
Are we Missing Confidence in Pseudo-LiDAR Methods

for Monocular 3D Object Detection?
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Abstract

Pseudo-LiDAR-based methods for monocular 3D ob-

ject detection have received considerable attention in the

community due to the performance gains exhibited on the

KITTI3D benchmark, in particular on the commonly re-

ported validation split. This generated a distorted impres-

sion about the superiority of Pseudo-LiDAR-based (PL-

based) approaches over methods working with RGB images

only. Our first contribution consists in rectifying this view

by pointing out and showing experimentally that the vali-

dation results published by PL-based methods are substan-

tially biased. The source of the bias resides in an overlap

between the KITTI3D object detection validation set and

the training/validation sets used to train depth predictors

feeding PL-based methods. Surprisingly, the bias remains

also after geographically removing the overlap. This leaves

the test set as the only reliable set for comparison, where

published PL-based methods do not excel. Our second con-

tribution brings PL-based methods back up in the ranking

with the design of a novel deep architecture which intro-

duces a 3D confidence prediction module. We show that 3D

confidence estimation techniques derived from RGB-only

3D detection approaches can be successfully integrated into

our framework and, more importantly, that improved per-

formance can be obtained with a newly designed 3D confi-

dence measure, leading to state-of-the-art performance on

the KITTI3D benchmark.

1. Introduction

By providing information about pose, location and cate-

gory of objects in the 3D space, 3D object detection con-

stitutes an enabling technology for applications like au-

tonomous driving or augmented reality. To obtain accurate

localisation performance, existing solutions rely on depth

information inferred from stereo cameras or derived from

Light Detection and Ranging (LiDAR) sensors. The down-

sides of both variants are an increase of costs, the necessity

of involved recalibration routines and the inhibition of the

product design form factors due to fabrication constraints.

Figure 1: Performance of state-of-the-art 3D detection

methods on the KITTI3D validation and test sets1. RGB-

based methods (orange circles) exhibit a low performance

discrepancy between the two sets, whereas Pseudo-LiDAR-

based methods (green triangles) perform much better (up

to 10 AP) on validation than on test. This indicates a

bias, which we display by means of a blue-toned colormap.

These results also show that the best performing RGB-

based methods generally benefit from exploiting a 3D Con-

fidence (circled orange circles), a component which has not

yet been introduced in any PL-based methods.

To overcome these issues, an emerging branch of 3D ob-

ject detection methods is entirely based on monocular cam-

eras [1, 9, 19, 20, 25, 27, 29]. Monocular cameras are a

cheap alternative to the expensive LiDAR or stereo setups,

but, at the same time, incur a substantially increased algo-

rithmic complexity due to the absence of depth observa-

tions. Indeed, accurate estimation of an objects’ distance to

the camera is the most difficult task in monocular, image-

1We took as reference the performance on class Car in the Moderate

difficulty, computed with the AP |R40
metric i.e. the one used as reference

on the official KITTI3D benchmark.
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based 3D object detection, making it an ill-posed problem.

Despite the development of methods which focus on in-

creasing the generalization with respect to distance [1, 27],

monocular image-based methods still lag far behind their

LiDAR or stereo-based counterparts.

A recent line of works [20, 31] has leveraged Convo-

lutional Neural Networks (CNNs) for image-based depth

predictions as depth substitute in monocular 3D object

detection algorithms. Pseudo-LiDAR (PL) [29, 32] was

promoted as a particularly effective depth representation,

reporting impressive results on the challenging KITTI3D

benchmark [8]. It essentially mimics a LiDAR signal for

a RGB image by projecting each 2D pixel from its corre-

sponding, estimated depth map into 3D space. With the

resulting 3D point cloud, the 3D detection task is usually

approached by applying state-of-the-art LiDAR-based (and

thus 3D point-based) detection algorithms. PatchNet [18]

has recently refuted 3D points as the source of PL’s ef-

fectiveness by providing an equivalently performing imple-

mentation based on stacking 3D world coordinates as 2D

maps. While this eliminates the claims of PL being advan-

tageous due to its 3D point-based representation, their abla-

tions confirmed the importance of operating on transformed

2D image coordinates incorporating camera intrinsics (fo-

cal length and principal point).

In this paper we argue that PL-based approaches, and

more in general approaches that take depth as input, have in-

troduced a distorted perception in the research community

about their performance in the monocular setting with re-

spect to other state-of-the-art methods that use RGB-images

only. We identified two main reasons behind the issue,

which constitute the two main contributions of this paper.

