train independent networks running on the narrow and the broad views to mutually regress
each other. This is done by defining two regression losses: Ln→b to predict a broad view from the narrow view, and Lb→n enforcing the
other way around. To avoid collapse of the learned representations, we introduce three stages of processing as previously done in BYOL [29]:
backbone networks (fn for the narrow view and f1

b , f
2
b for the broad views), projector networks (gn and g1b , g

2
b ) and predictor networks (hn

and h1
b , h

2
b). For the broad views, we consider both visual modalities (RGB frames or optical flow) and audio modality.

4, 51, 53, 54, 69, 71, 76]. Related to ours, recent work
finds that distilling flow and audio into a RGB encoder leads
to strong representations [66], using an evolutionary search
algorithm on the loss function. In contrast with this approach,
our framework does not require to define modality-specific
losses, is simpler to train (no need to balance the losses), and
obtains better performance across the board.

3. Broaden Your Views for Self-Supervised
Video Learning

In this section, we detail our approach dubbed BraVe for
learning self-supervised state-of-the-art representations from
a large set of videos, as measured by performance when
transferring to downstream tasks. BraVe, illustrated in
Figure 2, learns by direct regression from a high resolution
narrow view that only spans a short clip to a lower resolution
broader view which covers a larger temporal context of the
video. Multiple options can be considered for the broad
view: it can either come from the same modality as the
narrow view (RGB in our case) or a different one such as
flow or audio. Multiple views can also be combined to
further improve performance. Next, we formally describe
the learning framework in Section 3.1 and provide intuition
why this may be a good self-supervised objective. Then, in
Section 3.2, we describe the components and views we use
in practice in two standard settings: learning from (i) visual
signals alone, and from (ii) visual and audio modalities.

3.1. The BraVe learning framework

General overview. Given a video x that can be composed
of multiple modalities, we randomly extract two complemen-
tary views: a narrow view xn that spans a short timeframe
in the video (around 1-3 seconds) and a broad view xb that
covers a larger extent of the video (around 5-10 seconds).
Details on how these views are obtained are given in Sec-
tion 3.2. By introducing this temporal asymmetry in the
creation of the views, the proposed task consists in extrapo-
lating the full context of the video (the broad view) from only
a small portion of the video (the narrow view) as illustrated
in Figure 1. We hypothesize that to solve this task, good
representations must be learned, which can then be useful
for semantic downstream tasks. More formally, we train
networks to minimize the training loss L defined for a given
video x as follows:

L(x) = Ln→b(x)︸ ︷︷ ︸
Narrow→Broad

+ Lb→n(x)︸ ︷︷ ︸
Broad→Narrow

. (1)

This loss is composed of two terms: (i) a prediction loss
from the narrow to the broad view, and (ii) a complementary
loss to regress the narrow view from the broad view.
BraVe: losses and architectures. For simplicity and com-
putational purposes, we opt for simple regression losses for
Ln→b and Lb→n. This is indeed simpler than standard con-
trastive losses that require large batches and therefore high
compute to work well [17]. One challenge however, is the
risk of collapse, since a trivial solution could be to always
predict a constant which would lead to perfect regression
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losses across views. To avoid this, we draw inspiration from
recent work [29, 30] in the way we design our networks and
losses, as detailed next.

As illustrated in Figure 2, we first define a backbone
network fn whose role is to extract a representation from the
narrow view xn. Similarly, we define a backbone network
fb acting on the broad view xb. Note that in our framework,
the parameters and even the underlying architectures of fn
and fb can differ since they act on views of a different nature.
These representations are then respectively transformed by
projectors gn and gb, projecting fn(xn) and fb(xb) to yield
the narrow embedding zn = gn(fn(xn)) and the broad one
zb = gb(fb(xb)). Inspired by [29], we then define a third
stage of processing called the narrow view predictor hn that
takes the projected embedding from the narrow view zn
and produces a prediction hn(zn) that is used to regress the
broad view zb using the following loss:

Ln→b(x) =

∥∥∥∥ hn(zn)

