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Abstract

Motion prediction of vehicles is critical but challenging
due to the uncertainties in complex environments and the
limited visibility caused by occlusions and limited sensor
ranges. In this paper, we study a new task, safety-aware mo-
tion prediction with unseen vehicles for autonomous driv-
ing. Unlike the existing trajectory prediction task for seen
vehicles, we aim at predicting an occupancy map that indi-
cates the earliest time when each location can be occupied
by either seen and unseen vehicles. The ability to predict
unseen vehicles is critical for safety in autonomous driv-
ing. To tackle this challenging task, we propose a safety-
aware deep learning model with three new loss functions
to predict the earliest occupancy map. Experiments on
the large-scale autonomous driving nuScenes dataset show
that our proposed model significantly outperforms the state-
of-the-art baselines on the safety-aware motion prediction
task. To the best of our knowledge, our approach is the
first one that can predict the existence of unseen vehicles
in most cases. Project page at https://github.com/
xrenaa/Safety-Aware-Motion-Prediction.

1. Introduction

Every year, there are more than 1 million deaths related
to car accidents, and up to 94% of accidents are resulted
from human errors [42]. Autonomous driving systems can
potentially save hundreds of thousands of lives [4]. Critical
to autonomous driving is motion prediction, which predicts
surrounding traffic participants [55].

Prior work on motion prediction can be broadly classi-
fied into two approaches. The first approach predicts the
future trajectories of agents. Both discriminative models
[17, 49, 30, 34, 52] and generative models [57, 14, 33,
35, 11, 46] are proposed. The second approach formu-
lates this problem as an occupancy map prediction prob-
lem [18, 23, 37, 31, 39]. These prior work rarely model
safety explicitly and have difficulty predicting unseen vehi-
cles.
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Figure 1. Our goal is to predict how early a vehicle or even unseen
vehicles will occupy the space, referred to as safety-aware motion
prediction. An unseen vehicle due to the occlusion or limited sen-
sor ranges is the one that can not be observed by the ego vehicle in
the past. Ignoring the future motion of unseen vehicles can lead to
collisions. In this figure, the possible prediction (in gray) can help
the planner to filter out the risky planned trajectories that may lead
to collisions. Safe planning should leave a larger margin for the
ego vehicle to respond.

In real-world driving scenarios, unseen vehicles are very
common due to occlusions and the limited range of sensors.
An unseen vehicle refers to a vehicle that has not appeared
at present or in history but will come into view and influence
planning decisions. An example of an unseen vehicle is
illustrated in Figure 1. Missing the prediction of unseen
vehicles threatens the safety of planning decisions and even
causes collisions.

To achieve safety-first autonomous driving, we analyze
the possible consequences of later/earlier prediction, i.e.,
predicting vehicles’ arrival (occupancy) time at a certain lo-
cation later/earlier than the ground truth, in a specific driv-
ing scenario. As shown in Figure 1, the ground truth (GT)
for the surrounding vehicle (blue car) is plotted in a blue
dotted line. Due to uncertainty, it is hard to make a perfect
prediction. In this case, it is safer to make a prediction ear-
lier than the GT, i.e., the predicted arrival/occupancy time
at any location is earlier than GT. When we make an ear-
lier prediction (gray line) than GT, there is a collision with
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a candidate trajectory. Though the GT trajectory actually
does not have a collision with this candidate trajectory, it
is safe for the planner to filter out this trajectory. Instead,
if the prediction is later than GT, the planner may select a
risky candidate trajectory. With the above observations, we
propose the task of safety-aware motion prediction that in-
cludes the following two aspects:

1. For the sake of safety, the predicted occupancy time of
each location should be earlier than the ground truth
but as accurate as possible.

