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Figure 1. Some examples of our X4K1000FPS dataset, which contain diverse motions in 4K-resolution of 1000-fps. The numbers below

the examples are the magnitude means of optical flows between two input frames in 30 fps. Please refer to the arXiv version to watch this

figure as a video clip.

Abstract

In this paper, we firstly present a dataset (X4K1000FPS)
of 4K videos of 1000 fps with the extreme motion to the
research community for video frame interpolation (VFI),
and propose an extreme VFI network, called XVFI-Net,
that first handles the VFI for 4K videos with large motion.
The XVFI-Net is based on a recursive multi-scale shared
structure that consists of two cascaded modules for bidi-
rectional optical flow learning between two input frames
(BiOF-I) and for bidirectional optical flow learning from
target to input frames (BiOF-T). The optical flows are sta-
bly approximated by a complementary flow reversal (CFR)
proposed in BiOF-T module. During inference, the BiOF-
I module can start at any scale of input while the BiOF-
T module only operates at the original input scale so that
the inference can be accelerated while maintaining highly
accurate VFI performance. Extensive experimental results
show that our XVFI-Net can successfully capture the essen-
tial information of objects with extremely large motions and
complex textures while the state-of-the-art methods exhibit
poor performance. Furthermore, our XVFI-Net framework
also performs comparably on the previous lower resolution
benchmark dataset, which shows a robustness of our algo-
rithm as well. All source codes, pre-trained models, and
proposed X4K1000FPS datasets are publicly available at
https://github.com/JihyongOh/XVFI.

*Both authors contributed equally to this work.
†Corresponding author.

1. Introduction

Video frame interpolation (VFI) converts low frame rate

(LFR) contents to high frame rate (HFR) videos by syn-

thesizing one or more intermediate frames between given

two consecutive frames, and then the videos of fast motion

can be smoothly rendered in an increased frame rate, thus

yielding reduced motion judder [28, 24, 23, 10]. Therefore,

it is widely used for various practical applications, such as

adaptive streaming [45], novel view interpolation synthe-

sis [11], frame rate up conversion [29, 5, 49], slow mo-

tion generation [18, 4, 30, 32, 27, 34] and video restora-

tion [21, 42, 14, 41]. However, VFI is significantly chal-

lenging, which is attributed to diverse factors such as oc-

clusions, large motions and change of light. Recent deep-

learning-based VFI has been actively studied, showing re-

markable performances [47, 4, 7, 37, 25, 13, 31, 50, 6, 33].

However, they are often optimized for existing LFR bench-

mark datasets of low resolution (LR), which may lead to

poor VFI performance, especially for videos of 4K resolu-

tion (4096×2160) or higher with very large motion [1, 21].

Such 4K videos often contain frames of fast motion with

extremely large pixel displacements for which conventional

convolutional neural networks (CNNs) do not effectively

work with receptive fields of limited sizes.

To solve the above issues for deep learning-based

VFI methods, we directly photographed 4K videos to

construct a high-quality HFR dataset of high resolution,

called X4K1000FPS. Fig. 1 shows some examples of our

X4K1000FPS dataset. As shown, our videos of 4K resolu-

tion have extremely large motions and occlusions.
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Figure 2. VFI results for extreme motions. Our XVFI-Net can gen-

erate a more stable intermediate frame with very large motions

than two recent SOTA methods, FeFlow [13] and DAIN [4], which

are newly trained on our dataset for fair comparisons.

We also first propose an extreme VFI model, called

XVFI-Net, that is effectively designed to handle such a

challenging dataset of 4K@1000fps. Instead of directly

capturing extreme motions through consecutive feature

spaces with deformable convolution as recent trends in

video restoration [13, 46, 42, 41, 20], or using very large-

sized pretrained networks with extra information such as

contexts, depths, flows and edges [4, 50, 30, 13], our XVFI-

Net is simple but effective, which is based on a recur-

sive multi-scale shared structure. The XVFI-Net has two

cascaded modules: one for the bidirectional optical flow

learning between two input frames (BiOF-I) and the other

for the bidirectional optical flow estimating from target to

the inputs (BiOF-T). The BiOF-I and BiOF-T modules are

trained in combination with multi-scale losses. However,

once trained, the BiOF-I module can start from any down-

scaled input upward while the BiOF-T module only oper-

ates at the original input scale at inference, which is com-

putationally efficient and helps to generate an intermediate

frame at any target time instance. Structurally, the XVFI-

Net is adjustable in terms of the number of scales for infer-

ence according to the input resolutions or the motion magni-

tudes, even if training is once over. We also propose a novel

optical flow estimation from time t to those of the inputs,

called a complementary flow reversal (CFR) that effectively

fills the holes by taking complementary flows. Extensive ex-

periments are conducted for fair comparison and our XVFI-

Net that has a relatively smaller complexity outperforms

previous VFI SOTA methods on our X4K1000FPS, espe-

cially for extreme motions as shown in Fig. 2. A further ex-

periment on the previous LR-LFR benchmark dataset also

demonstrates the robustness of our XVFI-Net. Our contri-

butions are summarized as:

• We first propose a high-quality of HFR video dataset

of 4K resolution, called X4K1000FPS (4K@1000fps)

which contains a wide variety of textures, extremely

large motions, zoomings and occlusions.

