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Abstract

Adversarial attack algorithms are dominated by penalty

methods, which are slow in practice, or more efficient

distance-customized methods, which are heavily tailored

to the properties of the distance considered. We propose a

white-box attack algorithm to generate minimally perturbed

adversarial examples based on Augmented Lagrangian prin-

ciples. We bring several algorithmic modifications, which

have a crucial effect on performance. Our attack enjoys

the generality of penalty methods and the computational effi-

ciency of distance-customized algorithms, and can be readily

used for a wide set of distances. We compare our attack to

state-of-the-art methods on three datasets and several mod-

els, and consistently obtain competitive performances with

similar or lower computational complexity.

1. Introduction

The last few years have seen an arms race in adversarial

attacks, where several methods have been proposed to find

minimally perturbed adversarial examples. In most cases,

adversarial example generation is stated as a constrained

optimization, which seeks the smallest additive perturba-

tion, according to some distance, to misclassify an input.

Existing methods fall within two categories: attacks using

penalty methods for constrained optimization, and distance-

customized attacks leveraging the properties of the distance

considered (typically ℓp-norms).

Penalties are a natural choice, as they transform a

constrained-optimization problem into an unconstrained one.

Within this category, the most notorious attack is the one

from Carlini and Wagner [7] known for its ℓ2 variant. Build-

ing on the work of Carlini and Wagner, several other at-

tacks have been proposed, e.g. EAD for ℓ1 [9] and StrAt-

tack [31], which generalizes EAD and introduces sparsity in

the perturbations. More recently, other works have tackled

other distances than the standard ℓp-norms, such as SSIM

[16], CIEDE2000 [37] or LPIPS [21], and followed similar

penalty-based strategies. Although convenient and applica-

ble to a wide class of distances, penalty methods are known

to result in slow convergence in the general field of optimiza-
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tion [18]. Furthermore, choosing the weight of the penalty

is not a trivial task [19]. In fact, in adversarial attacks, it

has recently been shown that the optimal penalty weight

actually varies by orders of magnitude across samples and

models [26]. Although penalty methods can achieve com-

petitive performance, they typically require an expensive

line-search to find optimal penalty weights [7], thereby re-

quiring large numbers of iterations. This may impede their

practical deployment for training robust models and effi-

ciently evaluating robustness.

To accelerate the generation of adversarial examples, and

improve performance over penalty methods, there has been

an intensive focus on developing efficient algorithms cus-

tomized for specific ℓp-norms [5, 12, 22, 25, 26]. However,

such distance-customized methods are not generally appli-

cable because they rely heavily on the geometry/properties

of the distance considered (e.g. using projections and dual

norms) to find minimally perturbed adversarial examples.

The most notable attacks within this second category are:

DeepFool for the ℓ2 and ℓ∞ norms, which uses a linear ap-

proximation of the model at each iteration [22]; DDN for the

ℓ2-norm, which uses projections on the ℓ2-ball to decouple

the direction and the norm of the perturbation [26]; and FAB

for the ℓ1, ℓ2 and ℓ∞, which combines a linear approxima-

tion of the model and projections w.r.t. the norm considered

[12]. The recently proposed FMN attack [25] extends the

DDN attack to other norms. Beyond ℓp-norms, Wong et al.

proposed an attack [30] to produce adversarial perturbations

with minimal Wasserstein distance using projected Sinkhorn

iterations. Finally, one attack that does not strictly fall in

either of the two categories was proposed by Brendel et al.,

and designed for ℓp-norms with p ∈ {0, 1, 2,∞} [5]. In this

attack, the optimization is formulated such that the pertur-

bation follows the decision boundary of a classifier, while

minimizing the considered distance. This is not limited to

ℓp-norms but, in practice, the implementation leverages a

trust-region solver designed for each ℓp-norm specifically,

which limits applicability to other distances.

Penalty methods are generally applicable, and can be

used for distances other than the standard ℓp-norms; for in-

stance, CIEDE2000 [37] or LPIPS [21, 35]. They replace

constrained problems with unconstrained ones by adding a

penalty, which increases when the constraint is violated. A

weight of the penalty is chosen and increased heuristically,
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while the unconstrained optimization is repeated several

times. Powerful Augmented Lagrangian principles have

well-established advantages over penalties in the general

context of optimization [2, 3, 15, 24], and completely avoid

penalty-weight heuristics by automatically estimating the

multipliers. Furthermore, the multiplier estimates tend to

the Lagrange multipliers, which avoids the ill-conditioning

problems often encountered in penalty methods [2, 10]. Fi-

nally, Augmented Lagrangian methods avoid the need for

explicitly solving the dual problem, unlike basic Lagrangian-

dual optimization, which might be intractable/unstable for

non-convex problems.