First contribution. State of the art PL-based methods re-

port excellent performance on the KITTI3D validation set

but do not show the same gains on the test set. In this

work we perform an in-depth experimental study to ana-

lyze the reasons behind such inconsistency and demonstrate

that top performing PL-based methods adopt a training pro-

tocol which artificially leads to high average precision on

the validation set. The issue is evident in Fig. 1, where

the discrepancy between the KITTI3D validation and test

set performance of PL-based methods (green triangles) is

much more pronounced than RGB-based methods (orange

circles). Indeed, the depth estimation algorithms on which

PL-based methods heavily rely are usually trained by in-

cluding ≈ 30% of the validation set data used for 3D ob-

ject detection. Despite this issue was mentioned briefly

in [29, 28], this biased training protocol was later used in

many subsequent PL-based methods. This clearly indicates

the necessity and the relevance for the community of a more

detailed analysis, which we provide in this paper.

Second contribution. The outcome of a fair comparison

on test set of PL-based methods against RGB-only based

approaches on the KITTI3D benchmark is currently favour-

ing more the latter ones. On the flip side, we found that

published PL-based methods are penalized by the complete

lack of a proper 3D confidence score which, as shown in

Fig. 1 (circled orange circles), is becoming a fundamental

component of state-of-the-art RGB-only methods. In this

paper we propose, for the first time, to endow PL-based

methods with a mechanism for predicting a 3D confidence,

demonstrating remarkable performance gains. In particular,

we show that, following previous RGB-only based methods

[25], also in the case of PL, 3D confidence can be trained

by directly regressing the expected loss. While this works

well in practice, it is sensitive to the scale of the loss and,

hence, requires some hyperparameter tuning. Moreover,

it suffers from the issue of becoming overconfident as the

training progresses towards an overfitting regime. In the

spirit of addressing those two issues, we open a novel direc-

tion and successfully explore the possibility of having 3D

confidences expressed in relative terms. Our novel finding

leads to improved performance and sets the new state-of-

the-art on the KITTI3D benchmark.

2. Related Works

Current approaches for monocular 3D object detection

can be roughly divided in two categories: RGB-only meth-

ods, which directly address the ill-posed problem of the

object’s distance estimation, and PL-based methods, which

leverage from automatically estimated depth maps or point

clouds to recover the distance information.

Monocular RGB-only 3D detectors. Earlier ap-

proaches for monocular RGB-only 3D detection such as

SSD-6D [10] and Deep3DBox [21] build on top of state of

the art deep architectures for 2D detection, and exploit in-

formation from projective geometry to estimate the 3D pose

and position of the objects in the scene. Mono3D [2] devel-

ops from the idea of generating 3D proposals and scoring

them according to several cues, such as semantic segmen-

tation features, object contour, and location priors. OFT-

Net [24] operates by considering an orthographic feature

transform to map a 2D feature map to bird-eye view. Mono-

GRNet [23] simultaneously estimates 2D bounding boxes,

instance depth, 3D location of objects and local corners.

GS3D [13] exploits an off-the-shelf 2D object detector and

efficiently computes a coarse cuboid for each predicted 2D

box, which is then refined to estimate the 3D bounding box.

MonoPSR [11] jointly leverages 3D proposals and scale

and shape estimation to accurately predict 3D bounding

boxes from 2D ones. Recently, few works have proposed

single-stage deep architectures [1, 27]. M3D-RPN [1] gen-

erates 2D and 3D object proposals simultaneously and ex-

ploits a post-processing optimisation and a depth-aware net-

work to improve localization accuracy. MoVi-3D [27] is a
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lightweight architecture which exploits automatically gen-

erated virtual views where the object appearance is normal-

ized with respect to distance to facilitate the detection task.

Liu et al. [17] propose SMOKE, a deep architectures which

predicts 3D bounding boxes by relying on key-point esti-

mation as an intermediate task. MonoDIS [25] shows that

training convergence and detection accuracy of 3D detec-

tion networks can be improved by considering loss disen-

tanglement. In [25] 3D confidence for detection is also in-

troduced for increasing performance. In this paper we show

how this notion can be extended to PL and further improved

introducing a relative measure of confidence.

Pseudo-LiDAR based 3D detectors. A second category

of works exploit external data and network models to gener-

ate depth maps from the RGB input as an intermediate step

for 3D detection. For instance, ROI-10D [20] introduces a

loss to minimize the misalignment of 3D bounding boxes

and exploits depth maps inferred with SuperDepth [22]. A

disparity prediction module is considered in [31] and in-

tegrated into a network composed of two parts: one that

generates 2D region proposals, and another that predicts

3D object location, size and orientation. Pseudo-Lidar [29]

represents the first PL method, introducing the idea of in-

terpreting depth maps as 3D point clouds which are then

fed to state-of-the-art LiDAR-based 3D object detectors. In

[29] the presence of a possible performance bias is also

suggested but an in-depth experimental study is lacking.

