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Abstract

Real-world data is often unbalanced and long-tailed, but
deep models struggle to recognize rare classes in the pres-
ence of frequent classes. To address unbalanced data, most
studies try balancing the data, the loss, or the classifier to
reduce classification bias towards head classes. Far less at-
tention has been given to the latent representations learned
with unbalanced data. We show that the feature extractor
part of deep networks suffers greatly from this bias. We
propose a new loss based on robustness theory, which en-
courages the model to learn high-quality representations
for both head and tail classes. While the general form of
the robustness loss may be hard to compute, we further de-
rive an easy-to-compute upper bound that can be minimized
efficiently. This procedure reduces representation bias to-
wards head classes in the feature space and achieves new
SOTA results on CIFAR100-LT, ImageNet-LT, and iNaturalist
long-tail benchmarks. We find that training with robustness
increases recognition accuracy of tail classes while largely
maintaining the accuracy of head classes. The new robust-
ness loss can be combined with various classifier balancing
techniques and can be applied to representations at several
layers of the deep model.

1. Introduction
Real-world data typically has a long-tailed distribution

over semantic classes: few classes are highly frequent, while
many classes are only rarely encountered. When trained
with such unbalanced data, deep models tend to produce
predictions that are biased and over-confident towards head
classes and fail to recognize tail classes.

Early approaches for handling unbalanced data used re-
sampling [12, 17] or loss reweighing [18, 27] aiming to
re-balance the training process. Other approaches address
unbalanced data by transferring information from head to
tail classes [31, 46, 41, 29], or by applying an adaptive loss
[6] or regularization of classifiers [21]. The main focus of
these techniques is on balancing the multi-class classifier.

Figure 1: Our distributional robustness loss is designed for
learning a representation where samples are kept close to
the centroid of their class. Here, the empirical centroid
µ̂2 (framed pink triangle) is estimated based only on few
samples (four pink triangles) and as a result it deviates far
from the true centroid (µ2). Our loss pulls the same-class
samples (green arrow), and pushes away other-class samples
(red arrows). The loss takes into account the estimation
error by pushing and pulling towards a worst-case possible
distribution within an uncertainty area around the estimated
centroid (dashed red line). Uncertainty areas are typically
larger for tail classes, compared with head classes that have
many samples (blue dashed line around µ̂1).

Far less attention has been given to the latent representa-
tions learned with unbalanced data. Intuitively, head classes
are encountered more often during training and are expected
to dominate the latent representation at the top layer of a
deep model. Counter to this intuition, [21] compared a series
of techniques for rebalancing representations and concluded
that ”data imbalance might not be an issue in learning
high-quality representations”, and that strong long-tailed
recognition can be achieved by only adjusting the classifier.
However, the effect of unbalanced data on the learned rep-
resentations is far from being understood, and the extent to
which it may hurt classification accuracy is unknown. While
existing rebalancing methods do not improve representa-
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tions, the question remains if better representations could
substantially improve recognition with unbalanced data.

The current paper focuses on improving the representa-
tion layer of deep models trained with unbalanced data. We
show that large gains in accuracy can be achieved simply by
balancing the representation at the last layer. The key insight
is that the distribution of training samples of tail classes does
not represent well the true distribution of the data. This
yields representations that hinder the classifier applied to
that representation.

To address this problem, we introduce ideas from robust
optimization theory. We design a loss that is more robust to
the uncertainty and variability of tail representations. Stan-
dard training follows Empirical Risk Minimization (ERM),
which is designed to learn models that perform well on the
training distribution. However, ERM assumes that the test
distribution is the same as the training distribution, and this
assumption often breaks with tail classes. In comparison,
Distributionally Robust Optimization (DRO) [28, 14, 4] is
designed to be robust against likely shifts of the test distri-
bution. It learns classifiers that can handle the worst-case
distribution within a neighborhood of the training distribu-
tion. Figure 1 illustrates this idea.

In the general case, computing a loss based on a worst-
case distribution may be computationally hard. Here, we
show how the worst-case loss can be bounded from above,
with a bound that has an intuitive form and can be easily
minimized. The resulting bound allows us to minimize the
DRO loss, which only affects the representation, and to
combine it with a standard classification loss, which tunes a
classifier on top of the representation.