2. The prediction for unseen vehicles should be included.

To solve the proposed safety-aware motion prediction
task, we propose a new representation called earliest occu-
pancy map to characterize vehicles’ future motion (usually
in 3 to 5 seconds). The earliest occupancy map contains
a value at each location indicating when this location was
first occupied. To estimate the earliest occupancy map, we
can formulate a regression problem with three novel loss
functions. Two of the loss functions encourage accurate
prediction with a preference for earlier than later predic-
tions. The third one optimizes for unseen vehicle predic-
tion. Moreover, with the raster image [12] as input and the
earliest occupancy map as the output, we propose a new net-
work architecture that uses a customized U-Net [38] with a
dilated bottleneck and an unseen-aware self-attention unit.
Our architecture takes advantage of image-to-image transla-
tion networks to model the complex motion prediction task.

Our main contributions are summarized as:

• We propose a safety-aware motion prediction task for
autonomous driving. The task predicts the earliest oc-
cupancy map from surrounding vehicles, including
both seen and unseen vehicles.

• We present a customized U-Net [38] architecture with
a dilated bottleneck and an unseen-aware self-attention
unit to obtain the earliest occupancy map. Conse-
quently, we introduce three specific loss functions to
train our model effectively.

• We introduce new evaluation metrics such as Missing
Rate, Aggressiveness, and Unseen Recall to evaluate
our models and baselines. The experimental results on
the large-scale nuScene dataset show that our model
outperforms the state-of-the-art methods for safety-
aware motion prediction.

2. Related Work
Motion prediction. Accurate motion prediction is crit-

ical for autonomous driving [9, 58]. Deep learning ap-
proaches are now state-of-the-art. They have three key com-
ponents, which are input representation, output representa-
tion, and models.

For the input representations, researchers propose to use
either graph-based representations [19, 7, 15, 32, 41, 27, 43,
53] or rasterization-based representations [10, 2, 6, 20, 1].
Homayounfar et al. [19] propose to model the lane graph
with a Directed Acyclic Graph (DAG), and Chu et al. [7]
use an undirected graph to model the road layout. Djuric
et al. [12] rasterize map elements (e.g., roads, crosswalks)
as layers and encode the lanes and vehicles with different
colors. Compared with graph representation, raster maps
provide richer geometric and semantic information for mo-
tion prediction [32].

For the output representation, prior work has focused on
trajectories [10, 41, 6] or occupancy maps [18, 23, 37, 31,
39]. Notably, P3 [39] recently propose a semantic occu-
pancy map to enrich the traditional occupancy map [13].

Prior work leverages either discriminative models [17,
49, 30, 34, 52] or generative models [22, 56, 16, 40, 26, 28].
Discriminative models predict either a single most-likely
trajectory per agent, usually via supervised regression [6] or
multiple possible trajectories using multi-modal loss func-
tion such as mixture-of-experts loss [10]. Generative mod-
els [41, 45, 29] explicitly handle multimodality by lever-
aging latent variable generative models, which incorporate
random sampling during training and inference to capture
future uncertainty. However, prior work on motion predic-
tion does not explicitly consider safety and unseen vehicles.
In this paper, we propose the earliest occupancy map as an
output representation to assist autonomous driving systems
for safety-aware motion prediction with unseen vehicles.

Safety and uncertainty awareness. Prior work on
safety and uncertainty-aware autonomous driving systems
has focused on uncertainty estimation [51, 3, 44, 8] and
planning with collision avoidance guarantee [57, 14, 33, 35,
11, 46]. However, it is not straightforward to extend these
methods to be unseen vehicles-aware. To the best of our
knowledge, there are few works considering unseen vehi-
cles for the autonomous driving system. The only excep-
tion is Tas and Stiller [46], which proposes a method to re-
main collision-free while considering unseen vehicles dur-
ing planning. However, their method is based on hand-craft
rules for each scenario considered (e.g. intersection cross-
ing, give-way maneuvers) and can not generalize well to
complex urban environments.