Pseudo-Lidar++ [32] improves the accuracy in the locali-

sation of faraway objects by adapting a stereo network ar-

chitecture and deriving a loss function for direct depth es-

timation. AM3D [19] proposes to integrate complemen-

tary RGB features into the PL pipeline and introduces a a

specific module to map the 2D image data to the 3D point

cloud. PatchNet [18] analyses the effect of depth data rep-

resentation on performances and improves over previous

PL models by integrating the 3D coordinates as additional

channels of input data. However, all these works lack a

fundamental component of state-of-the-art RGB-only based

detectors [25] i.e. the estimation of a 3D confidence.

3. Preliminaries

We first review the monocular 3D object detection task

and introduce the KITTI dataset [8] – the most influential

benchmark to assess the performance of 3D detection meth-

ods. We also report the results of an experimental analysis

on KITTI, highlighting the crucial role of depth estimation

on the performance of state-of-the-art PL-based methods.

3.1. Monocular 3D Object Detection

The monocular 3D object detection task consists in de-

tecting and localizing all the visible objects of interest (e.g.

cars) by means of 3D bounding boxes given a single RGB

image as input. Localization must be done in 3D space,

properly estimating the 3D coordinates (in meters) of the

center of the object Oi = (Xi, Yi, Zi), where Xi, Yi are re-

lated to the horizontal and vertical translations, respectively,

and Zi is the distance of the object’s center from the camera.

The localization also includes the estimation of the object’s

metric shape Si = (Hi,Wi, Li) representing the object’s

height, width and length, as well as the object’s rotation Ri

w.r.t. the camera reference system. The detection requires

also to estimate a confidence value Ci which generally re-

flects the quality and determines how confident the detector

is about the particular 3D detection. In this monocular set-

ting, it is common to assume to have a calibrated camera

and to know the corresponding intrinsic camera parameters.

3.2. The KITTI Dataset

The KITTI Dataset comprises a broad collection of data

from street-level sequences, captured with a multi-sensor

setup in the city of Karlsruhe (Germany) in 2011. The

remarkable diversity of the sensors enabled many bench-

marks, including 3D object detection and depth estimation,

which are most relevant for this work.

KITTI 3D object detection benchmark (KITTI3D). To

our knowledge, all 3D object detection methods, and in par-

ticular monocular image-based ones, adopted KITTI3D as

their predominant, and usually exclusive, testing field. The

KITTI3D benchmark is composed of an official training

and testing split, comprising 7481 and 7518 images, re-

spectively. Following Chen et al. [3], it is common to split

the training set into unofficial training and validation splits,

with 3712 and 3769 images, respectively. KITTI provides

2D and 3D bounding box annotations for Cars, Pedestrians

and Cyclists, and each box is assigned to one of the difficulty

levels Easy, Moderate or Hard, depending on the object’s

2D height (≈ object’s distance), degree of occlusion, and

truncation. KITTI3D adopts two main evaluation metrics,

i.e., 3D Average Precision (3D AP) and Bird’s Eye View Av-

erage Precision (BEV AP). As reported in [26], AP|R40
is

the only legitimate 3D detection AP score, deprecating the

previously used AP|R11
score.

Depth prediction benchmark. The KITTI depth pre-

diction benchmark offers official training and testing splits,

but it is common to split [6] the training data into unoffi-

cial training and validation sets of 23488 and 697 images,

respectively. Depth prediction methods are inferring pixel-

specific distance estimates w.r.t. the camera and are evalu-

ated with several metrics like Absolute Relative Error (Ab-

sRel), Squared Relative Error (SqRel), etc.

3.3. The Crucial Role of Depth

We also provide the results of an oracle analysis demon-

strating that depth is the most influential factor for per-

formance in monocular 3D object detection. Following

the definitions in Sec. 3.1, we used KITTI3D predictions
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Oracle M3D-RPN [1] MonoDIS [26]

Category sub-task Easy Mod. Hard Easy Mod. Hard

RGB-based

– 12.78 10.36 8.07 16.71 12.32 10.58

R̂ 14.71 11.78 9.26 17.27 12.76 11.45
ˆHWL 13.47 10.52 8.26 16.75 12.56 11.29

X̂Y 22.63 17.47 13.48 29.59 22.17 19.31

Ẑ 34.53 28.35 22.51 45.99 38.02 33.48

Oracle Wang et al. [29] PatchNet [18]

Category sub-task Easy Mod. Hard Easy Mod. Hard

Pseudo-LiDAR-based

– 23.71 12.40 10.61 31.15 16.23 13.49

R̂ 24.04 13.39 11.13 31.60 17.43 14.58
ˆHWL 25.73 14.50 11.64 34.19 19.01 15.58

X̂Y 33.76 20.37 17.22 44.23 25.62 21.76

Ẑ 53.71 35.15 29.38 59.81 41.93 35.94

Table 1: Oracle analyses. We computed the object detec-

tion results (Car 3D AP |R40
) of state-of-the-art methods by

substituting selected predicted components (Oracle) with

their corresponding ground-truth value (e.g. Ẑ).