The main contributions of this paper are:

1. We formulate learning with unbalanced data as a prob-
lem of robust optimization and highlight the role of
high variance in hindering tail accuracy.

2. We develop a new loss, DRO-LT Loss, based on distri-
butional robustness optimization for learning a balanced
feature extractor. Training with DRO-LT yields repre-
sentations that capture well both head and tail classes.

3. We derive an upper bound of the DRO-LT loss that
can be computed and optimized efficiently. We further
show how to learn the robustness safety margin for
each class, jointly with the task, avoiding additional
hyper-parameter tuning.

4. We evaluate our approach on four long-tailed visual
recognition benchmarks: CIFAR100-LT, CIFAR10-LT,
ImageNet-LT, and iNaturalist. Our proposed method
consistently achieve superior performance over previ-
ous models.

2. Related Work

2.1. Long-tail recognition

Real-world data usually follows a long-tailed distribution,
which causes models to favor head classes and overfit tail
classes [5, 35]. Previous efforts to address this effect can
be divided into four main approaches: Data-manipulation
approaches, Loss-manipulation approaches, Two-stage fine-
tuning, and ensemble methods.

Data-manipulation (re-sampling): Data-manipulation
approaches aim to balance long-tail data. There are three pop-
ular techniques of resampling strategies: (1) Over-sampling
minority (tail) classes by simply copying samples [7, 17].
(2) Under-sampling majority (head) classes by removing
samples [12, 20]. (3) Generating augmented samples to sup-
plement tail classes [2, 8, 24, 7]. While simple and intuitive,
over-sampling methods suffer from heavy over-fitting on
the tail classes, under-sampling methods degrade the gen-
eralization of models, and data augmentation methods are
expensive to develop.

Loss-manipulation (re-weighting): Loss reweighting
approaches encourage learning of tail classes by setting costs
to be non-uniform across classes. For instance, [18] scaled
the loss by inverse class frequency. An alternative strategy
down-weighs the loss of well-classified examples, preventing
easy negatives from dominating the loss [27] or dynamically
rescale the cross-entropy loss based on the difficulty to clas-
sify a sample [34]. [6] proposed to encourage larger margins
for rare classes. [22] use class-uncertainty information, us-
ing Bayesian uncertainty estimates, to learn robust features,
and [10] reweighs using the effective number of samples
instead of proportional frequency.

Two-stage fine-tuning: Two-stage methods separate the
training process into representation learning and classifier
learning [32, 21, 30, 35]. The first stage aims to learn good
representations from unmodified long-tailed data, training
using conventional cross-entropy without re-sampling or re-
weighting. The second stage aims to balance the classifier by
freezing the backbone and finetuning the last fully connected
layers with re-sampling techniques or by learning to unbias
the confidence of the classifier. Those methods basically
assume that the bias towards head classes is significant only
in the classifier (i.e, last fully connected layer), or that tweak-
ing the classifier layer can correct the underlying biases in
the representation.

Ensemble-models: Ensemble models focus on generat-
ing a balanced model by assembling and grouping models.
Typically, classes are separated into groups, where classes
that contain similar training instances are grouped together.
Then, individual models focused on each group are assem-
bled to form a multi-expert framework. [46] learned one
branch for head classes and another for tail classes, then
combine the branches using a soft-fusion procedure. [43]
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distilled a unified model from multiple teacher classifiers.
Each classifier focuses on the classification of a small and
relatively balanced group of classes from the data. [40]
described a shared architecture for multiple classifiers, a
distribution-aware loss, and an expert routing module. The
current paper proposes a two-stage approach for training one
model with a single classifier. Thus, we compare our method
with non-ensemble approaches.

2.2. Distributionally robust optimization

Distributionally Robust Optimization (DRO) [28, 14, 4]
considers the case where the test distribution is different
from the train distribution. It does that by defining an uncer-
tainty set of test distributions around the training distribution
and learning a classifier that minimizes the expected risk
with respect to the worst-case test distribution. DRO has
been shown to be equivalent to standard robust optimization
(RO) [44] and has a strong relationship with regularization
methods [36], Risk-Aversion methods and game theory [33].
For more details, see [33]. As far as we know, DRO theory
was not applied for long-tail learning.

Many studies looked into learning representations that
are robust to adversarial attacks [3, 1, 16] but this is outside
the scope of the current paper.