• We propose the CFR that can generate stable optical

flow estimation from time t to the input frames, boost-

ing both qualitative and quantitative performances.

• Our proposed XVFI-Net can start from any down-

scaled input upward, which is adjustable in terms of

the number of scales for inference according to the in-

put resolutions or the motion magnitudes.

• Our XVFI-Net achieves state-of-the-art performance

on the testset of X4K1000FPS with a significant mar-

gin compared to the previous VFI SOTA methods

while having computational efficiency with a small

number of filter parameters. All source codes and pro-

posed X4K1000FPS dataset are publicly available at

https://github.com/JihyongOh/XVFI.

2. Related Work
2.1. Video Frame Interpolation

Most VFI methods can be categorized into optical flow-

or kernel-based [27, 32, 18, 30, 34, 47, 4, 1, 2, 25, 33, 31]

and pixel hallucination-based [13, 46, 7, 37, 21] methods.

Flow-based VFI. Super-SloMo [18] first linearly combines

predicted optical flows between two input frames to approx-

imate flows from the target intermediate frame to the input

frames. Quadratic video frame interpolation [47] utilizes

four input frames to cope with nonlinear motion modeling

by quadratic approximation, which limits the VFI general-

ization when two input frames are given. It also proposes

flow reversal (projection) for more accurate image warp-

ing. On the other hand, DAIN [4] gives different weights of

overlapped flow vectors depending on the object depth of

the scene via a flow projection layer. However, DAIN em-

ploys and fine-tunes both PWC-Net [40] and MegaDepth

[26], which is computationally burdened for inferring inter-

mediate HR frames. AdaCoF proposes a generalized warp-

ing module to deal with complex motion [25]. However, it

is not adaptive to handle the frames of higher resolutions

due to a fixed dilation degree, after once trained.

Pixel Hallucination-based VFI. FeFlow [13] has benefited

from deformable convolution [9] to the center frame gener-

ator by replacing optical flows with offset vectors. Zooming

Slow-Mo [46] also interpolates middle frames with the help

of deformable convolution in the feature domain. However,

since these methods directly hallucinate pixels unlike the

flow-based VFI methods, the predicted frames tend to be

blurry when fast-moving objects are present.

Most importantly, the aforementioned VFI methods are

difficult to operate on the entire HR frames at once, due to

their heavy computational complexity. On the other hand,

our XVFI-Net is designed to efficiently operate on the entire
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4K frame input at once with a smaller number of parameters

and is capable of effectively capturing large motions.

2.2. Networks for Large Pixel Displacements

PWC-Net [40] is a state-of-the-art optical flow estimator

that has been adopted in several VFI methods for pretrained

flow estimators [47, 4, 31]. Since PWC-Net has a 6-level

feature pyramid structure to have larger sizes of receptive

fields, it enables to effectively predict large motions. IM-

Net [34] also adopts a multi-scale structure to cover large

displacements of objects in adjacent frames while the cov-

erage is limited in the size of the adaptive filters. Despite

of the multi-scale pyramid structures, the above methods

lack adaptivity because the coarsest level of each network is

fixed after once trained, i.e. each scale level consists of its

own (not shared) parameters. The RRPN [50] shares weight

parameters across different scale levels in a flexible recur-

rent pyramid structure. However, it only infers the centered

frame, not at arbitrary time instances. So it can only synthe-

size recursively the intermediate frames of time at a power

of 2. As a result, the prediction errors are accumulated as in-

termediate frames are generated iteratively between the two

input frames. Therefore, RRPN has limited temporal flexi-

bility for VFI at arbitrary target time instance t.
Distinguished from the above methods, our proposed

XVFI-Net has a scalable structure with shared parameters

for various input resolutions. Different from RRPN [50], the

XVFI-Net is structurally divided into the BiOF-I and BiOF-

T modules, which allows predicting an intermediate frame

at arbitrary time t with the help of the complementary flow

reversal in an efficient way. That is, the BiOF-T module can

be skipped at the down-scaled levels in inference so that

our model can infer the intermediate frame of 4K at once,

without any patch-wise iteration unlike all other previous

methods, which can be applied in real-world applications.