3D Object Depth Validation set 3D AP ↑ Test set 3D AP ↑
Detector Estimator Easy Mod. Hard Easy Mod. Hard

Wang et al. [29] BTS Eigen 24.47 13.40 10.92 9.87 6.40 5.46

PatchNet [18] BTS Eigen 31.60 18.22 15.10 14.00 8.70 7.39

Wang et al. [29] BTS GeoSep 17.20 9.35 7.57 10.76 6.86 5.93

PatchNet [18] BTS GeoSep 20.79 10.55 8.90 10.88 7.42 6.51

Table 2: Pseudo-LiDAR results on KITTI3D validation and

official benchmark, class Car, official AP|R40
metric.

Train set Validation Set d1 ↑ AbsRel ↓ RMSE ↓ SILog ↓

Eigen Eigen validation 0.908 0.084 4.003 16.577

Eigen Detection training 0.926 0.067 3.806 15.250

Eigen Detection validation 0.920 0.072 3.838 16.063

GeoSep GeoSep validation 0.904 0.093 3.627 14.019

GeoSep Detection training 0.858 0.111 4.830 15.960

GeoSep Detection validation 0.872 0.105 4.429 15.872

Table 3: Depth estimation results with BTS on KITTI, com-

puted w.r.t. ground-truth depth obtained from LiDAR scans.

of state-of-the-art monocular 3D object detection meth-

ods [1, 18, 25, 29] and compared their 3D object detec-

tion performances by substituting sub-task predictions (e.g.

depth) with their corresponding ground-truth values. In

Tab. 1 we show that certain sub-tasks like rotation (R) and

shape (W,H,L) prediction, despite the substitution with

ground-truth values, do not significantly improve perfor-

mance. In contrast, substituting the predicted depth estima-

tion (Z) with ground truth improves substantially, meaning

that depth is by-far the most crucial component for 3D ob-

ject detection. Notably, this observation is consistent for all

the different tested methods.

4. The Bias in Pseudo-LiDAR Experiments

With depth identified as most critical component in

monocular 3D detection works, it becomes obvious that

PL-based methods are particularly sensitive to inputs from

depth estimators trained in a biased way.

4.1. The Source of the Bias

To our knowledge, all PL-based methods published so

far were exclusively evaluated on the KITTI3D [8] dataset

which, as described in Sec. 3.2, shares data among several

benchmarks like 3D object detection and depth prediction.

With the advent of PL, it is however paramount to iden-

tify potential sources of cross-pollination in task-specific

dataset splits. Our investigations showed that previous, PL-

based works [29, 32, 18] were built on top of DORN [7],

i.e. a state-of-the-art depth estimator, that in turn however

included a majority of images from the detection validation

set during its training. Specifically, we found 1226/3769

(32.5%) images to be shared between the widely adopted

Eigen et al. training split [6] for depth estimation and the

commonly used Chen et al. [3] validation split for 3D ob-

ject detection. When adding also the images belonging to

the same capturing sequence, the numbers slightly increase

to 1258/3769 (33.4%).

We illustrate the full extent of the contamination in

Fig. 2, plotting GPS positions and hence the overlap of the

different splits (Eigen et al. depth training split in black;

Chen et al. validation split for 3D object detection in red).

In Tab. 2, we show the effect of the contamination on the

validation and test scores for two state of the art PL meth-

ods [29, 18]. The rows corresponding to Eigen are based on

biased depth as input, which was generated using BTS [12]

trained on the Eigen et al. split. We rely on BTS [12] be-

cause it represents a novel state-of-the-art depth estimator1.

The huge performance drops (up to 17.6 AP) between ob-

tained validation and test scores clearly indicate the rele-

vance of the bias issue discussed here.

4.2. Can the Bias be Removed?

As stated above, a contamination exists between the

depth training and detection validation sets used by PL-

based methods. To further support our hypothesis that

this contamination causes a bias in the KITTI3D validation

scores, we introduce a geographical separation between the

two data sets. We create a novel depth training set, GeoSep,

enforcing significant spatial separation between the datasets

used for depth estimation and detection. Exploiting the

GPS information included in the available KITTI bench-

mark data, we create two novel train/val depth splits by se-

lecting images captured farther than 200m from any detec-

tion image (additional details are given in the supplemen-

tary material). Our new GeoSep data split is visualised in

Fig. 2 (green markers), showing a clear safety margin be-

tween depth training (Eigen et al. [6], black markers) and

object detection validation (red markers) splits.