Despite their well-established advantages and popular-

ity in the optimization community for solving non-convex

problems, Augmented Lagrangian methods have not been

investigated previously for adversarial attacks. While this

seems rather surprising, we found in this work that the vanilla

Augmented Lagrangian methods are not competitive in the

context of adversarial attacks (e.g. in terms of computational

efficiency), which might explain why they have been avoided

so far. However, we introduce several algorithmic modifica-

tions to design a customized Augmented Lagrangian algo-

rithm for adversarial example generation. Our modifications

are crucial to achieve highly competitive performances in

comparisons to state-of-the-art methods. The modifications

include integrating the Augmented Lagrangian inner and

outer iterations with joint updates of the perturbation and

the multipliers, relaxing the need for an inner-convergence

criterion, introducing an exponential moving average of the

multipliers, and adapting the learning rates to the distance

function. All-in-all, we propose a white-box Augmented

Lagrangian Method for Adversarial (ALMA) attacks, which

enjoys both the general applicability of penalty approaches

and computational efficiency of distance-customized meth-

ods. Our attack can be readily used to generate adversarial

examples for a large set of distances, including ℓ1-norm,

ℓ2-norm, CIEDE2000, LPIPS and SSIM, and we advocate

its use for other distances that might be investigated in future

research in adversarial attacks. We evaluate our attack on

three datasets (MNIST, CIFAR10 and ImageNet) and sev-

eral models (regularly and adversarially-trained). For each

distance, we compare our method against state-of-the-art at-

tacks proposed specifically for that distance, and consistently

observe competitive performance.

2. Preliminaries

Let x be a sample from the input space X ⊂ R
d, and

y ∈ Y its associated label, where Y is a set of discrete

labels of size K. Let f : Rd → R
K be a model that outputs

logits (i.e. pre-softmax scores) z ∈ R
K given an input x;

fk(x) denotes the k-th component of the vector f(x). In

a classification scenario, the probability py = P (y|x) is

obtained using the softmax function: py = softmaxy(z).

In this work, we assume that X is the hypercube X = [0, 1]d,

which is general enough for computer vision applications.

2.1. Problem formulation

The problem of adversarial example generation has been

mainly formulated in two ways. One way is to find adversar-

ial examples satisfying a distance constraint:

find δ s.t. argmax
k

fk(x+ δ) 6= y

D(x+ δ,x) ≤ ǫ; x+ δ ∈ X
(1)

Alternatively, the objective is to find adversarial examples

that are minimally distorted w.r.t a distance function D:

min
δ

D(x+ δ,x) s.t. argmax
k

fk(x+ δ) 6= y

x+ δ ∈ X
(2)

In this work, we are interested in solving Equation 2,

which is equivalent to solving Equation 1 for every ǫ. Thus,

it is a more general but more difficult problem.

2.2. Equivalent problem

In the general case, constraint x + δ ∈ X is not nec-

essarily trivial. However, in our context, this corresponds

to a box constraint: 0 ≤ x + δ ≤ 1. We therefore han-

dle it with a simple projection P[0,1]. For brevity, we will

omit this constraint in the rest of the paper. In the above

formulations, argmax is not differentiable, and therefore

not readily amenable to gradient-based optimization. We

replace the argmax constraint with an inequality constraint

on the logits, as done in several works, most notably [7]:

min
δ

D(x+ δ,x) s.t. fy(x+ δ)−max
k 6=y

fk(x+ δ) < 0

(3)

While more suited to gradients, this constraint is not scale

invariant, as noted in [13]: extreme scaling of the logits

may result in gradient masking. We use a slightly modified

Difference of Logits Ratio (DLR) for this constraint [13] :

DLR+(z, y) =

zy −max
i 6=y

zi

zπ1 − zπ3

(4)

where z = f(x) and π is the ordering of the elements of z

in decreasing order. This loss is negative if and only if x

is not classified as y, and its maximum is 1. Therefore, we

solve the following optimization problem:

min
δ

D(x+ δ,x) s.t. DLR+(f(x+ δ), y) < 0 (5)

2.3. Distances

Most attacks in the literature measure the size of the per-

turbations in terms of ℓp-norms. In this work, we propose
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an attack that can find minimally perturbed adversarial ex-

amples w.r.t. several distances. We limit this work to four

common measures: the ℓ1 and ℓ2 norms, the CIEDE2000

[27] and the LPIPS distance [35]. The CIEDE2000 color

difference [27] is a metric designed to assess the perceptual

difference between two colors. It is widely used to evaluate

color accuracy of displays and printed materials. This metric

was designed to be aligned with the perception of the human

eye. Generally, a value smaller than 1 means that the color

difference is imperceptible, between 1 and 2 is perceptible

through close examination, between 2 and 10 is perceptible

at a glance, and above 10 means that the colors are different.

This metric is calculated in the CIELAB color space, so a

conversion is needed (see Appendix B). The CIEDE2000 is

defined between two color pixels, so we use the image level

accumulated version as in [37]. The LPIPS distance [35] is

a recently proposed perceptual metric based on the distance

between deep features of two images for a chosen model.

Zhang et al. showed that this distance aligns with human

perception better than other perceptual similarity metrics

such as SSIM. We use the LPIPS with AlexNet as in [21].