‖hn(zn)‖2
− sg

[
zb
‖zb‖2

]∥∥∥∥2
2

, (2)

where sg[·] denotes the “stop gradient” operator, which op-
erates on its input as the identity, but has zero partial deriva-
tives. Since the loss Ln→b only depends on the networks
associated with the narrow view, we also define a loss to
provide training signal for the broad view network. To that
end, we introduce a broad view predictor hb that takes the
projected embedding from the broad view zb and produces
a prediction hb(zb) that is used to regress the narrow view
embedding zn using the following loss:

Lb→n(x) =

∥∥∥∥ hb(zb)

‖hb(zb)‖2
− sg

[
zn
‖zn‖2

]∥∥∥∥2
2

. (3)

The role of these predictors is crucial to avoid collapse as
found in [29], which we confirm experimentally. The same
is true for the stop gradient operator. Differently from [29],
we do not use exponential moving averages (EMA) on the
weights of the network that process the view being regressed.
Unlike [23, 29], who required the moving average for im-
proved performance, we find that this is not necessary in our
case.
Intuitions about what needs to be learned by BraVe.
While the proposed approach avoids plain collapse of the
representations, it is also important to question what needs
to be learned in order for the loss (1) to be optimized. In
particular, we want the narrow backbone to learn to predict
the full context represented by the broad view. However, one
challenge is to prevent the broad backbone from instead sim-
ply learning to throw the broad information away and only
keeping the signal contained in the narrow view. To avoid
this, we sample the narrow and broad views independently
in time when they come from the same visual modality so
that it is difficult for the broad backbone to predict what the

narrow view is going to be. By doing so, we argue that the
best solution to solve the task is for the narrow backbone to
extrapolate what is happening in the broad view. We empiri-
cally verify the importance of this independent sampling in
our experiments in section 4.
Dealing with multiple views from one modality. BraVe
can be extended to handle K broad views (with K > 1)
coming from the same modality. To do so, we keep a single
backbone fb, projector gb and predictor hb for all broad
views. For each broad view xkb , we individually compute
the projection zkb = fb(x

k
b ) and the projection hb(zkb ). The

target for the narrow backbone used in Ln→b (2) is obtained
by averaging these broad views projections: zb = 1

K

∑
zkb .

To compute the Lb→n loss, we average the individual losses
Lk
b→n of the different predictions hb(zkb ):

Lk
b→n(x) =

∥∥∥∥ hb(z
k
b )

‖hb(zkb )‖2
− sg

[
zn
‖zn‖2

]∥∥∥∥2
2

. (4)

Dealing with multiple views from different modalities.
BraVe can also be extended to handle K broad views (with
K > 1) coming from different modalities. To do so and as
illustrated in Figure 2, we keep a single narrow backbone
network fn but introduce specific narrow projectors and
predictors for each broad views: {(g1n,h1n), · · · , (gKn , hKn )}.
Each additional broad view xkb has its own set of backbone,
projector and predictor : fkb , g

k
b and hkb , respectively. Given

this, all regression losses are simply aggregated over all pairs
composed by the narrow view xn and the different broad
views {xkb}k:

L(x) =
K∑

k=1

Lk
n→b(x) + Lk

b→n(x). (5)

When using different modalities, the risk for the broad net-
work to only focus on the narrow view is reduced due to the
modality gap between the two views. Furthermore, when
using audio, syncing helps slightly as previously observed in
visual-audio work [45]. We analyse further the audio-visual
syncing strategies in the extended paper [1].
Final loss. Given a large set of videos {xi}Ni=1, we train our
model to minimize:

min
fn,gn,hn
fb,gb,hb

N∑
i=1

L(xi). (6)

Next, we provide more details on the specific components
that are used when BraVe is applied in the unimodal setting
and the multimodal setting; as well as how the narrow and
broad views are constructed in each case.