3. Overview of our approach

We start with an overview of the main idea of our ap-
proach and provide the details in subsequent sections.

Our goal is to learn a representation at the last layer of
a deep network, such that the distributions of samples of
different classes are well separated. Then, they can later
be correctly classified by different linear classifiers. Deep
networks can learn such representations efficiently when
trained with enough labeled data. However, when a class has
only few samples, the distribution of training samples may
not represent well the true distribution of the data, and the
representations learned by the model hinder the classifier.

To remedy this shortcoming, we design a loss that is
applied to the representation, which takes into account errors
due to a small number of samples. Figure 1 illustrates this
idea. Our loss extends standard contrastive losses, which
pull samples closer to the centroid of their own class and
push away samples that belong to other classes. Our new
loss accounts for the fact that the true centroids are unknown,
and their estimate is noisy. It, therefore, optimizes against
the worst possible centroids within a safety hyper ball around
the empirical centroid.

In the general case, computing such a worst-case loss may
be computationally hard. We further derive an upper bound
of that loss that can be computed easily and show that using
that bound as a surrogate loss, yields significantly better
representations. The resulting loss has a simple general

form, yielding that the loss for a sample z is

L(z)Robust = − log
e−d(µ̂c,z)−∆∑
z′ e−d(µ̂c,z′)−∆′ . (1)

where d(µ̂c, z) measures the distance in feature space be-
tween a sample z and the estimated centroid of its class µ̂c,
∆ and ∆′ are robustness margins that we describe below.

4. Distributional Robust Optimization
When learning a classifier, we seek a model f that min-

imizes the expected loss for the data distribution P (x, y).

min
f

Ex∼P [lf (x)] =

∫
l(f(x), y)dP (x, y). (2)

Since the data distribution is not known, Empirical Risk Min-
imization (ERM) [39] proposes to use the training data for an
empirical estimate of the data distribution Pδ = 1

n

∑
δ(x =

xi, y = yi), where δ is the kronecker delta.

ERM: min
f

E(x,y)∼Pδ
[lf (x)] (3)

Unfortunately, using Pδ to approximate P makes the naive
assumption that the test distribution would be close to the
empirical train distribution. That assumption may be far
from true when the training data is small. In those cases, it
is beneficial to choose other estimates of P that are more
likely to reduce the loss over the test distribution.

One such solution is given by Distributionally robust op-
timization (DRO) [14, 4]. It suggests learning a model f that
minimizes the loss within a family of possible distributions

DRO: min
f

sup
Q∈U

E(x,y)∼Q[lf (x)]. (4)

DRO aims to perform well simultaneously for a set of test
distributions, each in an uncertainty set U . The set of dis-
tributions U is typically chosen as a hyper ball of radius ϵ
(ϵ-ball) around the empirical training distribution P̂ :

U := {Q : D(Q, P̂ ) ≤ ϵ}, (5)

where D is a discrepancy measure between distributions,
usually chosen to be the KL-divergence or the Wasserstein
distance.

5. Our approach
We now formally describe our approach: DRO-LT Loss.

5.1. Preliminaries

We are given n labeled samples (xi, yi) i = 1, . . . , n,
where yi is one of k classes {c1, . . . , ck}. Let fθ be a feature
extractor function f with learnable parameters θ, which maps
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any given input sample xi to zi = fθ(xi). The set of mapped
input Z = z1, ...zn resides in some latent vector space.

Let Sc = {zi|yi = c} be the set of feature vectors rep-
resenting samples whose label is c. We denote by µ̂c the
empirical centroid of that set, namely the mean of all feature
vectors z of class c, µ̂c = 1

|c|
∑|c|

i=1 zi. We also denote by
µc the mean of the true data distribution P of samples from
class c, µc = Ex∼P |y=c[z].

5.2. A loss for representation learning

We adopt ideas from metric learning and representation
learning [42, 26, 37] for designing a representation-learning
loss.

Given a representation zi of a sample xi that has a label
yi = c, we wish to design a loss that maps zi close in
feature space to other samples from the same class, and far
from samples of other classes. We start by developing a
contrastive loss and later extend it to a robust one.