3. Methodology

3.1. General Augmented Lagrangian algorithm

To describe a minimization problem with one inequality

constraint, we use the following notation:

minimize g(x) subject to h(x) < 0 (6)

with g : Rd → R the objective function and h : Rd → R the

inequality-constraint function.

Penalty methods trade a constrained problem (6) with

an unconstrained one by adding a term (penalty), which

increases when the constraint is violated. A weight of the

penalty, λ, is chosen heuristically, and the unconstrained

optimization is repeated several times with increasing values

of λ, until the constraint is satisfied. Augmented Lagrangian

methods have well-established advantages over penalty meth-

ods in the general context of optimization [2, 3, 15, 24], and

avoid completely such heuristics. They estimate automat-

ically the multipliers, which yields adaptive and optimal

weights for the constraints. Such estimates tend to the La-

grange multiplier, which avoids the ill-conditioning prob-

lems often encountered in penalty methods [2, 10]. Aug-

mented Lagrangian methods also avoid the need to explic-

itly solve the dual problem, unlike basic Lagrangian opti-

mization, which may be intractable/unstable for non-convex

problems. From a more practical standpoint, the efficiency

of Augmented Lagrangian methods depends solely on the

ability to solve the inner minimization (which we detail

below), making the implementation simpler and more ro-

bust. Despite these advantages and their popularity in the

optimization community, Augmented Lagrangian methods
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Figure 1: Examples of penalty-Lagrangian functions for

different values of ρ and µ. The plotted functions are defined

in [4] and given in Appendix D.

have not (to our knowledge) been investigated for adver-

sarial attacks. In the following, we customize Augmented

Lagrangian principles to solve adversarial-attack problems

of the form (2).

In general, an Augmented Lagrangian algorithm uses a

succession of unconstrained optimization problems, each

solved approximately. The algorithm can be broken down

in two types of iterations: outer iterations indexed by i and

inner iterations. During the inner iterations, the following

Augmented Lagrangian function:

G(x) = g(x) + P (h(x), ρ(i), µ(i)) (7)

is approximately minimized w.r.t. to x, using the previous

solution as initialization, up to an inner convergence crite-

rion. P : R × R
∗
+ × R

∗
+ → R is a penalty-Lagrangian

function such that P ′(y, ρ, µ) = ∂
∂y

P (y, ρ, µ) exists and is

continuous for all y ∈ R and (ρ, µ) ∈ (R∗
+)

2. Any candidate

function P should satisfy these four axioms [4]:

Axiom 1. ∀y ∈ R, ∀(ρ, µ) ∈ (R∗
+)

2, ∂
∂y

P (y, ρ, µ) ≥ 0

Axiom 2. ∀(ρ, µ) ∈ (R∗
+)

2, ∂
∂y

P (0, ρ, µ) = µ

Axiom 3. If, for all j ∈ N, 0 < µmin ≤ µ(j) ≤ µmax < ∞,

then: lim
j→∞

ρ(j) = ∞ and lim
j→∞

y(j) = y > 0 imply that

lim
j→∞

∂
∂y

P (y(j), ρ(j), µ(j)) = ∞

Axiom 4. If, for all j ∈ N, 0 < µmin ≤ µ(j) ≤ µmax < ∞,

then: lim
j→∞

ρ(j) = ∞ and lim
j→∞

y(j) = y < 0 imply that

lim
j→∞

∂
∂y

P (y(j), ρ(j), µ(j)) = 0

The first and second axioms guarantee that the derivative of

the penalty-Lagrangian function P is positive and equal to µ
when y = 0. The third and fourth axioms guarantee that the

derivative of P w.r.t. y tends to infinity if the constraint is

not satisfied (i.e. h(x) ≥ 0), and tends to 0 if the constraint

is satisfied (i.e. h(x) < 0). Figure 1 contains examples
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of widely used penalty-Lagrangian functions. Once the in-

ner convergence criterion is satisfied, an outer iteration is

performed, during which the penalty multiplier µ and the

penalty parameter ρ are modified. The penalty multiplier µ
is updated to the derivative of P at the current value w.r.t.

the constraint function:

µ(i+1) = P ′(h(x), ρ(i), µ(i)) (8)

This means that the penalty multiplier increases when the

constraint is not satisfied and, otherwise, is reduced. This can

be seen as an adaptive way of choosing the penalty weight

in a penalty method. The penalty parameter ρ is increased

based on the value of the constraint function at the current

outer iteration, compared to the previous one. If the con-

straint function has not improved (i.e. reduced) significantly,

then ρ is multiplied by a fixed factor, typically between 2

and 100 [4]. With higher values of the penalty parameter ρ,

the penalty-Lagrangian function tends to an ideal penalty,

as can be seen in Figure 1. Algorithm 1 describes a generic

Augmented Lagrangian method.