3. Proposed X4K1000FPS Dataset
Although numerous methods for VFI have been both

trained and evaluated over the diverse benchmark datasets,

such as Adobe240fps [39], DAVIS [35], UCF101 [38], Mid-

dlebury [3] and Vimeo90K [48], none of the datasets con-

tains rich amounts of 4K videos with HFR. These limits the

study of elaborate VFI methods required for VFI applica-

tions for targeting very high resolution videos.

To tackle the challenging extreme VFI task, we provide a

rich set of 4K@1000fps video that we photographed using

a Phantom Flex4K™ camera with the 4K spatial resolution

of 4096×2160 at 1,000 fps, producing 175 video scenes,

each with 5,000 frames by shooting for 5 seconds.

In order to select valuable data samples for VFI, we es-

timated bidirectional occlusion maps and optical flows of

every 32 frames of the scenes using IRR-PWC [16]. The

occlusion map indicates part of the objects to be occluded

Dataset
Occlusion [16] Flow magnitude [16]

25th 50th 75th 25th 50th 75th

Vimeo90K [48] 6.8 11.9 18.1 3.1 4.9 7.1

Adobe240fps [39] 0.8 1.7 3.2 3.8 8.9 16.3

X-TEST (ours) 2.1 5.6 17.7 23.9 81.9 138.5
X-TRAIN (ours) 6.9 10.1 15.7 5.5 18.0 59.5

25th, 50th and 75th represent percentiles of each datset.

Table 1. The occlusion and optical flow magnitude statistics of VFI

datasets: 3,782 test triplets of Vimeo90K [48], randomly selected

200 clips of Adobe240fps [39], 15 clips of X-TEST and 4,408

clips of X-TRAIN.

in the next frames. The occlusion makes optical flow es-

timation and frame interpolation challenging [43, 4, 16].

Thus, we manually selected 15 scenes as our testset, called

X-TEST, by considering the degrees of occlusion, optical

flow magnitudes and scene diversity. Each scene for X-

TEST simply contains one test sample that consists of two

input frames in a temporal distance of 32 frames and ap-

proximately corresponds to 30 fps. The test evaluation is

set to interpolate 7 intermediate frames, which results in

the consecutive frames of 240 fps. For the training dataset,

called X-TRAIN, we cropped and selected 4,408 clips of

768×768-sized and the lengths of 65 consecutive frames

by considering the amounts of occlusion. More details are

described in Supplementary Material.
Table 1 compares the statistics of datasets: Vimeo90K

[48], Adobe240fps [39], our X-TEST and X-TRAIN. We

estimated the occlusion range in [0,255] and optical flow

magnitudes [16] between input pairs and calculated their

percentiles for each dataset. As shown in Table 1, our

datasets contain comparable occlusion but significantly

larger motion, compared to the previous VFI datasets.

4. Proposed Method : XVFI-Net Framework

4.1. Design Considerations

Our XVFI-Net aims at interpolating an intermediate

frame It at an arbitrary time t between two consecutive in-

put frames, I0 and I1, of HR with extreme motion.

Scale Adaptivity. An architecture with a fixed number of

scale levels like PWC-Net [40] is difficult to adapt to vari-

ous spatial resolutions of the input video, because the struc-

ture in each scale level is not shared across different scale

levels, so the new architecture with an increased scale depth

needs to be retrained. In order to have a scale adaptivity to

various spatial resolutions of input frames, our XVFI-Net

is designed to have optical flow estimation starting at any

desired coarse scale level, adapting to the degree of motion

magnitudes in the input frames. To do so, our XVFI-Net

shares its parameters across different scale levels.

Capturing Large Motion. In order to effectively capture a

large motion between two input frames, the Feature Extrac-
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tion Block of XVFI-Net first reduces the spatial resolution

of two input frames by a module scale factor M via a strided

convolution, thus yielding the spatially reduced feature that

is then converted to two contextual feature maps C0
0 and

C0
1 . The Feature Extraction Block in Fig. 3 is composed of

the strided convolution and two residual blocks [15]. Then,

XVFI-Net at each scale level estimates optical flows from

target frame It to two input frames in the reduced spatial

size by M . The predicted flows are upscaled (×M ) to warp

the input frames at each scale level to time t.

4.2. XVFI-Net Architecture

BiOF-I module. Fig. 4 shows our XVFI-Net architecture in

scale s, where Is denotes bicubicly down-scaled by 1/2s.