Consider a sample (xi, yi) from a class yi = c, whose
feature representation is zi. We model the samples of class
c as if they are distributed around a centroid µc, and the
likelihood of a sample decays exponentially with the distance
from the centroid µc of class c. Such exponential decay
has been long used in metric learning and can be viewed
as reflecting a random walk over the representation space
[15, 13]. The normalized likelihood of a sample is, therefore:

P (zi|µc) =
e−d(µc,zi)∑

z′∈Z e−d(µc,z′)
, (6)

where d is a measure of divergence or distance between the
centroid µc and a feature representation zi. d is typically set
to be the Euclidean distance, but can also be modeled with
heavier tails as when using a student t-distribution [38].

Similarly, for a set Sc = {zi|yi = c}, the log-likelihood
is:

logP (Sc|µc) =
∑
zi∈Sc

log
e−d(µc,zi)∑

z′∈Z e−d(µc,z′)
. (7)

We define a negative log-likelihood loss as a weighted aver-
age over per-class losses:

LNLL =
∑
c∈C

w(c) (− logP (Sc|µc)) (8)

= −
∑
c∈C

w(c)
∑
zi∈Sc

log
e−d(µc,zi)∑

z′∈Z e−d(µc,z′)
,

where w(c) are class weights. Setting w(c) = 1
|Sc| gives

equal weighting to all classes and prevents head classes from
dominating the loss.

5.3. A robust loss

The log-likelihood loss of Eq. (7) operates under the
assumption that the centroid of each class µc is known. In
reality, it is not available to us. Following Empirical-risk
minimization, we could naively plug in the empirical esti-
mate µ̂c in Eq. (7), but µ̂c may be a poor approximation of
µc, and estimation error grows as the number of samples
|Sc| decreases. As a result, the log-likelihood and the loss
would also be badly estimated.

Instead of approximating the NLL loss (− logP (Sc|µc)),
we show that we can bound it with high probability by com-
puting the worst-case loss over a set of candidate centroids.
For that purpose, we take an approach based on distribution-
ally robust optimization.

Let p̂c be the empirical distribution of samples of class c.
We define the uncertainty set of candidate distributions in its
neighborhood to be

Uc := {q|D(q||p̂c) ≤ ϵc}, (9)

where D is a measure of divergence of two distribu-
tions. Specifically, we consider here the case where
D is the Kullback-Leibler divergence, and the distribu-
tions under consideration are same-variance spherical Gaus-
sians. In this case, their divergence equals DKL(q||p̂c) =
1

2σ2 d(µq, µp̂c
)2[9], where d is the Euclidean distance. Hence

for any q ∈ Uc, we have

d(µq, µp̂c
) ≤ σc

√
2ϵc ≡ εc, (10)

where we define εc ≡ σc

√
2ϵc for convenience.

We now derive an upper bound on the NLL loss that we
can compute using the estimated centroids µ̂c. The form of
the bound is very intuitive, it can be viewed as a modification
of the NLL loss, where the distance between a sample and
an empirical centroid, is increased by a factor that depends
on the radius of the uncertainty ball.

Theorem 1. Let ϵc be the radius of the uncertainty set Uc

and let σc be the variance of the distribution of a sample in
class c. Let p(ϵ) be the probability that the true distribution
whose centroid is µc is within Uc. The per-class negative
log-likelihood is bounded by

− logP (z|µc) ≤ − log
e−d(µ̂c,z)−2εc∑

z′∈Z e−d(µ̂c,z′)−2εcδ(z′,c)
(11)

with probability p(ϵ), where δ(z, c) = 1 if z is of the class c
and 0 otherwise and εc = σc

√
2ϵc.

Proof. Denote the negative log-likelihood of a given sample
z and class distribution p with a centroid µ by L(z, p) =
− logP (z|µ). With probability p(ϵ), the true distribution pc
is within the uncertainty ball pc ∈ Uc. Therefore

L(z, pc) ≤ max
q∈Uc

L(z, q) = max
q∈Uc

(− logP (z|µq
c)). (12)
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Here, µq
c is the centroid of a distribution q ∈ Uc. To bound

− logP (z|µq
c), we use the triangle inequality and write:

d(µq
c , z) ≤ d(µ̂c, z) + d(µ̂c, µ

q
c) (13)

d(µ̂c, z) ≤ d(µq
c , z) + d(µ̂c, µ

q
c)

yielding

−d(µq
c , z)≥−d(µ̂c, z)− d(µ̂c, µ

q
c)≥−d(µ̂c, z)− εc (14)