1Differently from the depth estimator usually used by PL methods,

i.e. DORN [7], for which official training code is not publicly available,

BTS provides a complete open-source code (https://github.com/

cogaplex-bts/bts)
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Figure 2: Geographical distribution of the biased training

(black), detection validation (red) and geographically sepa-

rated (green) depth training splits. Square boxes highlight

parts where the overlap between the biased depth training

and detection validation sets are particularly evident.

To verify whether our novel split solves the bias is-

sue, we use it to train a depth estimation model. We use

BTS [12] as depth prediction network and, again, consider

the state-of-the-art PL methods in [29] and [18]. The results

of our analysis, shown in Tab. 3 and Tab. 2, still indicate the

presence of a bias in both depth estimation and 3D detection

results. To our great surprise, despite the lack of geographi-

cal intersection between the training splits, the gap between

validation and test results is still substantially higher (up

to 10 AP) compared to the gap that methods using RGB-

only inputs typically incur (≈ 3-5 AP). This suggests a more

structured form of contamination that goes beyond the sim-

ple geographical distribution of the data, perhaps related to

intrinsic factors such as the visual appearance and semantic

similarity of the scenes (e.g. presence of similar streets).

Figure 3: Qualitative results of our method with confidence

scores of each detection. Top: We report the 2D confidence

score that PL-based methods typically use. Bottom: We

report the learned 3D confidence predicted by our method.

The persistence of the bias using both depth training

splits (Eigen or GeoSep) make us draw the conclusion that

fair comparisons should not, at least in these settings, be

performed on the KITTI3D validation set. On the other

hand, the fact that published PL-based methods are not able

to surpass state-of-the-art RGB-only based methods (see

Tab. 5 first block) is an indication that the test set itself

does not suffer from the same type of bias, thus preserv-

ing its validity for the sake of fair comparisons. Following

these conclusions, all the comparisons related to our sec-

ond contribution will be made on the official test set while

the validation set will be used for ablation studies. Despite

our study only partially identifies the source of the bias, this

work provides the first analysis of the issue revealing poten-

tially unfair comparisons and we encourage the community

to take it into account for future works.

5. 3D Confidence for PL-based Methods

As described in the previous section, the performance

of PL-based methods is deeply influenced by the upstream

depth estimation task. We will now demonstrate that the

estimation of the 3D confidence has an equally relevant role.

The 3D confidence can be thought as an estimate of the

quality of the 3D detection which, as described in Sec. 3.1,

has to be associated to each 3D bounding box. In datasets

such as KITTI3D, this confidence takes an active role in the

computation of the metrics (e.g. Average Precision). In light

of this fact we observed that existing Pseudo-LiDAR meth-

ods do not perform the 3D confidence estimation in any way

but rely on the class probability coming along with the 2D

detections. By doing so, the confidence adopted by cur-

rent PL-based methods is actually agnostic to the quality of

the 3D predictions and therefore not effective for the role it

should take. On top of this, as shown in Fig. 3, we observed

that 2D detectors are often too confident and therefore the

need for a 3D confidence seems essential. For this reason,

we propose to endow PL-based methods with the ability of

estimating the 3D confidence.

5.1. Proposed Architecture

In order to describe how the confidence is estimated we

first provide an overview of the general architecture we

adopt, similarly to other PL-based methods [29, 18], and

subsequently detail our contribution.

PL-based 3D detection architecture. The architecture

commonly adopted by state-of-the-art PL-based methods,

which we also use in this work, is depicted in Fig. 4 (exclud-

ing the red block, i.e. our contribution). It can be divided

into three main branches, namely 2D Detection, Pseudo-

LiDAR and 3D Detection. The 2D Detection and Pseudo-

LiDAR components usually exploit pre-trained architectures

and have the purpose of understanding where the object of
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Figure 4: Architecture of a generic Pseudo-LiDAR-based method integrating the proposed 3D confidence component.

interest are in the image, as well as of estimating the per-

pixel depth, respectively. The per-pixel depth-map is then

converted to Pseudo-LiDAR 3D point-cloud and, finally,

the points belonging to each object are selected and filtered

to discard elements corresponding to e.g. road, occlusions.

The 3D detection block is responsible for the estimation of

the output 3D bounding boxes, taking as input the selected

PL points to perform a point-based 3D detection by means

of an initial 3D Backbone followed by a 3D Head.