First, contextual pyramid C = {Cs} is recurrently ex-

tracted from C0
0 and C0

1 via a stride 2 convolution, and

then utilized as an input for XVFI-Net at each scale level

s (s = 0, 1, 2, ...), where s = 0 denotes the scale of the

original input frames. Let F s
tatb

denotes optical flow from

time ta to tb at scale s. F s
01 and F s

10 are the bidirectional

flows between input frames at scale s. F s
t0 and F s

t1 are the

bidirectional flows from Ist to Is0 and Is1 , respectively.

The estimated flows F s+1
01 , F s+1

10 from the previous scale

(s + 1) are ×2 bilinearly up-scaled to be set as the ini-

tial flows for the current scale s, i.e., F̃ s
01 = F s+1

01 ↑2
, F̃ s

10 = F s+1
10 ↑2. To update the initial flows in the cur-

rent scale, Cs
0 and Cs

1 are first warped by the initial flows,

that is, C̃s
01 = W (F̃ s

01, C
s
1) and C̃s

10 = W (F̃ s
10, C

s
0), re-

spectively, where W is a backward warping operation [17].

Then C̃s
01, C̃

s
10, C

s
0 , C

s
1 together with F̃ s

01, F̃
s
10 are fed to an

auto-encoder-based BiFlownet as in Fig. 4 to output resid-

ual flows over the initial flows and a trainable importance

mask z [31]. Then F s
01, F

s
10 are obtained. They are then fed

as input to the BiOF-T module and are also used as the ini-

tial flows to the next scale s− 1.

BiOF-T module. Hereafter, we omit superscript s for

the notion of feature tensors at each scale, unless men-

tioned. Although the linear approximation with optical

flows F01, F10 [18] or the flow reversal of F0t, F1t [47] al-

lows to estimate the flows Ft0, Ft1 at arbitrary time t, there

are few shortcomings. The linear approximation is inaccu-

rate to predict Ft0 and Ft1 for fast-moving objects because

the anchor points of F01 and F10 are severely misaligned.

On the other hand, the flow reversal can align the anchor

points but holes may appear in estimated Ft0 and Ft1. To

stabilize the performance of the flow reversal, we take com-

plementary advantages of both the linear approximation and

flow reversal. So, a stable optical flow estimate from time t
to 0 or 1 can be computed by a normalized linear combina-

tion of a negative anchor flow and a complementary flow,

which we call a complementary flow reversal (CFR). The

resulting complementary reversed optical flow maps, F̃t0

and F̃t1, from time t to 0 and 1 are given by,

0
t̂I

1
t̂I

BiOF-I BiOF-T

BiOF-I BiOF-T

BiOF-I

Up-scaled flow

: Training paths
: Possible test paths

Scale 0

Scale 1

Up-scaled flow

11

: Shared parameters (Fig. 4)
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Figure 3. Adjustable and efficient scalability of our XVFI-Net

framework. Even if the lowest scale depth Strn during training

is set to 1 in this example, inference can start from any scale level.

F̃x
t0 =

(1− t)
∑

N0
w0 ·(−Fy

0t) + t
∑

N1
w1 · Fy

1·(1-t)

(1− t)
∑

N0
w0+ t

∑
N1

w1
(1)

F̃x
t1 =

(1− t)
∑

N0
w0 · Fy

0·(1-t) + t
∑

N1
w1 · (−Fy

1t)

(1− t)
∑

N0
w0 + t

∑
N1

w1
(2)

where x denotes a pixel location at time t and y is at time

0 or 1. wi = zyi · G(|x − (y + Fy
it)|) is a Gaussian weight

depending on the distance between x at time t and y+Fy
it at

time i (= 0 or 1) while also considering the learnable impor-

tance mask of each flow by zyi [31]. Also, −Fy
0t (or −Fy

1t)

and Fy
1·(1-t) (or Fy

0·(1-t)) in Eq. 1 (or Eq. 2) are defined as

a negative anchor flow and a complementary flow, respec-

tively. Furthermore, the anchor flows are normalized flows

that can be calculated as F0t = tF01 and F1t = (1− t)F10

to intermediate time t. It should be noted in Eq. 1 and

Eq. 2 that the complementary flows are also normalized as

F1·(1-t) = tF10 and F0·(1-t) = (1 − t)F01 which comple-

mentally fill the holes occurred in the reversed flows. By do-

ing so, we can fully exploit the temporal-densely captured

X4K1000FPS dataset to train our XVFI-Net for VFI at ar-

bitrary time t. The neighborhoods of x are defined as,

N0 = {y | round(y + Fy
0t) = x} (3)

N1 = {y | round(y + Fy
1t) = x}. (4)

To refine the bidirectional flow approximates F̃t0, F̃t1,
we rewarp the feature maps (C0, C1) to C̃t0 and C̃t1

by F̃t0 and F̃t1, respectively. We concatenate and feed

C0, C1, C̃t0, C̃t1, and F̃t0, F̃t1 to the auto-encoder-based

TFlownet as in Fig. 4 (similarly to refine F̃01, F̃10). The out-

puts of TFlownet are used to compose refined flows Ft0, Ft1

which are then bilinearly up-scaled (×M ) back to the size
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Figure 4. The architecture of our proposed XVFI-Net in scale s.

of Ist . The flow estimation in the spatially reduced size by

M has three advantages: (i) enlarged receptive fields, (ii)

lowered computational costs and (iii) smooth optical flows.