3. Safety-aware Motion Prediction

3.1. Problem Definition

Motion prediction is a necessary component for plan-
ning in autonomous driving [43]. We refer to the area in
which motion prediction is needed in order for the planner
of the ego vehicle to select a safe trajectory as critical re-
gion, which is also assumed to be larger than visible-region-
with-ego-sensors. In an ideal case, the predictions for all
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Figure 2. An example of a scene with unseen vehicles. History is
represented by the raster image [12]. The ego vehicle is colored
red, the other vehicles are colored yellow, and pedestrians are col-
ored orange. Each agent’s historical polygons are colored with the
same color but with a reduced level of brightness over time. Future
is represented by the earliest occupancy map, where the value of
each location indicates the earliest time being occupied (darker in-
dicates a smaller value). The unseen mask indicates the locations
occupied by unseen vehicles in the future.

the agents in a given scene are needed, such that the criti-
cal region is the whole scene. However, since the receptive
ranges of the sensors are limited and occlusions are very
common [52], we can only assume the critical region to be
a neighborhood bounding box of the ego vehicle to sim-
plify the problem. Under this circumstance, as shown in
Figure 1, there is a vehicle that can not be observed by the
ego vehicle at present or in history but will enter the crit-
ical region in the future and influence the decision of the
planner. Furthermore, as introduced in Section 1, it is also
unsafe that prediction is later than ground truth in the real
world. Therefore, the safety-aware motion prediction is de-
fined as predicting the earliest occupancy map that is ear-
lier than the ground truth but as accurate as possible, which
also takes the prediction of the unseen vehicles into consid-
eration. We provide a more thorough problem definition in
the supplementary materials.

3.2. Problem Formulation

Given a scene s, as assumed in Section 3.1, the critical
region I is a neighbourhood bounding box of the ego ve-
hicle to simplify the problem, i.e., I = { (x, y) |l ≤ x ≤
p, m ≤ y ≤ k, x, y ∈ Z}, where the center position of
ego vehicle is (0, 0). At the current time t, considering the
historical motion for the previous H timesteps of the agents
in the critical region I and the geometric semantic maps of
the scene s, our target is to predict the future motion of all
the agents of the next T timesteps, which also includes the
unseen vehicles. The unseen vehicles refer to the vehicles
that not in the critical region I at or before time t but enter
it in future T timesteps.

Occupancy map. The occupancy map at time t indicates
the occupancy status of each location in the critical region.
Let Bt denote the set of the occupied pixels of agents in the
scene at time t and Dt denote the pixels of the drivable area.

We define the occupancy map Ot at time t as follows,

Ot(x, y) =

{
1, (x, y) ∈ Bt

⋃
Dt

0, otherwise
, ∀(x, y) ∈ I, (1)

where “overline” indicates the complement.
Earliest occupancy map. The earliest occupancy map

indicates the timestamp that the position is first occupied.
Thus, we formulate the earliest occupancy map E(x, y) as

E(x, y) = min({∆t|Ot+∆t(x, y) = 1}∪{T}), ∀(x, y) ∈ I,
(2)

where t+∆t is a timestep between t and t+T . Recalling our
definition in Section 3.1, our goal is to derive a prediction
P (x, y) that is earlier than the ground truth E(x, y) but as
accurate as possible. We formulate it by defining the hard
loss (for safety) and the soft loss (for speed). We use the
hard loss to penalize predictions later than the ground truth:

Lh =
∑

(x,y)∈I

1(P (x, y) > E(x, y)). (3)

The hard loss constrains the prediction P (x, y) to be upper
bounded by ground truth E(x, y). Only the hard loss will
lead to trivial solutions, i.e., all the values are zeros. We add
a soft loss to make the prediction close to the ground truth.
The soft loss is defined as

Ls = −
∑

(x,y)∈I

P (x, y). (4)

Unseen mask. For the prediction of unseen vehicles,
we apply an unseen vehicle loss on the predicted earliest
occupancy map. We first introduce an unseen mask to make
our model focus on the prediction of unseen vehicles, where
the unseen mask covers all the locations occupied by any
unseen vehicles in the future, as illustrated in Figure 2.

With this unseen mask M , the unseen vehicle loss is de-
fined as follows,

Lu =
∑

(x,y)∈I

M(x, y)1((P (x, y) > E(x, y))). (5)

Note that the losses defined above Lh, Ls and Lu are for a
single scene s.