3.2. Broad views from visual and audio modalities

In our framework, we regress the representation of a broad
backbone which sees a larger context of the video. The broad
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view is meant to provide information about the full video clip
including more temporal context, in order to supervise the
narrow backbone fn. As the different views are processed
by different backbones, we can apply a different set of pre-
processing and augmentation functions to any of the views.
In this section, we first describe the set of transformations
that we use when training with visual inputs alone, and then
when training with both visual and audio inputs.
Visual modalities. When sampling the broad view from the
visual modalities, we aim to cover a large temporal context,
the full clip. Accessing more temporal context typically
means increasing the number of frames, and thus introducing
extra computational complexity. To avoid this overhead, we
decrease the spatial resolution of the broad view in order
to keep the number of pixels constant. In Section 4 we
show the effectiveness of trading temporal context for spatial
resolution in the broad view. By keeping the computational
cost fixed, we ensure that our method is computationally
competitive with alternative self-supervised approaches.

Additionally to the temporal sampling, the set of transfor-
mations we consider for use on the narrow and broad views
are motivated from two complementary perspectives. First,
we can design the transformations Tb used for the broad
view to extract specific features from the input modality,
sought to enrich the learned representations fn(xn) with a
certain type of information. Second, similarly to the use
of augmentations in a wide number of machine learning
approaches, and in particular in contrastive and regression-
based self-supervised learning approaches, we also employ
such stochastic transformations to enforce invariance or
equivariance constraints on the learned representations. In
contrast to the use of augmentations in these self-supervised
frameworks however, we emphasize that we do not impose
that the set of transformations Tn used on the narrow view be
the same as the set of transformations Tb used on the broad
views. To explore this, we employ a recently introduced aug-
mentation procedure relying on random convolutions [86],
by which we augment only the broad view. Details about the
random convolutions can be found in the extended paper [1].

Alternatively, we can use optical flow as substitute of
RGB in the broad view, which is reminiscent of [75], where
the flow network is used to teach the RGB network. Optical
flow from sequential images can provide supervision to em-
phasize motion in the learned representations extracted from
the source, which has shown to be important for predicting
actions [32, 72, 82]. Optical flow can be extracted using
an off-the-shelf unsupervised flow extraction algorithm. As
flow is computed once for the full dataset, its computational
overhead is negligible compared to training time.
Audio modalities. Our framework can leverage audio as
supervisory signal in the broad view. We can either use a
single audio broad view or combine a visual broad view and
an audio broad view for stronger self-supervision. Audio is a

strong supervisory signal, and has been extensively used for
self-supervision in videos as it strongly correlates with the
visual content, while being easier to process computationally.
As pre-processing, we extract spectrograms from consec-
utive short-time windows on the waveform using Fourier
transforms. This approach has been shown to be very effec-
tive in obtaining state-of-the-art performance on supervised
[24, 44] and unsupervised [4, 40, 41] approaches. For this
reason, we encode the audio using a log-mel spectrogram
representation as xb ∈ RTs×D where Ts is the number of
spectrogram frames and D denotes the number of features.
Similar to the unimodal setting, we experiment with enlarg-
ing the temporal window for the extraction of the audio view,
compared with the temporal window of the narrow video
view, seeking to increase the amount of context information
present in the supervisory signal. Finally, as explained in the
previous section, we make sure that the visual narrow view
and the audio broad view are in sync at their starting point.

4. Experiments
In this section, we evaluate BraVe and compare its perfor-
mance against relevant state-of-the-art methods trained on
similar data and modalities.