This strategy maximizes the benefit of flow-based VFI that

can fully utilize the texture information of the original in-

put frames by warping them with the estimated flows, com-

pared to the hallucination-based methods that suffer from

a lack of sharpness in restoration from down-scaled feature

maps. The above up-scaled flows are used to warp the in-

put frames Is0 and Is1 to be Ĩst0 and Ĩst1, respectively. The

Cs
0 , C

s
1 , C̃

s
t0, C̃

s
t1, F

s
t0, F

s
t1, I

s
0 , I

s
1 , Ĩ

s
t0 and Ĩst1 are all aggre-

gated to be fed into the U-Net [36]-based Refinement Block.

Then, both the generated occlusion mask ms and residual

image Ĩsr are finally used to blend the warped frames Ĩst0
and Ĩst1, which is given by,

Îst =
(1− t)·ms · Ĩst0 + t·(1−ms)·Ĩst1

(1− t) ·ms + t · (1−ms)
+ Ĩsr (5)

where Îst is the final result of each scale level s.

4.3. Adjustable and Efficient Scalability

Adjustable Scalability. Fig. 3 shows a VFI framework of

our XVFI-Net that can begin from any scale level by ×1/2s

recurrent down-scaling the contextual feature map C0
0 and

C0
1 , and predicts the coarsest optical flow to capture ex-

treme motion effectively. Then the estimated flows F s
01, F s

10

are transmitted to the next scale s − 1, and the flow is up-

dated gradually to the original scale s = 0. We aim that the

number of scales can be decided for inference, adaptive to

the spatial resolution and degree of motion magnitudes for

the input frames, even after once trained. To generalize the

XVFI-Net learning for the input of any scale level, a multi-

scale reconstruction loss in Eq. 7 is applied for every output

Îst for the selected scale depth Strn during training.

Efficient Scalability. As shown in Fig. 3, the computation

through the BiOF-T module is always taken place at the

original scale (s = 0) during inference no matter which

scale level the BiOF-I starts from, which are denoted as

the arrows in the light orange color. Since F s
01 and F s

10 are

the only information that passes across different scale levels

through the BiOF-I module (from the previous scale to the

next scale level) as shown in Fig. 3, we only pass the two

optical flows recursively until reaching the original scale

level. Then, the BiOF-T module processes F s=0
10 and F s=0

01

to estimate F s=0
t1 and F s=0

t0 only at the original scale level.

This is architecturally very beneficial because (i) the BiOF-

I module is responsible to stably capture extreme motion by

recursively learning the bidirectional flows between input

time instances 0 and 1 across multiple scale levels, and (ii)

the BiOF-T module finely predicts the bidirectional flows

in the original scale only from any target time t to times 0

and 1 based on the stably estimated flows F s=0
10 and F s=0

01 ,

unlike the RRPN [50].

Loss Functions. We adopt a multi-scale reconstruction loss

to train the shared parameters of our XVFI-Net. To further

encourage the smoothness of the obtained optical flow, the

first-order edge-aware smoothness loss is used for F 0
t0 and

F 0
t1 at the original scale [19]. The total loss function is a

weighted sum of the two loss functions as follows:

Ltotal = Lr + λs · Ls (6)

Lr =
∑Strn

s=0 ‖Îst − Ist ‖1 (7)

Ls =
∑

i=0,1 exp(−e2
∑

c

∣
∣∇xI

0
tc

∣
∣)ᵀ · ∣∣∇xF

0
ti

∣
∣ (8)

where c, e2 and x denote color channel index, an edge

weighting factor and a spatial coordinate, respectively.

5. Experiment Results
The proposed X-TRAIN dataset contains 4,408 clips

of the sizes of 768×768 and the lengths of 65 consecu-

tive frames. Each training sample is randomly fetched on

the fly from each clip. A training sample is defined as a
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triplet with two input frames (I0, I1) and one target frame

(It, 0 < t < 1). The temporal distance between I0 and I1 is

randomly selected in the range [2, 32] where It is also ran-

domly determined between the selected I0 and I1. By doing

so, our training samples are stochastically well obtained by

fully exploiting our X-TRAIN dataset of temporally dense

video clips to learn various t accordingly.