4. Method
In this section, we introduce the technical components of

our framework as shown in Figure 3.

4.1. Raster Image

For the input representation, we use a rasterized image of
the bird’s eye view [12], as shown in Figure 2. To discuss
this in more detail, the map of a scene s can be represented
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Figure 3. Overview of the proposed framework. A raster image is processed by a U-Net to generate the earliest occupancy map. Inside the
U-Net, a dilated bottleneck is used to enlarge the receptive field. For the unseen vehicles, we design an unseen-aware self-attention unit.

by a raster map which includes the geometry of the road,
drivable area, lane structure and direction of traffic along
each lane, locations of sidewalks, and crosswalks. The
bounding boxes of traffic agents at consecutive timesteps
in history are rasterized on top of the map in a color fading
effect to form a raster image. Furthermore, the raster image
is rotated such that the ego vehicle’s heading points up. In
this work, we raster the critical region, as defined in Sec-
tion 3.2, as input. Here, we do not use any raw sensor data
(i.e., camera, LiDAR, or RaDAR) as an additional input.

4.2. Dilated Bottleneck

By taking the raster image as input and the earliest oc-
cupancy map as output, the motion prediction task can be
modeled as an image-to-image translation problem directly.
Thus, we customized a U-Net [38] to address this problem
and learn the joint distribution of the motions of different
agents through the translation process. However, the lowest
layer of the conventional U-Net architecture has a relatively
small receptive field, which limits the network to extract
only local features, i.e., the model only relies on the part of
the critical region to predict the motion of a vehicle, which
may lead to collisions.

To enlarge the receptive field and utilize the non-local
contextual information, we adopt dilated convolutions [54,
48] inside the U-Net. Dilated convolutions replace the ker-
nels in the standard convolution layers by sparse kernels
with the dilation rate, which defines a spacing between the
weights in a kernel. In this way, with a dilation rate of 2,
the receptive field size of a 3 × 3 kernel is equal to that of
a 7 × 7 kernel without any increase in complexity. Thus,
in the U-Net architecture, we introduce a dilated bottleneck
composed of three dilated convolutions to incorporate local
and global contextual information.

4.3. Unseen-aware Self-Attention Unit

To make the network focus on unseen vehicles, we de-
sign a self-attention unit [47] after the dilated bottleneck.
Its architecture is presented in Figure 4. The self-attention
unit can encode the meaningful spatial importance on fea-
ture maps, facilitating the prediction of unseen vehicles.

Given an encoded feature map F ∈ Rh×w×n, where n

𝐹

CNN

CNN

𝐾

𝑄 Softmax
𝐹′

𝑊

Figure 4. Illustration of the unseen-aware self-attention unit. The
input feature map F is fed to two-branch CNNs to generate key
K and query Q, respectively. Then we put the generated attention
mask W on F and use a skip-connection to generate the final out-
put F ′.

⊗
denotes element-wise product and

⊕
denotes element-

wise addition. The visualization for the attention mask is shown
in Figure 6.

is the number of channels, h and w indicate the height and
width, we feed it into two CNNs respectively to generate
the query Q ∈ Rh×w×n and the key K ∈ Rh×w×n. Then
the attention mask W is defined as

Wi,j =
exp(Ki,j ·Qi,j)∑h

i=1

∑w
j=1 exp (Ki,j ·Qi,j)

, (6)

where Wi,j indicates the importance of the feature at (i, j)
for predicting unseen vehicles. In general, we observe that
intersection, boundaries and historical occupied region con-
tribute more to the feature map. We explore the design
of this self-attention unit and empirically find that non-
local [50] or only with one CNN branch performs worse
than ours, which is presented in supplementary materials.
Additionally, to aggregate the masked feature for unseen ve-
hicles and the original feature, we adopt a skip connection
inside the self-attention unit. Thus, the output F ′ is finally
defined as

F ′ = W × F + F. (7)

The final output has both unseen-aware geometric and con-
textual information and original features, which enhances
the performance of the targeting task.