Algorithm 1 Generic Augmented Lagrangian method

Require: Function to minimize f , constraint function g

Require: Initial value x
(0)

Require: Penalty function P , initial multiplier µ(0), ρ(0)

1: for i← 0 to N − 1 do

2: Using x
(i) as initialization, minimize (approximately):

G(x) = g(x) + P (h(x), ρ(i), µ(i))
3: x

(i+1) ← approximate minimizer of G

4: µ(i+1) ← P ′(h(x(i+1)), ρ(i), µ(i))
5: if the constraint does not improve then

6: Set ρ(i+1) > ρ(i)

7: else

8: ρ(i+1) ← ρ(i)

9: end if

10: end for

3.2. Augmented Lagrangian Attack

We propose to use Augmented Lagrangian methods to

solve (5). However, we found that a vanilla Augmented

Lagrangian algorithm is not well-suited for adversarial at-

tacks. Indeed, alternating between inner and outer iterations

is rather slow compared to the few hundreds iterations in

typical adversarial attacks. Moreover, we wish to obtain

an algorithm with a fixed number of iterations for practical

purposes. This is clearly incompatible with the use of an

inner convergence criterion required to stop the approximate

minimization of G (step 2 of Algorithm 1). Designing a

good inner convergence criterion is not a trivial task either.

Therefore, we propose a modification of the traditional Aug-

mented Lagrangian algorithm. We combine the inner and

outer iterations, resulting in a joint update of the perturbation

δ = x̃ − x and the penalty multiplier µ. This means that

Algorithm 2 ALMA attack

Require: Classifier f , original image x, true or target label y

Require: Number of iterations N , initial step size η(0), penalty

parameter increase rate γ > 1, constraint improvement rate

τ ∈ [0, 1], M number of steps between ρ increase.

Require: D distance function

Require: Penalty function P , initial multiplier µ(0), initial penalty

parameter ρ(0)

1: Initialize x̃
(0) ← x,

2: for i← 0 to N − 1 do

3: z ← f(x̃(i))
4: d(i) ← DLR+(z, y) ⊲ tDLR+ for targeted attack

5: µ̂← ∇dP (d(i), ρ(i), µ(i)) ⊲ New penalty multiplier

6: µ(i+1) ← P[µmin,µmax][αµ
(i) + (1− α)µ̂] ⊲ EMA

7: L← D(x̃(i),x) + P (d(i), ρ(i), µ(i+1)) ⊲ Loss

8: g ← ∇x̃L ⊲ Gradient of loss w.r.t. x̃

9: x̃
(i+1) ← P[0,1][x̃

(i) − η(i)
g] ⊲ Step and box-constraint

10: if (i+ 1) mod M = 0 and d(j) > 0, ∀j ∈ {0, . . . , i}
11: and d(i) > τd(i−M) then

12: ρ(i+1) ← γρ(i) ⊲ If no adversarial has been

found and d does not de-

crease significantly, in-

crease ρ by a factor of γ

13: else

14: ρ(i+1) ← ρ(i)

15: end if

16: end for

17: Return x̃
(i) that is adversarial and has smallest D(x̃(i),x)

we do not need an inner convergence criterion as we are

always adapting µ. This also requires to adapt the increase

of ρ, which depends on the value of the inequality-constraint

function. Algorithm 2 presents our approach and, in the fol-

lowing sections, we detail several important design choices

for the algorithm.

3.2.1 Penalty parameters adaptation

The most critical design choices for our attack are the adap-

tation of the penalty parameters µ and ρ.

Penalty multiplier. µ is usually modified in each outer

iteration (after the inner problem is approximately solved),

and taken as the derivative of the penalty function w.r.t. the

constraint function (see Equation 8). In our algorithm, we

modify µ at each iteration. This approach aims at reducing

the budget needed for the optimization by combining inner

and outer iterations. However, this leads to spiking values of

µ, which tend to make the optimization unstable. Figure 2

shows the evolution of µ during the attack, as well as the

ℓ2-norm of the perturbation, when attacking (with ALMA

ℓ2) a single MNIST sample with the SmallCNN model. We

can see that µ regularly spike to high values when not using

EMA, which in turns increases the ℓ2-norm of the perturba-

tion because the penalty term dominates. To solve this issue,

we smooth the values of µ using an Exponential Moving
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Figure 2: Example of the evolution of the penalty multiplier

µ and the ℓ2-norm of the perturbation during the optimization

when attacking a single MNIST sample for the SmallCNN

model. This leads to a ℓ2-norm of the final adversarial pertur-

bation of 2.13 without EMA and 1.71 with EMA (α = 0.9).

The norm of the perturbation can be lower without EMA in

some iterations, but it is associated with an increase in µ,

meaning that the perturbed sample x̃
(i) is not adversarial.

Average (EMA) of µ:

µ̂ = P ′(g(x), ρ(i), µ(i))

µ(i+1) = αµ(i) + (1− α)µ̂
(9)

where α ∈ R is a hyper-parameter. This corresponds to steps

5 and 6 in Algorithm 2. When using an EMA with α = 0.9,

the evolution of µ is smoother, with a much smaller spike at

the beginning and then stabilizing. As a consequence, the

ℓ2-norm of the final perturbation is smaller when using an

EMA at 1.71 for α = 0.9, compared to 2.13 when α = 0.