4.1. Experimental setting

Video-only experiments. In the video-only setting, unless
stated otherwise we conduct our experiments on the Kinetics-
600 dataset [15]. The dataset has 600 action classes and
contains 447k videos at the time of submission, 362k in the
train set. We also train on the Kinetics-400 [42] dataset for
comparison with the state-of-the-art.
Audio-video experiments. In the crossmodal training set-
ting, we use the AudioSet [25] as pre-training dataset. The
dataset has 527 action classes and contains 1.9M videos in
the training set at the time of submission.
Architectures. For spatiotemporal volumes such as the se-
quences of RGB or flow frames, unless specified otherwise,
we use the TSM-ResNet50 (TSM-50) [49] architecture for
the narrow backbone. For the broad visual backbone we
always use a TSM-50 backbone. Video inputs are sampled
at 12.5 frames per second (FPS), except when using the R3D
architecture which we train sampling videos at 6.25 FPS.
Unless stated otherwise, we train the narrow backbone on
inputs of 16 frames (1.3 seconds) at resolution 224 × 224,
and the broad backbone on inputs of 64 frames at 6.25 FPS
(10s) at resolution 112× 112. To see how our method scales
to different and bigger architectures, we also experiment
with different backbones for the narrow network with the
R3D architecture (as described in [23]) and TSM with twice
the number of channels in each layer (TSM-50x2). We use
these networks only for the narrow view and always use
TSM-50 in the broad view. For the broad backbone pro-
cessing log-mel spectrograms, we use ResNet-50 [35]. All
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models are trained using a two-layer MLP for the projector
and predictor heads with a hidden layer of dimension 4096.
We use batch normalization after each hidden layer. In the
projector heads, we use batch normalisation after the last
layer. We use 128 as the output dimension of projectors and
predictors.
Feature extraction. For flow extraction, we use the TV-
L1 [88] algorithm. We use 80 bins for extracting log-mel
spectrograms.
Augmentations. We sample and augment all the visual
views independently. For any narrow view, we uniformly
sample a temporal offset between 0 and T − τn, where T is
the duration of the video clip and τn denotes the length of
the narrow view. We extract the view starting at this offset.
For the broad view, we randomly sample the offset between
0 and T . We pad any broad view of insufficient length with a
clip extracted from the start of the video sample (i.e. looping
over the sequence). For all visual modalities (including the
flow), we use random cropping and horizontal flipping. For
the RGB views, we additionally employ Gaussian blurring
as well as scale and color jittering. We also explore the
use of random convolutions as an augmentation procedure.
Following [48], we use He initialization [34] for the weights
and fixed zero bias, sampling the size of the kernel uniformly
across odd values ranging from 1 to 11. For audio, we use
the same starting point as the narrow view, but extend it for a
longer time window. If necessary, similarly to the RGB case,
we pad the broad audio view with audio extracted from the
start of the audio clip. See extended paper [1] for details.
Self-supervised training details. We discard labels at train-
ing time, and only use them for downstream evaluation. We
employ a batch size of 512 and train for 300k steps, set-
ting the initial learning rate to 4.8 for models without audio
and 1.0 for models with audio. We train all models using
LARS [87]. We use 5000 warm up steps and cosine learn-
ing rate schedule [50]. Following BYOL [29], we multiply
the learning rate for all predictors (hn and hb) by 10. For
batch norm layers, we use a decay rate of 0.9 and epsilon of
1e-5. We use weight-decay of 0.01. As in [23], we do not
apply LARS and weight decay to the biases and batch norm
parameters. More details are given in the extended paper [1].

4.2. Downstream tasks

We use two standard settings to evaluate the quality of the
learned visual representations from the narrow backbone fn:
in the linear setting, we train a linear layer over frozen fea-
tures extracted by fn; in the fine-tuning setting, we train fn
and the classifier head end-to-end. Unless stated otherwise,
we use 32 frames for video evaluation, to be comparable
to previous work. We evaluate video representations using
the HMDB51 dataset [46], the UCF101 dataset [73] and the
Kinetics-600 [16] validation set. The HMBD51 dataset con-

Table 1. Importance of the broad view. We evaluate the impact
of the temporal extent of the narrow (τn) and broad (τb) views.
Mb is the modality used in the broad view. RC stands for random
convolutions. K600 stands for Kinetics-600 and AS for AudioSet.