4.4. Learning

We train our model in an end-to-end manner. Our goal is
to make a safety-aware prediction. First, we use γhLh+Ls
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as one of the optimization objectives, where γh is a large
constant serving as a loss weight. As for unseen vehicles,
we use Lu to supervise the learning of unseen vehicles’ pre-
diction. We thus learn the model parameters by exploiting
these loss functions:

L = Lrec + γhLh + Ls + γuLu, (8)

where Lh, Ls and Lu are introduced in Section 3. Note that
we calculate the average of these losses across all the scenes
in dataset S = {si}Ni=1. Note that the original equation of
Lh (Eq. 3), is not differentiable, we thus use the following
equation to approximate it:

Lh =
∑

(x,y)∈I

sigmoid (β(P (x, y)− E(x, y))) , (9)

where β is a large constant. Similarly, we use the same
approximation for Lu.

To stabilize the training, we use the commonly-used
pixel-wise mean squared error (MSE) function as the recon-
struction term. The reconstruction loss for a single scene is

Lrec =
∑

(x,y)∈I

∥P (x, y)− E(x, y)∥2. (10)

5. Experiments
5.1. Baselines

We compare against the following baselines covering
different types of methods:

Physical models: Physical models are officially pro-
vided by the nuScenes dataset [5]. There are four settings:
1) CV: the velocity is constant; 2) CA: the acceleration and
heading are constant; 3) CM: the rates of change of speed
and yaw are constant; 4) CY: the (scalar) speed and yaw rate
are constant.

MTP: MTP [10] takes the raster image and the target
vehicle state as input and predicts the trajectories.

Trajectron++: Trajectron++ [41] is a graph-structured
recurrent model taking past trajectories of the agents as in-
put to predict the future trajectories. Since it does not con-
sider unseen vehicles in the design, we also assist Trajec-
tron++ with a handcraft protocol to form a strong baseline:
Trajectron++*. We use a Poisson distribution with a hyper-
parameter λ to simulate the number of unseen vehicles dur-
ing the next T timesteps and put sampled unseen vehicles
randomly on the boundary of the critical region at random
timesteps.

P3: P3 [39] predicts a sequence of occupancy maps from
the fused LiDAR and map features. We modify P3 to our
setting by feeding the raster image as input.

To evaluate the baselines, we convert the outputs of them
to the earliest occupancy maps. For Physical models, MTP

and Trajectron++, we fit splines on the predicted trajecto-
ries and get the yaw to convert the trajectories to the earliest
occupancy map. For P3, we convert the predicted sequence
of occupancy maps to the earliest occupancy map, as de-
fined in Eq. 2.

5.2. Metrics

To evaluate the performance of our model, we use a
common MSE metric and design three metrics to evaluate
safety-aware motion prediction from different aspects. We
introduce the metrics below.

Missing Rate (MR). For safety, a later prediction is in-
tolerable. Missing Rate indicates the percentage of the pre-
dicted earliest occupancy map that is later than the ground
truth. For s ∈ S, given a predicted earliest occupancy map
P and the corresponding ground truth E, the Missing Rate
can be defined as

MR =

∑
s∈S

∑
(x,y)∈Is

1(P s(x, y) > Es(x, y))∑
s∈S |Is|

. (11)

Aggressiveness. The trivial solution for safety-aware
motion prediction is that all the cars in the scene s are keep-
ing still. In this case, the values of the earliest occupancy
map will be zero. However, this is undesirable. Thus, we
use the Aggressiveness metric to evaluate if the model has
trivial solutions. Given predicted earliest occupancy maps
P , this metric is defined as

Aggressiveness =

∑
s∈S

∑
(x,y)∈Îs

(C − P s(x, y))∑
s∈S |Îs|

,

(12)
where Îs is the subset of Is containing coordinates that
subject to Es(x, y) ̸= 0, i.e., Îs = {(x, y)|(x, y) ∈
Is, s.t.E

s(x, y) ̸= 0}, and C is a constant to make the value
of the metric positive.