For numerical stability, we also need to constrain the

value of the penalty multiplier such that it never becomes

too small or too large. Therefore, we also project µ on the

safeguarding interval [µmin, µmax] ⊂ R
∗
+.

Penalty parameter. ρ is typically increased in each outer

iteration if the constraint has not improved during the inner

minimization. Since inner and outer iterations are combined

in our attack, we adopt a simple strategy to adapt ρ. Every

M iterations, we verify if an adversarial example was found

and, if not, if the constraint has improved. If no adversarial

example was found, and the constraint does not improve (e.g.

reduced by 5% in the last M iterations), we set ρ(i+1) =
γρ(i). This corresponds to steps 10 to 14 of Algorithm 2.

3.2.2 Choice of penalty function

Experiments have shown that the choice of the penalty func-

tion is of great importance, especially when considering non-

convex problems [4]. Many functions have been proposed

in the literature. In our experiment, we use the P2 penalty

0 NIterations

0.01η(0)

η
(0)

Learning
rate

Adversarial
example found

E
xp
lo
ra
ti
on

Exploitation

Figure 3: Exponential learning rate decay for the attack.

function proposed in [20], which is defined as followed:

P2(y, ρ, µ) =

{

µy + µρy2 + 1
6ρ

2y3 if y ≥ 0
µy

1−ρy
if y < 0

(10)

where y represents the value of the constraint: DLR+(z, y)
in our case (or tDLR+(z, y) in a targeted scenario). In the

numerical comparison of several penalty-Lagrangian func-

tions done by Birgin et al. [4], P2 is second to PHRQuad

in terms of robustness. However, we found that P2 is more

suited to our problem. Experimentally, PHRQuad’s deriva-

tive is smaller than P2, resulting in smaller increase of µ
in each iteration. This, in turn, results in an increase of ρ
because no adversarial example is found (see step 10 and

11 of Algorithm 2). Generally, increasing ρ helps in finding

a feasible point (i.e. adversarial examples), at the cost of

a larger final distance for the perturbation. The choice of

P2 also depends on the algorithm design. In our attack, we

chose to increase ρ every M steps if no adversarial example

has been found, regardless of the usual convergence criterion

used in more traditional Augmented Lagrangian methods.

Therefore, we need a penalty function with an “aggressive”

derivative such that µ is modified quickly.

3.2.3 Learning rate scheduling

Initial learning rate. Different distance functions can

have widely different scales (see Tables 1 and 2, median

results column). Therefore, the initial learning rate is chosen

adaptively for each sample x, such that the first gradient

step (step 9 in Algorithm 2) increases D by ǫ, or formally,

such that: D(x̃(1),x) = ǫ. To obtain that value, we compute

the gradient g of DLR+ w.r.t. x, and find the scalar η(0)

such that D(P[0,1][x − η(0)g],x) = ǫ, using a line search

followed by a binary search.

Learning rate decay. The optimization process can be

partitioned in two phases: exploration and exploitation. The

exploration phase corresponds to finding a feasible point

(i.e. an adversarial example) for Equation 2. Then, the ex-

ploitation phase consists in refining the feasible point, i.e.

finding a minimally distorted adversarial example. In our

algorithm, the learning rate remains constant during the
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exploration phase, and decays exponentially during the ex-

ploitation phase to reach a final learning rate of η(0)
/100.

Figure 3 illustrates the scheduling of the learning rate decay.

3.2.4 Optimization algorithm

It is well known that gradient descent has a slow conver-

gence rate, especially for ill-conditioned problem. Several

optimization algorithms have been proposed to accelerate

first-order methods, such as the momentum method or Nes-

terov’s acceleration [23]. One such algorithm is RMSProp

[28], in which the learning rate is divided by the square root

of the EMA of the squared gradient. We use RMSProp com-

bined with the momentum method in our attack, with a slight

modification. Originally, the EMA of the squared gradient

is initialized at 0. To avoid dividing by a small value in the

first iteration (which would result in a large increase of the

distance during the first iteration), we initialize the EMA of

the squared gradient at 1. For simplicity, Algorithm 2 only

describes a regular gradient descent update at step 9.

4. Experiments

Datasets. To evaluate our attack, we conduct experiments

on three datasets: MNIST, CIFAR10 and ImageNet with

two different budgets: 100 and 1000 iterations. On MNIST,

we test the attacks on the whole test set. On CIFAR10 and

ImageNet, we test the attacks on 1000 samples. These 1000

samples correspond to the first 1000 samples of the test set

on CIFAR10 and 1000 randomly chosen samples from the

validation set for ImageNet.