3D confidence head. In the following we describe our main

contribution, i.e. an approach which endows the PL-based

methods under consideration with the ability to predict a

self-supervised 3D confidence. In order to reliably and ac-

curately estimate the 3D confidence of bounding boxes, ap-

propriate 3D-related feature representation need to be com-

puted. For this reason, in this work we introduce an addi-

tional branch in the architecture, namely the 3D Confidence

Branch, which, as shown in Fig. 4 (red block), takes as input

the set of 3D Features computed by the 3D Backbone and

outputs a single value Ci, i.e. the 3D confidence, for each

object. In the presence of K > 1 classes the output is a set

of K confidences Ck
i , one for each class k. Note that our

proposed 3D Confidence Branch is not tied to any particular

architecture and requires minimal modifications to existing

PL approaches. An example of a simple implementation is

by mirroring the architecture of the 3D Head, thus leading

to limited computational complexity and minimal overhead

in term of inference time.

5.2. Learning the 3D Confidence

In this paper we propose two different approaches for 3D

confidence prediction. The first approach, which we denote

as Absolute 3D confidence estimation is inspired by previ-

ous RGB-only based methods [26], while the second strat-

egy, called the Relative 3D confidence estimation method, is

introduced with this paper. In both cases, given a 3D bound-

ing box Bi and the corresponding ground-truth B̂i, the loss

for the 3D confidence prediction C3D
i takes the following

cross-entropy form:

Lconf(C
3D
i |Bi, B̂i) = −Ti logC

3D
i − (1−Ti) log(1−C3D

i ),

where Ti is the target confidence value that takes a different

value for the absolute and relative confidences, as described

below. In case of multiple object categories, we assume to

have independent 3D confidence predictions per class.

Absolute 3D confidence. Inspired by [25], the absolute 3D

confidence is trained by directly regressing the loss of the

prediction. This boils down to setting T abs
i = e−

1

β
ℓ(Bi,B̂i)

as the target confidence, where ℓ(Bi, B̂i) is the loss incurred

by the bounding box prediction and β > 0 is a tempera-

ture parameter. Since this approach leads to a 3D confi-

dence which reflects the quality of a 3D detection in abso-

lute terms we call it Absolute 3D Confidence.

Relative 3D confidence. We also propose a novel ap-

proach which aims at overcoming a couple of issues that

affect loss-based confidences like the one described above.

The first is that they are sensitive to the scale of the loss

values, which requires to tune scaling factors. The second

is that they are not immune to the issue of the network be-

coming overconfident as the training progresses towards an

overfitting regime. We solve these two issues by shifting the

semantics of the score that the network provides with each

prediction from an absolute confidence to a relative confi-

dence. A typical confidence score is supposed to be repre-

sentative of the absolute quality of the prediction. Instead,

the score that we require the network to learn is representa-

tive of the quality of the prediction relative to other typical

predictions done by the network. For this reason, this novel

confidence is regarded as Relative 3D Confidence.

Consider a training set containing n 3D objects, where

ℓi , ℓ(Bi, B̂i) denotes the loss incurred by the model on

the predicted 3D bounding box for the ith object. We pro-

pose to regress as a confidence C3D
i for the prediction Bi,

the proportion of 3D objects in the training set on which

the model performs equal or worse than on object i, i.e. our

target confidence prediction is given by

T rel
i =

1

n− 1

n∑

j=1

j 6=i

1ℓj≥ℓi ,

where 1P denotes the indicator vector for predicate P . The

proposed confidence is inherently relative because it does

not depend on the actual absolute values of the losses, but

rather on their ordering. In order to train a model to regress

the new confidence, we need to compute the value of T rel
i for

each 3D object i in the mini-batch. However, to compute
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Figure 5: Binned scatter plot of the Absolute (left) and Rel-

ative (right) 3D confidences on the training (green) and val-

idation (red) splits. Since the x-axis represents what the

confidence is supposed to regress, the ideal curve lies on the

diagonal. On the training set, both the absolute and relative

confidences follow the expected curve. On the validation

set however only the relative confidence aligns with the ex-

pected curve, whereas the absolute confidence consistently

overestimates it, signaling the issue of being overconfident.