Unseen Recall (UR). To evaluate the ability of the model
to capture unseen vehicles, we choose to calculate the re-
call for the prediction of unseen vehicles. Given the unseen
mask M , the set of occupied positions of the unseen ve-
hicles is M̂ = {(x, y)|M(x, y) = 1}, the IoU for unseen
vehicles is defined as

IoU =
|M̂ ∩ P̂ |
|M̂ |

, (13)

where P̂ is the set of positions of the predicted motions, i.e.,
P̂ = {(x, y)|t < P (x, y) < t + T}. Then Unseen Recall
(UR) is defined as:

URα =

∑
s∈Ŝ 1(IoUs > α)

|Ŝ|
, (14)

where Ŝ are the subset of S that containing unseen vehicles.
Here, we consider the threshold α to be 0.3, 0.5 and 0.7.
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Method MR (%) ↓ Aggressiveness ↓ UR0.3 (%) ↑ UR0.5 (%) ↑ UR0.7 (%) ↑ MSE↓
Physical-CV 6.53 2.77 10.98 4.58 1.46 26.26
Physical-CA 6.39 2.82 11.54 4.91 1.53 26.75
Physical-CM 6.36 2.86 11.47 4.52 1.43 26.19
Physical-CY 6.48 2.81 10.95 4.39 1.43 25.89

MTP 6.41 2.39 7.38 2.14 0.55 20.46
Trajectron++ 8.93 1.71 20.40 9.33 3.45 15.38
Trajectron++* 8.97 1.80 20.98 9.36 3.48 15.99
P3 6.78 2.66 12.12 1.72 0.12 13.18
Ours 1.37 2.48 63.28 43.48 18.85 10.61

Table 1. Safety-aware motion prediction performance quantitative comparison on the nuScenes dataset. Bold indicates best.

Method MR (%) ↓ Aggressiveness ↓ UR0.3 (%) ↑ UR0.5 (%) ↑ UR0.7 (%) ↑ MSE↓
MTP 8.84 5.67 51.25 8.83 0.74 77.94
P3 9.20 1.48 2.76 0.24 0.00 28.54
Ours 3.97 3.55 88.81 80.22 30.48 18.30

Table 2. Safety-aware motion prediction performance quantitative comparison on the Lyft dataset. Bold indicates best.

MSE. To evaluate the performance of motion predic-
tion models, Average Displacement Error (ADE) [16] is
commonly used. Due to the output occupancy map of our
method is image-level, we use the MSE metric between the
prediction and GT instead to evaluate the accuracy of the
predictions. Note that MSE is only used as a reference.

5.3. Implementation details

Our model is implemented in Pytorch [36] and trained
on an NVIDIA V100 GPU in around 24 hours. We used a
batch size of 32 and trained with Adam optimizer [24] with
a learning rate to 1× 10−4.

The critical region used in our work is of size 50 meters
by 50 meters. The range in front of the ego vehicle is 40
meters, and the range at the back is 10 meters. The ranges
for the left and the right are the same, which are both 25
meters. The pixel resolution of the raster image is 1:10.
Thus, m = −100, k = 400, l = −250, p = 250. For all the
models, we only feed the agents inside the critical region
at present and in history. For the Poisson distribution using
the handcrafted protocol, we use a λ = 2.

For the hyper-parameters, we use the information from
the past 2 seconds to predict the future 3 seconds. Thus,
with a frequency of 10 Hz, the total number of the historical
timesteps H is 20, and the future timesteps T is 30. The data
provided by the nuScenes dataset is 2 Hz, so we interpolate
it to 10 Hz 1 to make the earliest occupancy map smooth.
Considering T = 30, we set C = 31. For the loss functions,
we set β = 100 and γh = γu = 1000. The dilated rates
used in the dilated bottleneck are 2, 4, and 8, respectively.

1For the input raster image, we only use 2 Hz data.