−d(µq
c , z)≤−d(µ̂c, z) + d(µ̂c, µ

q
c)≤−d(µ̂c, z) + εc (15)

Applying Eq. (14) to the numerator of Eq. (6), and applying
Eq. (15) to its denominator, we obtain:

P (z|µq
c) =

e−d(µq
c ,z)∑

z′∈Z e−d(µq
c ,z′)

≥ e−d(µ̂c,z)−2εc∑
z′∈Z e−d(µ̂c,z′)−2εcδ(z′,c)

(16)
where δ(z, c) = 1 when c is the class of z and 0 otherwise.
This inequality holds for all distributions q ∈ Uc, and also
for the true distribution µc as a special case (with probability
p(ϵ)). The negative log-likelihood is therefore bounded by

− logP (z|µc) ≤ − log
e−d(µ̂c,z)−2εc∑

z′∈Z e−d(µ̂c,z′)−2εcδ(z′,c)
.

(17)
This completes the proof.

Based on the theorem, define a surrogate robustness loss:

LRobust = −
∑
c∈C

w(c)
∑
z∈Sc

log
e−d(µ̂c,z)−2εc∑

z′ e−d(µ̂c,z′)−2εcδ(z′,c)
(18)

This surrogate loss amends the loss of Eq. (8) in a simple
and intuitive way. It increases the distance d(µ̂c, z) between
a sample and an empirical centroid in a way that depends on
the radius of the uncertainty ball of a class.

Joint loss. In practice, we train the deep network with a
combination of two losses. A standard cross-entropy loss is
applied to the output of the classification layer, and the robust
loss is applied to the latent representation of the penultimate
layer. We linearly combine these two losses

L = λLCE + (1− λ)LRobust. (19)

The trade-off parameter λ can be tuned using a validation
set. See implementation details below.

p(ε) and Lower bound. Appendix A provides a formal
definition of p(ε). Appendix B derives a lower bound of our
loss and also shows empirically that the bounds are tight in
our experiments.

6. Training
Uncertainty radius: The size of the uncertainty ϵ-ball
around each class plays an important role. When the un-
certainty radius is too small, the probability that the true
centroid is within the uncertainty area decreases, together
with the probability that the bound holds. When the radius
is too large, the bound is more likely to hold, but it becomes
less tight. Furthermore, since tail classes have fewer samples,
the estimate of class centroids is expected to be noisier and
a larger radius is needed.

We explored three ways to determine the radius:
1. Shared ε: All classes share the same uncertainty radius.
2. Sample count ε/

√
n: The class radius scales with 1/

√
n,

where n is the number of training samples. This scaling
is based on the fact that the standard-error-of-the-mean
decays as

√
n, and leads to tail classes having a larger

safety radius. See Appendix C for more details.
3. Learned ε: We treated the radius as a learnable parameter

and tuned its value during training.
In the first two cases, the radius parameter ε was treated as a
hyper-parameter and tuned using a validation set.

Training process: To compute the robustness loss, an ini-
tial feature representation of the data is required for estimat-
ing class centroids. As a result, during training, we first train
the model with standard cross-entropy loss (λ = 1) to learn
initial feature representations and centroids. Then, we add
the DRO loss to the training by setting λ < 1. Finally, as
in [21], we learn a balanced classifier by freezing the fea-
ture extractor and fine-tune only the classifier with balanced
sampling.

Estimating centroids: Calculating the centroids for each
class is computationally expensive if computed often using
the full dataset. One could estimate the centroids within
each batch, but with unbalanced data, minority classes would
hardly have any samples and their centroid estimates would
be very poor. Instead, we compute the features zi for every
sample xi at the beginning of every epoch, compute the
centroids for each class, and keep them fixed in memory for
the duration of the epoch.

7. Experiments
7.1. Datasets

We evaluated our proposed method using experiments on
three major long-tailed recognition benchmarks.