such target values, we need to access the loss incurred on

each 3D object in the training set, which is computationally

demanding. An alternative solution consists in tracking the

past loss values for each 3D object in the training set. This is

feasible, but given the frequent updates of the model the past

losses would be soon outdated. Also, there exist augmen-

tation strategies, for which it might be hard to match pre-

dictions across epochs. Interestingly, there is a very simple,

stochastic procedure that allows us to train the desired con-

fidence by only accessing loss values in a mini-batch of at

least 2 elements. Specifically, we randomly pair the bound-

ing box prediction for 3D object i in the mini-batch with

the prediction obtained for another, distinct 3D object πi in

the same set. Given this assignment, we compute a binary

target value T̂i for training the confidence as T̂i = 1ℓi≤ℓπi
,

and plug this into the cross-entropy loss Lconf that we use

to train the confidence. To see why this works, fix a 3D

object i in the training set. Then the target variable T̂i is a

random variable, where πi is uniformly sampled among the

other n− 1 3D objects in the training set. Accordingly, the

expected value E[T̂i] of T̂i yields exactly T rel
i . This is also

the value to which the predicted confidence C3D
i will tend

to if trained with the cross-entropy loss Lconf, assuming the

losses will eventually converge during training. If multiple

classes are present, we have independent confidence predic-

tions per class and the random pairing procedure is applied

only between 3D objects in the mini-batch having the same

class. No loss is computed if a 3D object is the only one of

a given class in the mini-batch.

Pros and cons of relative confidences. Our score takes

the role of a relative confidence, which does not give infor-

mation about the quality of a prediction in absolute terms,

but rather assesses the quality of the prediction relative to

other predictions done by the network. As an extreme ex-

Validation 3D AP Test 3D AP

Method Easy Mod. Hard Easy Mod. Hard

Wang et al. 24.47 13.40 10.92 14.17 8.47 7.29

+ Absolute 3D Conf 32.44 20.84 17.26 18.56 10.99 9.31

+ Relative 3D Conf 34.56 22.04 18.87 18.74 11.04 9.41

PatchNet 30.53 17.33 12.80 15.70 10.15 8.79

+ Absolute 3D Conf 37.04 23.26 18.78 22.21 12.51 10.46

+ Relative 3D Conf 38.60 23.68 19.51 22.40 12.53 10.64

Table 4: KITTI3D Validation and Test set AP |R40
results.

ample, a nearly perfect prediction can get zero confidence

if that is the prediction that incurred the highest error in

the training set. Similarly, a bad prediction can get high

confidence score if it is the best prediction the network ever

made. An interesting property of our confidence score is the

invariance to order-preserving transformations of the losses.

This renders the score more robust to scenarios where the

losses change over time, which is the setting that is encoun-

tered at training time. Additionally, our confidence score

does not suffer from the problem of the network becoming

overconfident, because of the relative nature of our score

(see Fig. 5). On the downside, an absolute confidence is

typically helpful to filter predictions based on a threshold.

Doing the same with a relative confidence might be cum-

bersome. This is why we actually combine our relative con-

fidence score from the 3D detection head with the 2D ab-

solute confidence score from the 2D detection. Indeed, the

2D detection confidence works well for the sake of remov-

ing bad quality predictions, but lacks resolution for discrim-

inating the quality of the predictions left. This is where our

relative confidence comes into play, since it does not suffer

from the issue of becoming overconfident.

6. Experiments

We test the validity of our proposed 3D confidence mea-

sures by considering the deep architectures implemented in

two common PL methods, i.e. the first PL method, Wang

et al. [29], and a current top-performing state-of-the-art

method, PatchNet [18]. We modify their architectures to

include our proposed 3D Confidence Head, which in all

our experiments is implemented mirroring the existing 3D

Head. In detail, it is implemented as one set of fully-

connected layers for [29] and three distance-specific fully-

connected modules for [18]. We follow the schedules and

hyperparameters choices of [18] and [29], with the only

addition of the 3D Confidence loss which is given a weight

of 1.0. Additional implementation details are given on the

supplementary material. We follow the experimental proto-

col of all PL-based works and evaluate our method on the

KITTI3D [8] benchmark. All the results presented and re-

ported in this work have been computed with the official

AP |R40
metric.

Experimental results. In Tab. 4 we investigate the influ-

ence of the 3D confidence on the PL-LiDAR methods [29]
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Car 3D AP

Method Easy Mod. Hard

OFTNet [24] 1.61 1.32 1.00

FQNet [15] 2.77 1.51 1.01

ROI-10D [20] 4.32 2.02 1.46

GS3D [13] 4.47 2.90 2.47

MonoGRNet [23] 9.61 5.74 4.25

Wang et al. [29] 9.87 6.40 5.46

MonoDIS [25] 10.37 7.94 6.40

MonoPSR [11] 10.76 7.25 5.85

Mono3D-PL [30] 10.76 7.50 6.10

SS3D [9] 10.78 7.68 6.51

MonoPair [4] 13.04 9.99 8.65

SMOKE [17] 14.03 9.76 7.84

RTDM3DA [14] 14.41 10.34 8.77

M3D-RPN [1] 14.76 9.71 7.42

MoVi-3D [27] 15.19 10.90 9.26

PatchNet [18] 15.68 11.12 10.17

AM3D [19] 16.50 10.74 9.52

MonoDIS [26] 16.50 12.20 10.30

D4LCN [5] 16.65 11.72 9.51

Liu et al.A [16] 21.65 13.25 9.91

Our PatchNet 22.40 12.53 10.64

Table 5: Test set SOTA AP |R40
official results on KITTI3D

for class Car. Best scores in bold, runner-ups underlined.