5.4. Evaluation on the nuScenes dataset

We evaluate our method on the public nuScenes
dataset [5]. It is a large-scale dataset for autonomous driv-
ing with 1000 scenes in Boston and Singapore. Each scene
is annotated at 2 Hz and is 20s long, containing up to 23 se-
mantic object classes, as well as high definition maps with
11 annotated layers. We follow the official benchmark for
the nuScenes prediction challenge to split the dataset. There
are 32, 186 prediction scenes in the training set and 8, 560
scenes in the validation set. Due to the inaccessible ground
truth of the test set, we use the validation set to evaluate the
models for safety-aware prediction.

To understand the prevalence of unseen vehicles, we
compute the number of scenes with unseen vehicles in the
nuScenes dataset when the critical region is limited to be 50
meters by 50 meters. There are about 47% of scenes con-
taining unseen vehicles in the training set and about 32%
of scenes in the validation set. This indicates that unseen
vehicles are common in real-world scenarios.

Quantitative Comparison. We perform the quantita-
tive comparison on the baselines and our model in terms
of the above four metrics. Since the baselines do not con-
sider unseen vehicles, to illustrate the effectiveness of our
method, we modify Trajectron++ to Trajectron++* with a
handcrafted unseen vehicle prediction protocol. The re-
sults are summarized in Table 1. By modeling safety-aware
prediction explicitly and using the earliest occupancy map
as representation, our model outperforms the state-of-the-
art models and traditional physical models except on Ag-
gressiveness. However, note that the Aggressiveness metric
evaluates if the models have trivial solutions. Therefore,
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Method MR (%) ↓ Aggressiveness ↓ UR0.3 (%) ↑ UR0.5 (%) ↑ UR0.7 (%) ↑ MSE↓
Ours w/o Lh 18.00 1.39 36.98 20.73 6.76 6.55
Ours w/o Ls 5.85 3.53 46.31 26.36 9.91 10.76
Ours w/o Lu 6.60 2.47 49.78 29.89 10.36 6.53
Ours w/o Attention 5.66 2.65 39.97 22.00 6.79 6.91
Ours 1.37 2.48 63.28 43.48 18.85 10.61

Table 3. Ablation study for proposed loss and module.

Input GT Ours
Figure 5. Multi-modal predictions made by our method. Using
the earliest occupancy map, we can achieve multi-modal future
predictions without taking an explicit probabilistic approach.

it is not an essential metric for safety-aware prediction. We
can observe that our model has the minimum MR and MSE,
which indicates that our model has the fewest cases that pre-
diction is later than ground truth and conforms to the def-
inition for safety-aware prediction: earlier but as accurate
as possible. UR measures if the models can predict the un-
seen vehicles without omission. Our model achieves the
highest recall across different thresholds, indicating that it
can predict unseen vehicles effectively. Note that a hand-
crafted protocol can not help a lot for unseen vehicle pre-
diction, demonstrating that the prediction for unseen vehi-
cles should take contextual information into consideration.
Furthermore, the deep learning-based baselines do not out-
perform physical-based methods significantly.

Qualitative Comparison. We show our prediction re-
sults under diverse traffic scenarios and provide some rep-
resentative comparisons with the deep learning-based base-
lines in Figure 7. Please refer to supplementary materials
for more results.

Visualization for attention map. We formulate the
motion prediction problem as an image-to-image transla-
tion problem and train our model with input-output image
pairs. Therefore, the prediction for unseen vehicles relies
on the data distribution, especially the density of agents and
entrance locations. To understand the mechanism of the
unseen-aware self-attention unit, we visualize the spatial at-

tention maps by overlaying them on the input images in Fig-
ure 6. We can observe that spatial attention helps our model
locate the unseen vehicles and drivable regions, which indi-
cates that our model learns the patterns of the data, particu-
larly for the unseen vehicles.

Multi-modality. Multi-modality gain popularity re-
cently in motion prediction. Instead of using probabilistic
approaches, we provide an alternative way by using the ear-
liest occupancy map. As shown in Figure 5, with our pro-
posed formulation and loss, the earliest occupancy map is
capable of representing multi-modal predicted motion in a
single output. Furthermore, as shown in Figure 7, the mo-
tions predicted by our method tend to have a bit larger range
and makes the system safety-awareness. For future work, a
hierarchical probabilistic U-Net [25] may further improve
the ability for multi-modal prediction.