(1) CIFAR100-LT [6]: A long-tailed version of CI-
FAR100 [25]. CIFAR100 consists of 60K images from 100
categories. Following [6], we control the degree of data
imbalance with an imbalance factor β. β = Nmax

Nmin
, where

Nmax and Nmin are the number of training samples for the
most frequent and the least frequent classes, respectively.
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Imbalance Type Long-tailed CIFAR-100
Imbalance Ratio 100 50 10
CE* 38.32 43.85 55.71
ReSample [10] 33.44 - 55.06
ReWeight [10] 33.99 - 57.12
Focal Loss [27] 38.41 44.32 55.78
LDAM Loss [6] 39.60 44.97 56.91
τ -norm* [21] 41.11 46.74 57.06
cRT* [21] 41.24 46.83 57.93
smDRAGON [35] 43.55 46.85 58.01
SSL* [23] 37.51 44.02 56.70
SSP [45] 43.43 47.11 58.91
DRO-LT (Ours)
ε = 0 (ERM) 43.92 52.31 59.54
Shared ε 45.66 55.32 61.22
ε/
√
n 46.92 57.20 63.10

Learned ε 47.31 57.57 63.41

Table 1: Top-1 accuracy of ResNet32 on long-tailed CIFAR-
100 [6], comparing our method and SoTA techniques. Aster-
isks * denote reproduced results. DRO-LT variants achieve
best results on all imbalance ratios.

We conduct experiments with β = 100, 50, and 10.
(2) ImageNet-LT [31]: A long-tailed version of the large-
scale object classification dataset ImageNet [11] by sampling
a subset following the Pareto distribution with power value
α = 6. Consists of 115.8K images from 1000 categories
with 1280 to 5 images per class. (3) iNaturalist [19]: A
large-scale dataset for species classification. It is long-tailed
by nature, with an extremely unbalanced label distribution.
Has 437.5K images from 8,142 categories.

7.2. Compared methods

We compared our approach with the following methods.
(A) Baselines: CE: Naive training with a cross-entropy
loss; ReSample: Over-sampling classes to reach a uniform
distribution as in [6]. (B) Loss-manipulation: Reweight:
Reweight the loss as in [6, 46]; Focal Loss [27] and LDAM
Loss [6]. (C) Two-stage fine-tuning: τ -norm [21], cRT
[21] and smDragon [35]. (D) Representation learning:
SSL the method by [23] and SSP, the method by [45].
(E) DRO-LT variants: We compared four ways to set the
radii of Uc. Set ε = 0 (ERM); ε value shared across all
classes; A shared value divided by the square root of class
size (ε/

√
n); and a learned value per class.

7.3. Evaluation Protocol

Following [31] and [21], we report the top-1 accuracy
over all classes on class balanced test sets. This metric is
denoted by ”Acc”. For CIFAR-100 and ImageNet-LT, we
further report accuracy on three splits of the set of classes.

”Many”: classes with more than 100 train samples; ”Med”:
classes with 20 – 100 train samples; and ”Few”: classes
with less than 20 train samples.

Figure 2: Learned ε values for each class of a ResNet-32
trained on CIFAR100-LT with imbalance ratio 50. Blue:
Polynomial fit.

7.4. Implementation details

In all experiments, we use an SGD optimizer with a mo-
mentum of 0.9 to optimize the network. For long-tailed
CIFAR-100, we follow [6] and train a ResNet-32 backbone
on one GPU with a multistep learning-rate schedule. For
ImageNet-LT and iNaturalist, we follow [21] and use the
cosine learning-rate schedule to train a ResNet-50 backbone
on 4 GPUs.

Hyper-parameter tuning: We determined the num-
ber of training epochs (early-stopping), and tuned hyper-
parameters using the validation set. We optimized the
following hyper-parameters: (1) Radius parameter ε ∈
{1, 2, 5, 10, 30, 70} for ”Shared ε” and ”Sample Count
ε/
√
n”. (2) Trade-off parameter λ ∈ {0, 0.3, 0.5, 0.7, 1}.

(3) Learning rate ∈ {10−4, 10−3, 10−2}. we studied the sen-
sitivity of the accuracy to the values of ε and λ, and found
that high accuracy is obtained for a wide range of ϵ values.
We also found accuracy to be quite stable when tuning λ and
selected λ = 0.5. See Appendix D for details.