Dataset Mb τn τb HMDB51 UCF101 K600

K600 RGB+RC 10s 10s 58.7 80.0 47.4
K600 RGB+RC 1.3s 1.3s 59.4 88.1 66.3
K600 RGB+RC 1.3s 5s 61.4 88.9 65.1
K600 RGB+RC 1.3s 10s 65.1 90.0 67.4

AS Audio 1.3s 1.3s 68.3 92.2 69.0
AS Audio 1.3s 5s 67.5 92.4 69.9
AS Audio 1.3s 10s 67.3 92.6 70.3

tains 5K videos, corresponding to 51 classes. The UCF101
dataset contains 13K videos, corresponding to 101 classes.
The Kinetics-600 validation set contains 28k videos. We
also evaluate the learned audio representations from the cor-
responding broad backbone, fb, on both the test set of the
AudioSet dataset (20K samples, 527 classes) as well as the
smaller ESC-50 dataset [65] (2K samples, 50 classes). Fol-
lowing standard procedure, we report top-1 accuracy for all
datasets except for Audioset where we report the mean aver-
age precision [40]. For the datasets that have official splits
(3 for UCF101/HMDB51 and 5 for ESC-50), we follow the
standard procedure where split#1 serves as the validation set
and the average accuracy over all splits is then reported.
Linear setting. For HMDB51, UCF101 and ESC-50, we
extract representations from 10 epochs worth of augmented
samples using the learned narrow backbone, and we train a
linear SVM using scikit-learn [64] on these frozen features.
For Kinetics-600 and AudioSet which are larger, we instead
train the linear classifier using the LARS [87] optimiser for
K600 and the Adam optimizer [43] for AS. In all cases,
we use the same augmentations as during unsupervised pre-
training except for gaussian blur. Full details are provided
in the extended paper [1]. At test time, we average the
prediction over 30 clips (10 temporal clips each with 3 spatial
crops) as done in [67]. For AudioSet, we follow [40] and
use a fully-connected classifier, with one hidden layer of 512
units, in place of the linear classifier.
Fine-tuning setting. In this setting, we add a single, ran-
domly initialized, linear layer at the output of the narrow
backbone. We initialize the narrow backbone’s weights with
those learned using BraVe, and we fine-tune this architec-
ture end-to-end. Following previous work, we perform this
evaluation on the HMDB51 and UCF101 datasets. We use a
similar test time procedure as for the linear setting. Details
are given in the extended paper [1].

4.3. Ablation study

In this section, we study the effect of the different compo-
nents of BraVe on the performance of the narrow backbone
fn. Specifically, we study four main elements: (i) the effect
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Table 2. Visual transformation for the broad view. We compare
various augmentations for the visual input of the broad view, when
pre-training on Kinetics-600. We use τn = 1.3s (narrow extent)
and τb = 10s (broad extent). RC stands for random convolutions.

Mb HMDB51 UCF101 K600

RGB 61.3 89.9 67.7
RGB+RC 65.1 90.0 67.4

Flow 65.6 91.1 65.8

Table 3. Number of broad views. Effect of adding multiple broad
views of the same modality (RGB+RC).

Dataset Number of views HMDB51 UCF101 K600

K600 1 65.1 90.0 67.4
K600 2 65.6 91.7 69.1
K600 3 65.2 91.5 69.5

of the temporal extents of the narrow and broad views, (ii)
the improvements brought by different choices of transforma-
tions for the visual modality, (iii) the improvements resulting
from using multiple broad views of the same modality and
(iv) the effect of temporally syncing the narrow view and
the broad view. By default, we conduct this analysis using
the HMDB51, UCF101 and K600 benchmarks in the linear
setting. Further discussion on sharing weights across back-
bones, evaluating the broad backbone or using BraVe to
train image models can be found in the extended paper [1].
Importance of the broad view. We study the effect of the
temporal extent of the narrow and broad views in the RGB-
only setting (using random convolutions RGB+RC for the
broad view) and the multimodal setting (using audio spec-
trogram for the broad view). We report results in Table 1.
First, in the unimodal setting, we find that for a narrow view
extent τn of 1.3s, performance improves significantly across
the two downstream tasks as we increase the duration of
the broad view τb from 1.3s to 10s, (e.g. from 59.4 to 65.1
on HMDB51). This empirically supports our intuition that
broader views can provide better supervision. Second, we
find that using temporally large views of 10s for both the
narrow view and the broad view degrades performance, as
the task becomes significantly easier and we are unlikely
to get rich embeddings. In the multimodal setting, we find
that increasing the context from 1.3s to 5s brings an im-
provement to UCF101 and specially K600, although it is
smaller than in the visual setting. As the performance when
extending the broad view to 10s is comparable with using
5s, we use the less expensive 5s for the audio broad view.
Visual transformation for the broad view. In Table 2, we
investigate the effect of using different visual inputs in the
broad view. First, we see that using Random Convolutions
(RC) [86] on the RGB frames significantly improves perfor-
mance, compared to using standard RGB frames. BraVe