A = trained with additional data and only on class Car.

Cyclist 3D AP Pedestrian 3D AP

Method Easy Mod. Hard Easy Mod. Hard

M3D-RPN [1] 0.94 0.65 0.47 4.92 3.48 2.94

MoVi-3D [27] 1.08 0.63 0.70 8.99 5.44 4.57

MonoDIS [26] 1.17 0.54 0.48 7.79 5.14 4.42

D4LCN [5] 2.45 1.67 1.36 4.55 3.42 2.83

SS3D [9] 2.80 1.45 1.35 2.31 1.78 1.48

MonoPair [4] 3.79 2.12 1.83 10.02 6.68 5.53

Our - PatchNet 7.79 4.32 3.98 3.00 1.81 1.59

Table 6: Test set SOTA AP |R40
official results on KITTI3D

of published multi-class methods for Cyclist and Pedes-

trian. Best scores in bold, runner-ups underlined.

and [18]. In particular, we compute the 3D object detec-

tion metrics on the validation and test set of KITTI3D with

the baseline methods as well as with the addition of the 3D

Confidence Head (+ 3D Confidence) trained with both the

absolute and relative learning procedure. As shown in the

table, we observe a major improvement on the 3DAP . This

validates our hypothesis about the importance of having a

3D confidence prediction component in PL-based methods.

The relative 3D confidence also consistently outperforms

the absolute one, demonstrating the validity of our proposed

relative formulation. In Tab. 5, 6 we compare our results

with state-of-the-art methods on the KITTI3D test set. Our

method based on PatchNet structure achieves state-of-the-

art performance on the classes Car and Cyclist, while it does

not surpasses previous approaches on the Pedestrian. We

ascribe this behaviour to the fact that instances of the class

Pedestrian are extremely rare in the Eigen depth training

Depth Validation 3D AP Test 3D AP

Method Estimator Easy Mod. Hard Easy Mod. Hard

PatchNet BTS GeoSep 20.79 10.55 8.90 10.88 7.42 6.51

+ Abs. 3D Conf. BTS GeoSep 23.37 15.49 12.70 17.38 10.30 8.78

+ Rel. 3D Conf. BTS GeoSep 24.51 17.03 13.25 17.69 10.85 9.37

Table 7: Validation and Test set AP |R40
results on

KITTI3D obtained with the GeoSep depth training split.

set, thus having a negative impact on the depth map quality.

In Tab. 7 we also report the results of PatchNet + 3D

Confidence obtained by relying on a depth estimator trained

on the GeoSep depth training set. Again, this table demon-

strates the merit of our contributions in term of 3D confi-

dence estimation. Additionally, relatively to our first con-

tribution, we notice that a gap between the validation and

test set results still exists, indicating the bias issue. How-

ever, this does not invalidate our observations regarding the

effectiveness of the proposed 3D confidence.

7. Conclusions

In this paper we have shown that top-performing Pseudo-

LiDAR-based works suffer from a bias in the reported val-

idation scores for the KITTI3D benchmark. The source of

the issue is partially due to an overlap that exists between

the training set used to train the upstream depth estima-

tors, providing the depth in input to the PL-based methods,

and the validation set used for 3D object detection. In an

attempt to validate the hypothesis we constructed an geo-

graphically separated training set for the depth estimators

by ensuring geographical separation to the detection vali-

dation set. However we found that this is not sufficient to

remove the bias in the validation set, which indicates the

existence of a more structured nature of the issue. As a

consequence, future works involving PL-based methods on

KITTI3D should avoid comparative analysis against other

methods using the validation set, but rather rely on the test

set. In the second part of our work, we provided an architec-

tural change to PL-based methods aimed at endowing them

with the ability of predicting 3D confidences. We showed

that with this simple change PL-based methods get remark-

able improvements on the KITTI3D benchmark establish-

ing a new state of the art.
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Manuel López-Antequera, and Peter Kontschieder. Dis-

entangling monocular 3d object detection: From single to

multi-class recognition. In TPAMI, 2020. 3, 4, 6, 8

[27] Andrea Simonelli, Samuel Rota Bulò, Lorenzo Porzi, Elisa
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