The weights of the XVFI-Net are initialized with Xavier

initialization [12] and the mini-batch size is set to 8. XVFI-

Net is trained via total of 110,200 iterations (200 epochs)

by using the Adam optimizer [22] with the initial learning

rate of 10−4, reduced by a factor of 4 at [100, 150, 180]-th
epoch. The hyperparameter M , λs and e are set to 4, 0.5 and

150, respectively. We also randomly crop 384 × 384-sized

patches from the original size of X-TRAIN and randomly

flip both spatial and temporal directions for data augmenta-

tion. Training takes about a half-day with an NVIDIA TI-

TAN RTX™ GPU with PyTorch.

5.1. Comparison to the Previous Methods

We compare our XVFI-Net with three previous VFI

methods, DAIN [4], FeFlow [13] and AdaCoF [25], whose

training codes are publicly available. DAIN can generate

the interpolated frame at arbitrary time t at once and the lat-

ter two can only synthesize the intermediate frame at the

power of 2 in an iterative manner during the inference.

For a fair comparison, we retrain the three previous

methods on X-TRAIN under their original hyperparameter

settings except the patch size of 384×384 and the total iter-

ations of 110,200. For further comparison, we also use the

original pretrained models of the three methods, which are

denoted as the subscript o to distinguish from their retrained

models with the subscript f on X-TRAIN. The lowest scale

depths for our XVFI-Net are set to 3 for training (Strn) and

3 or 5 for testing (Stst). We evaluate their performances for

7 interpolated frames per scene (multi-frame interpolation

×8) on X-TEST in terms of three evaluation metrics: PSNR,

SSIM [44] and tOF [8] that measures the temporal consis-

tency for the pixel-wise difference of motions (the lower,

the better). We also evaluate each method for 7 interpolated

frames per clip on the Adobe240fps dataset [39], where 200

nonuplets clips are randomly extracted with 1280 × 720
(HD) at 240fps.

Quantitative Comparison. Table 2 shows the quantita-

tive comparisons of the VFI methods on both X-TEST and

Adobe240fps. Please note that all runtimes (Rt) in Table 2

are measured for 1024×1024-sized frames because DAIN

and FeFlow are too heavy to run for each of 4K input

frames (4096×2160) at once. As shown in Table 2, our

proposed XVFI-Net with Stst set to both 3 and 5 clearly

outperforms all the previous methods with large margins on

both X-TEST and Adobe240fps, even though the number of

model parameters (#P) of our model is significantly smaller

22
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32

1 2 3 4 5 6 7
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R
 (d
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time index
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FeFlow_f
FeFlow_o

Figure 5. PSNR profiles for multi-frame interpolation results (×8)

on X-TEST.

Methods (×N)
X-TEST Adobe240fps

#P ↓ Rt ↓(PSNR/SSIM/tOF) (PSNR/SSIM)

AdaCoFo (×5.8) 23.90/0.727/6.89 25.26/0.785 21.8 0.005
AdaCoFf [25] 25.81/0.772/6.42 25.21/0.791 21.8 0.005

FeFlowo (×5.3) 24.00/0.756/6.59 25.18/0.785 102.5 1.681

FeFlowf [13] 25.16/0.783/6.54 24.17/0.780 102.5 1.681

DAINo (×9.3) 26.78/0.807/3.83 29.89/0.911 24 1.375

DAINf [4] 27.52/0.821/3.47 29.99/0.910 24 1.375

Ours (Stst=3) 28.86/0.858/2.67 30.29/0.912 5.5 0.074

Ours (Stst=5) 30.12/0.870/2.15 30.18/0.911 5.5 0.075

×N: The ratio of number of iterations of the original version to that of -

retrained version in the fair condition. #P: The number of parameters (M).

Rt: The runtime on 1024×1024-sized frames in sec.

RED: Best performance, BLUE: Second best performance.

Table 2. Quantitative comparisons on both X-TEST (4K) and

Adobe240fps (HD) [39] for multi-frame interpolation (×8).

than those of the others. It is also worthwhile to note that

our model can infer the intermediate frames of 4K at once,

without any patch-wise iteration. In particular, XVFI-Net

(Stst=5) outperforms DAINf by 2.6dB, 0.049 and 1.32 in

terms of PSNR, SSIM and tOF, respectively, for X-TEST,

by utilizing only 22.9% of DAIN’s parameters.

Especially for the X-TEST that contains significantly ex-

treme motions in 4K frames, our XVFI-Net can effectively

capture large motion in earlier stages and then precisely in-

terpolate the 4K input frames better than the previous meth-

ods. It is noted that FeFlow is inappropriate for large mo-

tion alignment in the feature domain, which results in blurry

output and is computationally heavy for 4K input frames.