8. Results
CIFAR100-LT: Table 1 compares DRO-LT with com-

mon long-tail methods on CIFAR100-LT. It shows that all
our robust loss variants consistently achieve the best results
on all imbalance factors, emphasizing the importance of ro-
bust learning in unbalanced data. ”Learned ε” outperforms
other variants of our method. CIFAR-10-LT: Appendix G
provides results for CIFAR-10-LT with imbalanced ratio 100.
ImageNet-LT: Table 2 further evaluates our approach on
ImageNet-LT and CIFAR100-LT (imbalance factor=100) re-
porting accuracy for different test splits. DRO-LT performs
well on tail classes (”Few”) as well as head classes (”Many”).
This contrasts with previous methods that sacrifice head ac-
curacy for better tail classification. This also suggests that
DRO-LT learns high-quality features for all classes. iNat-
uralist: Table 3 evaluates our approach on the large-scale
iNaturalist. DRO-LT slightly improves the accuracy com-
pared with SoTA baselines. See Appendix F for more results
and further analysis.

9500



Long-tailed CIFAR-100 Long-tailed ImageNet
Methods Many Med Few Acc Many Med Few Acc
CE* 65.5 37.9 7.4 38.3 64.0 38.8 5.8 41.6
LDAM Loss [6] 61.0 41.6 19.8 39.6 - - - -
OLTR [30] 61.8 41.4 17.6 41.2 - - - -
τ -norm [21] 61.4 42.5 15.7 41.1 56.6 44.2 27.4 46.7
smDragon [35] 60.5 44.3 23.5 43.5 59.7 44.2 25.3 47.4
SSL * [23] 64.1 36.9 7.1 37.5 61.4 47.0 28.2 49.8
DRO-LT (Ours)
ε = 0 (ERM) 61.9 43.7 22.2 43.9 61.0 45.5 26.8 48.1
Shared ε 64.1 47.9 21.5 45.7 ± 0.2 62.6 45.2 30.5 51.6 ± 0.4
ε/
√
n 65.0 49.8 22.3 46.9 ± 0.2 63.8 49.5 32.7 53.0 ± 0.3

Learnable ε 64.7 50.0 23.8 47.3 ± 0.1 64.0 49.8 33.1 53.5 ± 0.2

Table 2: Top-1 accuracy on long-tailed CIFAR-100 [6] with imbalance factor 100, and ImageNet-LT[31]. We also report
many-shot (”Many”), medium-shot (”Med”) and few-show (”Few”) performance separately. Our method performs well on tail
classes without sacrificing head accuracy. Asterisks * denote results reproduced using code published by authors.

iNaturalist

CE 61.7
LDAM Loss [6] 68.0
τ−norm [21] 69.5
CB LWS [21] 69.5
smDragon [35] 69.1
SSL * [23] 66.4

DRO-LT (ours)
Learned ε 69.7 ± 0.1

Table 3: Top-1 accuracy
on long-tailed iNaturalist.
DRO-LT achieves slightly
better results compared to
previous methods. Aster-
isks * denote reproduced re-
sults by us.

Classifier vs feature extractor: Our method focuses
on improving the learned representation at the penultimate
layer. Other methods focused on improving the classifier
applied to that representation. Therefore, it is interesting
to explore the relation between these two tasks (compare
with [46, 21]). We, therefore, compared different feature
extractors and classifier training methods.

For representation learning, we employ plain training
with a cross-entropy loss (CE), balanced resampling of the
data (RS) and our method (DRO-LT). For classifier learn-
ing, we freeze the parameters of the feature extractor and
fine-tune the classifier in three ways: cross-entropy loss
(CE), re-sampling (RS) following the protocol of [6], and
balanced classifier (LWS) [21]. Table 4 provides the top-1
accuracy of all combinations. It shows that our represen-
tation learning approach enables all types of classifiers to
reach good performance, compared to other representation
learning approaches. This strongly suggests that our method
learns: (1) good feature representations for both head and tail
classes, and (2) to separate them in a way that discriminative
classifiers can easily distinguish between classes.

Adaptive robustness: Figure 2 shows the values of
uncertainty per-class radii (ε) that were learned by training
a ResNet-32 on CIFAR100-LT with an imbalance ratio of
50. The model learned slightly larger radii for tail classes
compared with head classes. See the supplemental for details
about the effect of the radius on accuracy.