Models. It has been observed that some attacks can work

well for regularly trained models, and fail against defended

(i.e. adversarially trained) models [6, 13, 26]. Therefore, for

each dataset, we evaluate the attack against a collection of

models. Specifically, for MNIST, we use four models. The

first three are the same model as in [7, 25, 26] with three

training schemes: a regularly trained model we call Small-

CNN, a ℓ2-adversarially trained model from [26] we call

SmallCNN-DDN and a ℓ∞-adversarially trained model from

[34] we call SmallCNN-TRADES. To vary architectures, we

also test on the ℓ∞-adversarially trained model from [33]

we call CROWN-IBP. This is the large variant trained with

ǫ = 0.4. For CIFAR10, we use three models: a regularly

trained Wide ResNet 28-10 [32], a ℓ∞-adversarially trained

Wide ResNet 28-10 from [8] and a ℓ2-adversarially trained

ResNet-50 [17] from [1]. These models are fetched from

the RobustBench library [11]. On ImageNet, we test the

attacks on three ResNet-50 models: one regularly trained,

and two adversarially trained (ℓ2 and ℓ∞), available through

the robustness library [14]. All the models have been se-

lected because they have obtained high robust accuracies in

third-party evaluations [13].

Metrics. For each attack, we report the Attack Success

Rate (ASR) which is the proportion of examples for which

an adversarial perturbation was found, and the median per-

turbation size. To compare the complexities of the attacks,

we use the average number of forward and backward model

propagations per sample needed to perform each attack. In

the deep learning context, the number of model propagations

(forward and backward) is a good proxy for the complexity

of an attack, as these operations generally require orders of

magnitude more computations than the other operations of

an attack. We also prefer this measure to the attack run-time

since this makes for comparisons that are independent of

both software optimizations and hardware differences.

Hyperparameters. For our attack, we consider two bud-

gets: 100 and 1000 iterations. The goal of this work is to

propose a framework to generate minimally perturbed adver-

sarial example w.r.t. any distance. Therefore, we chose one

α (i.e. the coefficient of the EMA) per budget and one ǫ (i.e.

the increase of D in the first iteration, see Section 3.2.3) per

distance. α and ǫ are shared accross all datasets and models.

For the 100 iterations budget, we set α = 0.5 and for the

1000 iterations budget, we set α = 0.9. For ǫ, we chose an

initial value in relation to the usual scale of each distance:

typically a tenth of the expected distances between the adver-

sarial examples and the original inputs works well. Although

it requires prior knowledge on the expected distances, a good

ǫ can quickly be found when experimenting with a new dis-

tance function. Appendix F gives the initial values of ǫ used

in our experiments for each distance. The other hyperpa-

rameters are fixed. We use µ(0) = ρ(0) = 1, µmin = 10−6

and µmax = 1012, γ = 1.2, τ = 0.95 and M = 10 in all

our experiments. These values are not usual for Augmented

Lagrangian algorithms; they reflect our design choice of

combining inner and outer iterations. Since we update our

penalty parameters (i.e. µ and ρ) more frequently, γ can have

a smaller value.

Attacks. We compare our attack with various state-of-the-

art attacks from the literature. Specifically, we evaluate the

ℓ1 variant of our attack against the EAD attack [9] with

budgets of 9×100 and 9×1000, and FAB ℓ1 [12] and FMN

ℓ1 [25] attacks with budgets of 100 and 1000 iterations. For

the ℓ2 variant of our attack, we compare it to the C&W ℓ2
[7] attack with budgets of 9×1000 and 9×10 000, DDN

[26], FAB ℓ2 [12] and FMN ℓ2 [25] all with budgets of 100

and 1000 iterations.1 For FAB ℓ1 and ℓ2 on ImageNet, we

use the targeted variant of the attack, as was done in the

original work.2 We compare the CIEDE2000 variant of our

1We tried to include the B&B ℓ1 and ℓ2 attacks [5] in our comparison,

but their official implementations kept crashing. In the cases where it did

not, we observed median distances worse than FAB. As such, we omitted

the method completely from the experiments.
2The FAB attack needs to compute the Jacobian of the output of the

model w.r.t. to the input. This increases the complexity by a factor K (i.e.

the number of classes), making it impractical for datasets with large number

of classes, such as ImageNet. See Section 4 of [12].
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Distance Attack ASR (%)
Median

Distance

Forwards /

Backwards

ℓ1-norm

EAD 9×100 [9] 97.18 21.94 807 / 407

EAD 9×1000 [9] 97.76 19.19 5 025 / 2 516

FAB ℓ1 100 [12] 99.80 27.41 201 / 1 000

FAB ℓ1 1000 [12] 99.83 24.21 2 001 / 10 000

FMN ℓ1 100 [25] 69.87 – 100 / 100

FMN ℓ1 1000 [25] 95.35 7.34 1 000 / 1 000

ALMA ℓ1 100 99.90 11.45 100 / 100

ALMA ℓ1 1000 100 7.16 1 000 / 1 000

ℓ2-norm

C&W ℓ2 9×1000 [7] 40.19 – 8 643 / 8 643

C&W ℓ2 9×10 000 [7] 40.20 – 85 907 / 85 907

DDN 100 [26] 98.48 1.86 100 / 100

DDN 1000 [26] 99.83 1.61 1 000 / 1 000

FAB ℓ2 100 [12] 83.25 2.10 201 / 1 000

FAB ℓ2 1000 [12] 96.28 1.77 2 001 / 10 000

FMN ℓ2 100 [25] 70.99 3.18 100 / 100

FMN ℓ2 1000 [25] 96.02 1.77 1 000 / 1 000

APGDT
DLR ℓ2

‡ [13] 99.98 2.52 12 271 / 12 253

ALMA ℓ2 100 99.72 2.38 100 / 100

ALMA ℓ2 1000 100 1.61 1 000 / 1 000

Table 1: Performance for attacks on the MNIST dataset.