In addition, the center-frame interpolation methods such as

AdaCoF, FeFlow and others [50, 13, 25, 34, 32] tend to syn-

thesize intermediate frames generally worse than those of

arbitrary time VFI methods such as DAIN and XVFI-Net

as shown in Fig. 5. The errors of the center-frame inter-

polation methods tend to be accumulated iteratively due to

inaccurate predictions. On the other hand, our model can

accurately generate intermediate frames at arbitrary time t.
Qualitative Comparison. Fig. 6 shows the visual compari-

son for VFI performances. The first column images in Fig. 6

show overlapped images of two 4K input frames. As shown,

huge pixel displacements are observed between two input

frames, which is very challenging for VFI. The interpolated
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Figure 6. Visual comparisons for VFI results (t = 0.5) on X-TEST for our and retrained SOTA methods with X-TRAIN. (*,*): occlusions

and optical flow magnitudes between the two input frames measured by [16], respectively. Best viewed in zoom.

(a) Linear comb. (b) Reversal (c) CFR (ours)Overlapped (d) Pseudo GT

Figure 7. Approximated optical flows Ft0 by three different flow

approximation methods. (a) Linear combination, (b) flow reversal,

(c) CFR (proposed). Best viewed in zoom.

results in Fig. 6 correspond to the center time (t = 0.5) of

the two input frames which is the most challenging frame

interpolation. As shown in Fig. 6, our XVFI-Net (Stst = 5)

surprisingly captures very complex structures of objects

with extremely fast motions, which are failed by all the pre-

vious methods.

5.2. Ablation Studies

Flow Approximation. We compare the three flow approx-

imations that enable to produce intermediate frames at ar-

bitrary t: (a) the linear approximation [18] with F01, F10,

(b) flow reversal [47] of F0t and F1t, and (c) our proposed

complementary flow reversal (CFR). In this comparison, we

approximated Ft0 with the three methods using the esti-

mated optical flows F01, F10 which are obtained by IRR-

PWC [16] between the input I0 and I1. The importance

mask z’s in Eq. 1 and 2 are excluded in this comparison. Fig.

7 visualizes an example of the approximated optical flows

by the three methods and the pseudo ground truth which is

estimated between It and I0 by IRR-PWC [16]. To evaluate

the flow approximations quantitatively, the averaged end-

point errors (EPEs) for the three methods are calculated be-

tween the approximated flows and the pseudo ground truth

on the testset of Vimeo90K [48], which are shown in Table

3. The linear approximation reveals misalignment due to the

different anchor frames, which is indicated by yellow ar-

rows in Fig. 7. The flow reversal resolves the misalignment

problem, but is inferior to the linear approximation because

it causes holes that are not projected from any flow vector,

as shown in the second optical flow map (red arrows). Also,

the EPE value of the flow reversal is the worst among the

three methods. On the other hand, our proposed CFR can

appropriately fill in the holes since the bidirectional flows

complement each other, as shown in Fig. 7, which is con-

sistent with the lowest EPE value of CFR in Table 3.

In order to investigate the efficacy of the proposed CFR

for VFI, we trained three VFI models from scratch by

adopting each of the three flow approximations in their

BiOF-T modules, without any help of pretrained networks.

The lowest scale depths for both training Strn and test

Stst are set to 3. The VFI performances on our X-TEST

(PSNR/SSIM/tOF) for the three models are listed in Table

3, showing a superiority of our proposed CFR.

Adjustable Scalability. The lowest scale depth Stst for the

inference can be adaptive to the degree of motion magni-

tudes and spatial resolution of the input frames, even after

once trained, as shown in Fig. 3. We show the adjustable

scalability of our framework with Strn = 1, 3, 5 for Stst =
1, 3, 5. For this, we train XVFI-Net variants by fully utiliz-

ing 512×512-sized patches because the spatial resolution of

the training inputs should be multiple of 512 for Strn = 5
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Methods

Metrics
EPE↓ PSNR↑ SSIM↑ tOF↓

(a) Linear comb. 0.0752 28.73 0.8518 2.89

(b) Flow reversal 0.0892 28.30 0.8425 2.98

(c) CFR (ours) 0.0721 28.86 0.8582 2.67

Table 3. The endpoint error (EPE) between the approximated Ft0

and the pseudo ground truth is obtained by IRR-PWC [16] on

Vimeo90K [48] testset. Note that the VFI performances are mea-

sured on X-TEST in terms of PSNR, SSIM and tOF for three mod-

els that adopt each approximation method.