Table 4. Sync views. Effect of syncing the narrow and broad views.

Dataset Sync Mb HMDB51 UCF101 K600

K600 7 RGB+RC 65.1 90.0 67.4
K600 3 RGB+RC 64.2 86.2 59.9

enables the use of such an aggressive augmentation since
it has a dedicated backbone for that view. Moreover, only
using this augmentation on the broad view ensures that the
backbone trained on the narrow view does not suffer from
shift in distribution of intensities [86]. Furthermore, using
optical flow for the broad view leads to further improve-
ment in HMDB51 and UCF101 when compared to using
RC augmentation. This demonstrates a surprisingly high
effectiveness of leveraging hand-designed features, probably
because this allows important factors – here motion and seg-
mentation information – to be included in the representation.

Number of broad views. In Table 3, we study the impact
of having more than one broad view of the same modality.
Adding additional broad views results in improved perfor-
mance on UCF-101 and Kinetics. We believe that using
multiple views serves as augmentation for BraVe, which
regresses to the average of multiple projection and this is
likely to be more representative of the full video.
Syncing views. In Table 4, we study the effect of having the
same temporal starting point for the narrow and the broad
view. As expected, when using a broad visual modality,
syncing significantly decreases performance. We hypothe-
sise that when both views are in sync, the broad network can
simply focus its prediction only on the narrow view since the
relative position of the views is deterministic hence making
the self-supervised task easier as explained in Section 3.1.

4.4. Comparison with the state-of-the-art

We compare BraVe against the state-of-the-art for self-
supervised video representation learning in Table 5. Note
that when evaluating in visual tasks, we only use the RGB
modality to be comparable to previous work.
Visual only on Kinetics. In the setting where we use only
the video modality combined with three broad views using
random convolutions, we find that BraVe outperforms the
CVRL approach [67] on UCF101 and HMDB both linear
and fine-tuning under similar conditions (R3D and K600).
Furthermore, when integrating the flow modality in the broad
view and using similar backbone (R3D) and dataset (K400),
BraVe perfoms not far (< 1%) from ρ-BYOL [23]. Note
that differently from [23], our method does not require an
EMA network, which introduces additional computational
requirements. Finally, we observe that using the flow modal-
ity increases the performance for all the architectures.
Multimodal on AudioSet. We also compare our approach
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Table 5. Comparison of learnt representations against the state-of-the-art. We report the performance in the linear and fine-tuning (FT)
settings, on three vision benchmarks: UCF101, HMDB51, Kinetics-600 (K600); as well as on two audio benchmarks: ESC-50 and AudioSet
(AS). K400 is Kinetics-400, YT8M is Youtube-8M [2], IG65M is Instagram-65M [26]. We specify dataset sizes in years. We denote the
modalities M used for training by: V for RGB, F for flow and A for audio. All models use only RGB for the visual downstream tasks.