Robustness: Our loss is expected to improve recogni-

Figure 3: Accuracy of a nearest-centroid neighbor classi-
fier when applied to convolutional layers 0, 10, 20, and
30 of a ResNet-32. Top: The model was trained on bal-
anced CIFAR-100. The validation accuracy grows when
using higher layers. Bottom: The model was trained on
CIFAR-100-LT. We report balanced validation accuracy for
head classes (blue), medium classes (orange) and tail classes
(green). The accuracy gap between head and tail classes is
substantial even at all layers.

tion mostly at tail classes. Figure 4 compares train error and
test error between a model trained with cross-entropy loss
(red) and a model trained with our approach (blue). Using a
robustness loss cuts down errors substantially, in tail classes,
without hurting head classes.

Feature space visualization: To gain additional insight,
we look at the t-SNE projection of learned representations
and compared vanilla cross-entropy loss with our proposed
method. Figure 5 shows that our learned feature space is
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Classifier learning
Representation
learning CE RS (cRT) LWS [21]
CE 38.5 41.2 41.4
RS 34.9 37.6 36.3
DRO-LT (ours) 41.2 47.3 46.8

Table 4: Top-1 accuracy of different representation learning
manners and classifier learning manners, on CIFAR100-LT.
CE refers to Cross-Entropy, RS refers resampling and LWS
refers to balanced classifier according to [21]. The results
suggest that simple resampling methods achieve good results
when the learned features are good for both head and tail.

Figure 4: Comparing train and test error between a model
trained with vanilla cross-entropy loss and a model trained
with our DRO-LT. The gap between the train error and test
error for tail classes is much lower in DRO-LT compared
with vanilla, while remaining the same for head classes.

more compact with margins around head and tail classes.
Tail classes have larger margins since the estimation of their
features is less accurate.

How unbalanced are latent representations? The
above analysis focused on correcting the representation at
the penultimate layer. But how biased are the representations
at lower layers? Intuitively, the low layers represent more
”physical” properties of inputs, while higher layers capture
properties that correspond more to semantic classes. One
would expect that early layers would be quite balanced.

We tested class imbalance in several layers of a ResNet-
32 in the following way. We first trained a ResNet-32 on
the unbalanced CIFAR100-LT dataset. Then, for each latent
representation, we computed the centroids of each class and
used them to classify all samples using a nearest-centroid
classifier. Figure 3 shows the accuracy obtained with this
classifier when applied to layers 0, 10, 20, and 30 of the
ResNet-32. When training with balanced data (left), the
accuracy grows when using higher layers, as expected. Sur-
prisingly, when training with unbalanced data (right), there is
a substantial difference in accuracy achieved for head and tail
classes in every layer that we tested. While accuracy grows
when using higher layers, accuracy differences between head
and tail classes are maintained, even in low layers that are
believed to represent class agnostic features. In Appendix H,

Figure 5: t-SNE visualization of embedding space of
CIFAR100-LT obtained using cross-entropy loss and DRO-
LT Loss method. The feature embedding of our model is
more compact for both head (blue) and tail (green and red)
classes and better separated. The number of samples for
each class is written in parentheses.

we compare the accuracy of a nearest-centroid neighbor clas-
sifier between a model trained with standard cross-entropy
loss and one trained with DRO-LT. We show that DRO-LT
narrows the accuracy gap between head and tail.

9. Discussion
This paper investigates the feature representations learned

by deep models trained on long-tail data. We find that such
models suffer greatly from bias towards head classes in their
feature extractor (backbone), which hurts recognition. This
is in contrast to previous studies suggesting that unbalanced
data does not hurt representation learning and re-balancing
the classifier layer is sufficient. To learn a balanced represen-
tation, we take a robustness approach and develop a novel
loss based on Distributionally Robust Optimization (DRO)
theory. We further derive an upper bound of that loss that
can be minimized efficiently. We show how the robustness
safety margin can be learned during training, and do not
require additional hyper-parameter tuning.

Training with a combination of the DRO-LT loss and a
standard classifier sets new state-of-the-art results on three
long-tail benchmarks: CIFAR100-LT, ImageNet-LT, and
iNaturalist. Our method not only improves the performance
of tail classes but also maintains high accuracy at the head.
These results suggest that proper training of representations
for unbalanced data can have a large impact on downstream
accuracy. We believe that our finding not only contributes
to a deeper understanding of the long-tailed recognition task
but can offer inspiration for future work.
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