Strn

Stst (PSNR(dB)↑ / SSIM[44]↑ / tOF[8]↓)

1 3 5

1 26.85/0.806/4.90 28.40/0.852/3.46 27.14/0.842/3.69

3 23.61/0.729/6.56 29.22/0.863/2.68 30.35/0.879/1.98
5 22.37/0.699/6.71 23.70/0.724/6.39 29.48/0.864/2.08

RED: Best performance of each row

Table 4. Ablation study on adjustable scalability depending on the

lowest scale depth Strn and Stst measured on X-TEST.

where the number 512 is determined as 2Strn=5× M(= 4)
× 4 (via the bottlenecks of the autoencoders). Table 4 com-

pares the performances of the XVFI-Net variants. As shown

in Table 4, the performances are generally boosted by in-

creasing the value of Stst with the help of effectively en-

larging receptive field sizes and elaborately refining the re-

sulting flows, especially in capturing extremely large mo-

tions and detailed structures. This trend is also observed

in Table 2 for the XVFI-Net trained with 384 × 384-sized

patches of Strn = 3. Furthermore, as shown in the right-

most four columns of Fig. 6, the details of the objects, letters

and textures are more precisely synthesized for Stst = 5
than 3 qualitatively. Both quantitative and qualitative results

clearly show the effectiveness of the XVFI-Net’s adjustable

scalability. On the other hand, the occlusions and flow mag-

nitudes of the Adobe240fps dataset [39] are much smaller

than those of X-TEST as shown in Table 1. It is noted in Ta-

ble 2 that our XVFI-Net with Stst = 3 shows better perfor-

mance than that with Stst = 5 on the Adobe240fps dataset

with smaller resolutions than X-TEST, which also clearly

supports the efficacy of our adjustable scalability.

Robustness of our XVFI-Net Framework. To show the

robustness of our XVFI-Net framework for LR-LFR bench-

mark dataset, we construct a variant of XVFI-Net, called

XVFI-Netv , with M = 2 for the dataset with lower resolu-

tion frames. The XVFI-Netv is then trained on a standard

VFI dataset that is the Vimeo90K [48] training set with

51,313 triplets (t = 0.5) of 448× 256 size. The training

went through 200 epochs with randomly cropped 256×256-

sized patches and a mini-batch size of 16, where both Strn

and Stst are set to 1. We compare our XVFI-Netv with

four SOTA methods: DAIN [4], FeFlow [13], AdaCoF [25]

and BMBC [33], where their pretrained models and testing

AdaCoF
34.27/0.9714

FeFlow
35.28/0.9764

DAIN
34.71/0.9756

XVFI-Net_v
35.07/0.9760

BMBC
35.01/0.9764

34
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35

35.5

0 0.1 0.2 0.3
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R 
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Runtime (s) on 448x256-sized input

5.5

21.8

24

102.5

11

Figure 8. PSNR/SSIM vs runtime (s) on Vimeo90K [48] with

model size (M) indicated in each circle.

code are publicly available. Fig. 8 shows the PSNR/SSIM

and runtime (s) performances of our and SOTA methods

with their model sizes (M) evaluated on Vimeo90K test-

set. As shown, our XVFI-Netv outperforms BMBC, DAIN

and AdaCoF with a significantly smaller model size (5.5

million parameters), by taking advantage of the recursive

multi-scale and shared structure. However, the XVFI-Netv
shows lower performance than that of FeFlow but has a

much smaller model size only with 5.4% of the number of

the FeFlow’s parameters, thus leading to about ×7 faster

runtime. As a result, our XVFI-Net framework designed for

high-resolution VFI with extremely large motion shows its

robustness to the LR-LFR benchmark dataset by simply ad-

justing module scale factor M , Strn and Stst.

6. Conclusion

We first proposed a high-quality HFR dataset in HR,

called X4K1000FPS with a wide range of motions. The pro-

posed XVFI-Net can handle large pixel displacements with

an adjustable scalability for inference to cope with the in-

put resolutions or the motion magnitudes, even if training

is once over. The XVFI-Net showed state-of-the-art perfor-

mance on HR datasets compared to the previous methods

and its robustness to the LR-LFR benchmark dataset.

Although our proposed X4K1000FPS dataset was ob-

tained by using one single camera, such an extreme HFR

4K dataset is very valuable for the research community of

VFI because such kinds of cameras are few. Besides, we

delicately select clips as X-TRAIN/X-TEST to be publicly

available by considering both occlusions and flow magni-

tudes for a new challenging VFI task, called the eXtreme

Video Frame Interpolation (XVFI). We hope that this re-

search would be a valuable milestone to extend the current

VFI for more recent real-world applications with HR video.
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