UCF101 HMDB51 K600 ESC-50 AS

Method Backbone (#params) Dataset Years M Linear FT Linear FT Linear Linear MLP

CoCLR [32] S3D (9.1M) K400 0.07 VF 74.5 87.9 46.1 54.6 / /
CVRL [67] R3D50 (31.8M) K600 0.1 V 90.6 93.4 59.7 68.0 70.4 / /
ρBYOL [23] R3D50 (31.8M) K400 0.07 V 95.5 73.6 / /
ρBYOL [23] S3D (9.1M) K400 0.07 V 96.3 75.0 / /

BraVe:V↔V×3 (ours) R3D50 (31.8M) K400 0.07 V 90.6 93.7 65.1 72.0 66.5 / /
BraVe:V↔F×3 (ours) R3D50 (31.8M) K400 0.07 VF 92.0 94.7 67.5 72.7 66.7 / /
BraVe:V↔V×3 (ours) TSM-50 (23.5M) K600 0.1 V 91.6 94.1 65.2 73.1 69.5 / /
BraVe:V↔F×3 (ours) TSM-50 (23.5M) K600 0.1 VF 91.9 94.7 65.7 74.0 67.1 / /
BraVe:V↔V×3 (ours) R3D50 (31.8M) K600 0.1 V 91.9 94.4 67.6 73.9 69.1 / /
BraVe:V↔F×3 (ours) R3D50 (31.8M) K600 0.1 VF 92.7 95.1 68.9 74.3 68.1 / /

ELo [66] R(2+1)D-50 (46.9M) YT8M 13 VFA 93.8 64.5 67.4
AVID [57] R(2+1)D-50 (46.9M) AS 1 VA 91.5 64.7 89.2
GDT [63] R(2+1)D-18 (33.3M) AS 1 VA 92.5 66.1 88.5
MMV [4] R(2+1)D-18 (33.3M) AS 1 VA 83.9 91.5 60.0 70.1 55.5 85.6 29.7
XDC [5] R(2+1)D-18 (33.3M) AS 1 VA 93.0 63.7 84.8
XDC [5] R(2+1)D-18 (33.3M) IG65M 21 VA 95.5 68.9 85.4

BraVe:V↔A (ours) TSM-50 (23.5M) AS 1 VA 93.4 95.6 69.1 75.3 71.1 92.1 36.4
BraVe:V↔FA (ours) TSM-50 (23.5M) AS 1 VFA 93.2 95.8 70.2 76.9 70.3 92.6 36.3
BraVe:V↔FA (ours) TSM-50x2 (93.9M) AS 1 VFA 92.8 96.5 70.6 79.3 70.5 92.9 36.4

Supervised [12, 44, 66, 85] 96.8 71.5 75.9 82.4 94.7 43.9

in the multimodal (visual and audio modalities) setting by
training BraVe on AudioSet. In that setting, we train for
620k steps instead of 300k, as AudioSet is significantly
larger than Kinetics-600. We increase the number of in-
put frames of the narrow network from 16 to 32 frames (at
12.5FPS). We use τb = 5s for the audio broad view. We
make four important observations. (i) Under this setting,
BraVe outperforms all state-of-the-art methods when using
the same pretraining data and similar backbone. In particular,
when using TSM we outperform the current state-of-the-art
XDC [5] and MMV [4] which uses a network with more pa-
rameters. (ii) Interestingly, we observe that using two broad
views coming from two different modalities, audio and flow,
benefits performance on HMDB51 (+1.6%) but performs
similarly in UCF101 (+0.2%). (iii) BraVe benefits from us-
ing larger visual backbones. When using the larger backbone
TSM-50x2 (93.9M parameters), BraVe establishes a new
state-of-the-art on HMDB51 finetuning with 79.3 and UCF
finetuning with 96.5. In HMDB51, it outperforms the best
supervised results published to date (75.9 from [85]). (iv)
When evaluating the performance of the broad audio network

we also significantly outperform previous state-of-the-art on
two challenging benchmarks, ESC-50 and Audioset. No-
tably, we significantly improve the performance in AudioSet,
the hardest of the audio tasks.

5. Conclusion
In this paper, we introduced BraVe, a self-supervised

learning framework for video. Our method efficiently learns
its representation by supervising a temporally narrow view
with a general broad view, which can be either computed
from RGB, flow or audio. Our model achieves state-of-the-
art performance when trained on datasets such as Kinetics
or AudioSet. Notably, when trained with a larger backbone,
BraVe outperforms the previous best supervised transfer
result on the challenging HMDB51 benchmark.
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