Geometric mean over the four models. For C&W ℓ2, the

attack fails on the IBP model (3% ASR), so the median

distance is undefined. ‡A binary search is performed on each

sample to get a minimal perturbation attack (Equation 2).

attack with, to the best of our knowledge, the only attack

using this metric: the PerC-AL attack [37] with budgets of

100 and 1000 iterations. Lastly, for the LPIPS variant, we

compare our attack to the LPA attack [21], which is designed

to solve Equation 1 (i.e. find a perturbation within a distance

budget). We perform a binary search on the distance budget

to find the minimum budget for which an adversarial example

can be found. We also add the APGDT
DLR ℓ2 [13] to the ℓ2

comparison with a binary search. For the binary seaarch, we

start with a large enough budget (depending on the dataset)

such that the attacks can reach 100% ASR and perform

enough binary search steps to reach a precision of 0.01 for

the ℓ2-norm and 0.001 for the LPIPS.

Finally, we perform a C&W type attack as a baseline for

the CIEDE2000 and LPIPS distances. We replace the ℓ2-

norm with the corresponding target distance and use a budget

of 9×1000 which is enough to get a good performance while

keeping an acceptable budget (compared to 9×10 000).

5. Results

To summarize the results, we report the geometric mean

of each metric over the models considered for each dataset,

in Table 1 for MNIST and Table 2 for CIFAR10 and Ima-

geNet. Tables containing the detailed results for each model

can be found in Appendix H. We also present robust ac-

curacy curves, which reflect directly the performance in

terms of minimum distance of the adversarial examples, by

showing an expected robust accuracy as a function of a per-

turbation budget. For all curves, the dotted lines denote the
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Figure 4: Robust accuracy curves for the SmallCNN-

TRADES and CROWN-IBP adversarially trained models on

MNIST against ℓ1 (top row) and ℓ2 (bottom row) attacks.
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Figure 5: Robust accuracy curves for regular and ℓ2-

adversarial ResNet-50 on ImageNet against ℓ1 attacks.

reduced budget attacks of the corresponding colors. With

these curves, we can also find the median distance (see Ap-

pendix H) for each attack by looking at the distance for which

the accuracy is 50%. All the robust accuracy curves can be

found in Appendix I. Here we display a few for which there

are significant differences between the attacks. For MNIST,

we show the curves in Figure 4 for the SmallCNN-TRADES

and CROWN-IBP models against ℓ1 and ℓ2 attacks. For

ImageNet, we show the curves for ResNet-50 regularly and

ℓ2-adversarially trained from [14] against ℓ1 attacks.

Across all datasets and models, our attack consistently

obtains results competitive with attacks tailored to each dis-

tance. On MNIST, ALMA ℓ1 is the only attack to reach

an ASR of 100% with only FAB ℓ1 outperforming it on

the SmallCNN model. FMN ℓ1 reaches a lower median ℓ1
at the cost of a reduced ASR on the CROWN IBP model.

ALMA ℓ2 is only marginally outperformed by APGDT
DLR ℓ2

on the SmallCNN and SmallCNN-DDN models, but again,

ALMA is the only attack to consistently reach 100% ASR.
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CIFAR10 ImageNet

Distance Attack ASR (%)
Median

Distance

Forwards /

Backwards
ASR (%)