5.5. Evaluation on the Lyft Dataset

In this section, we further evaluate our model on the Lyft
dataset. The Lyft dataset [21] has over 1, 000 hours of driv-
ing data in Palo Alto, California. It consists of 170, 000
scenes, each of which is 25 seconds long. It also provides
a high-definition semantic map with 15, 242 labeled ele-
ments. We follow the official guidelines of the Kaggle chal-
lenge to split the dataset. There are 4, 009, 980 prediction
scenes in the training set. For the validation, we use 20, 000
scenes, a subset of the official validation set.

Because of the lack of support for the Lyft dataset of
the state-of-the-art methods, we only select MTP [10] and
P3 [39] as the baselines to compare in terms of the above
four metrics. The results are summarized in Table 2. Com-
pared to baselines, our method achieves the best MR, UR,
and MSE, which shows that our model predictions are safe
and accurate. Our method to detect unseen vehicles re-
lies on the current frame; however, there are many missing
frames for agents in the Lyft dataset, which results in more
detected unseen vehicles.

5.6. Ablation studies

To develop an understanding of which model component
influences the performance, we conduct ablation studies on
the proposed losses and attention module on the nuScenes
dataset. The results are summarized in Table 3. We have
three key observations. 1) The hard loss is essential for
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Input GT Ours Unseen mask Attention map
Figure 6. Visualization of attention masks W . For the attention map, the brighter area in the image indicates more significant responses.
The attention map has higher responses around the unseen mask, thereby helping the model predict the motion of unseen vehicles.

Input GT MTP Trajectron++ P3 Ours

Figure 7. Visual comparisons between ours and other baselines on the nuScenes dataset. All the prediction results are visualized with
the earliest occupancy maps. The unseen vehicles are annotated with red bounding boxes. We show common failures of the baselines,
including missing predictions for unseen vehicles and later predictions for seen vehicles. Such unsafe predictions could mislead the ego
vehicle to make poor planning decisions. In contrast, the future motion predicted by our method is earlier but as accurate as possible and
includes unseen vehicles.

safety-aware prediction. The first row shows that training
our model without hard loss results in a significant drop in
the MR and UR. 2) The unseen loss, soft loss, and unseen-
aware self-attention unit are necessary components for our
model. Lacking any one of them hurts the performance in
terms of MR and UR. 3) As one would expect, the unseen-
aware self-attention unit is more important for learning the
prediction of unseen vehicles than other components. Even
without the unseen loss as supervision, our method can still
outperform the baselines for predicting unseen vehicles.

Note that, without hard loss, the soft loss is adequately
optimized. Therefore, “Ours w/o hard” achieves the lowest
aggressiveness, but it does not mean that it is safer than oth-
ers. The slight drop in the MSE of the final model is due
to the wrong prediction of unseen vehicles (false positive).
Overall, the hard loss and unseen-aware self-attention unit
are the dominant performance-improving components.

6. Conclusion
In this paper, we study a new task named safety-aware

motion prediction for autonomous driving. The proposed

task requires the predicted event (arrival time at a location)
to be earlier than the actual event in the future while as ac-
curate as possible. We introduce a novel safety-aware rep-
resentation called the earliest occupancy map that charac-
terizes the vehicles’ future motion. With this representa-
tion, we formulate the safety-aware motion prediction as
an image-to-image translation problem. To solve the prob-
lem, we present a customized U-Net architecture with a di-
lated bottleneck to enlarge the receptive field and an unseen-
aware self-attention unit to facilitate the prediction of un-
seen vehicles. Our model is trained effectively with three
novel loss functions. Experimental results on a large-scale
autonomous-driving dataset show that the proposed frame-
work significantly outperforms state-of-the-art baselines on
the safety-aware motion prediction task. As for the limita-
tion, our method may have some false positive predictions
for the unseen vehicles. Though the false positives do not
compromise the safety, they may introduce more constraints
for the planner.
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