Median

Distance

Forwards /

Backwards

ℓ1-norm

EAD 9×100 [9] (AAAI’17) 100 6.11 572 / 290 100 13.87 488 / 248

EAD 9×1000 [9] (AAAI’17) 100 5.44 4 284 / 2 146 100 12.83 3 758 / 1 883

FAB† ℓ1 100 [12] (ICML’20) 96.58 4.26 201 / 1 000 88.82 10.72 1 810 / 900

FAB† ℓ1 1000 [12] (ICML’20) 99.00 3.78 2 001 / 10 000 89.07 8.88 18 010 / 9 000

FMN ℓ1 100 [25] 99.90 3.64 100 / 100 94.33 8.43 100 / 100

FMN ℓ1 1000 [25] 99.83 3.54 1 000 / 1 000 93.93 7.58 1 000 / 1 000

ALMA ℓ1 100 100 4.31 100 / 100 100 19.79 100 / 100

ALMA ℓ1 1000 100 3.69 1 000 / 1 000 100 12.10 1 000 / 1 000

ℓ2-norm

C&W ℓ2 9×1000 [7] (SP’17) 100 0.40 7 976 / 7 974 99.83 0.57 7 248 / 7 246

C&W ℓ2 9×10 000 [7] (SP’17) 100 0.40 78 081 / 78 079 99.83 0.57 67 479 / 67 476

DDN 100 [26] (CVPR’19) 100 0.43 100 / 100 99.70 0.51 100 / 100

DDN 1000 [26] (CVPR’19) 100 0.42 1 000 / 1 000 99.87 0.50 1 000 / 1 000

FAB† ℓ2 100 [12] (ICML’20) 100 0.41 201 / 1 000 99.70 0.35 1 810 / 900

FAB† ℓ2 1000 [12] (ICML’20) 100 0.41 2 001 / 10 000 98.90 0.35 18 010 / 9 000

FMN ℓ2 100 [25] 99.90 0.43 100 / 100 99.43 0.38 100 / 100

FMN ℓ2 1000 [25] 99.83 0.40 1 000 / 1 000 99.63 0.36 1 000 / 1 000

APGDT
DLR ℓ2

‡ [13] (ICML’20) 100 0.38 5 345 / 5 321 100 0.34 6 096 / 6 068

ALMA ℓ2 100 100 0.40 100 / 100 100 0.38 100 / 100

ALMA ℓ2 1000 100 0.38 1 000 / 1 000 100 0.35 1 000 / 1 000

CIEDE

2000

C&W CIEDE2000 9×1000 100 0.93 6 729 / 6 726 100 1.39 5 635 / 5 632

PerC-AL 100 [37] (CVPR’20) 100 2.87 201 / 100 99.90 3.55 201 / 100

PerC-AL 1000 [37] (CVPR’20) 100 2.72 2 001 / 1 000 99.93 3.42 2 001 / 1 000

ALMA CIEDE2000 100 100 1.09 100 / 100 100 0.75 100 / 100

ALMA CIEDE2000 1000 100 0.78 1 000 / 1 000 100 0.63 1 000 / 1 000

LPIPS

×10
−
2

C&W LPIPS 9×1000 100 0.47 6 658 / 6 655 100 2.07 4 950 / 4 944

LPA‡ [21] (ICLR’21) 100 5.39 1 118 / 1 108 100 5.79 1 211 / 1 201

ALMA LPIPS 100 99.97 2.47 100 / 100 100 1.59 100 / 100

ALMA LPIPS 1000 100 0.60 1 000 / 1 000 100 1.13 1000 / 1000

Table 2: Performance for attacks on the CIFAR10 and ImageNet datasets. Geometric mean over the three models for each

dataset. †For ImageNet, we use the targeted variant of the attack as in [12] (see Section 4). ‡A binary search is performed on

each sample to get a minimal perturbation attack (Equation 2).

The results on MNIST get confirmed by the experiments on

CIFAR10 and ImageNet. All the variants of ALMA consis-

tently obtain 100% success rate (except for ALMA LPIPS

100). ALMA ℓ1 obtains worse median norms than FAB ℓ1
and FMN ℓ1, but again, at the cost of a reduced ASR for

both attacks. Surprisingly, FMN ℓ1 obtains lower ASR for

the higher budget variant, but with a lower median. For the

ℓ2 attacks, several perform similarly, with only APGDT
DLR

ℓ2 reaching a lower ℓ2 median with a 100% ASR. This is

expected given that this is a distance budget attack, with a

much higher overall complexity when combining it with a

binary search. For the CIEDE2000 distance, the PerC-AL at-

tack [37] obtains significantly larger median distance on both

CIFAR10 and ImageNet. Investigating the original code, we

found errors in the implementation of the CIEDE2000, re-

sulting in both wrong values and wrong gradients.3. The

LPIPS variant of ALMA performs much better than LPA

combined with a binary search for both datasets. Being a

3To verify this, we tested both implementations of the CIEDE2000

against the test values provided for this purpose in [27].

penalty base approach, our C&W baseline gets performance

that is on par or better than ALMA LPIPS on both datasets,

but at a much higher computational cost. However, it does

not perform as well for the CIEDE2000 distance.

Overall, our attack offers a reliable trade-off between

speed and performance in terms of ASR and perturbation

size, given that the hyper-parameters are not tuned beyond ǫ,
which is distance specific, and α which is directly related to

the number of steps.

6. Conclusion

In this paper, an adversarial attack based on Augmented

Lagrangian methods is proposed, which acts as a general

framework for generating minimally perturbed adversarial

examples w.r.t. several distances. In most of our experi-

ments, it offers a good trade-off between performance and

computational complexity in comparison to state-of-the-art

methods. We believe that our general method could serve

as a starting point for designing efficient attacks minimizing

new distances.
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Martı́nez. Numerical comparison of augmented lagrangian

algorithms for nonconvex problems. Computational Opti-

mization and Applications, 31(1), 2005. 3, 4, 5, 12

[5] Wieland Brendel, Jonas Rauber, Matthias Kümmerer, Ivan
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