
Aligning Latent and Image Spaces to Connect the Unconnectable

Ivan Skorokhodov1, Grigorii Sotnikov2,3,4, Mohamed Elhoseiny1

1King Abdullah University of Science and Technology (KAUST)
2Gradient, 3Higher School of Economics, 4Skolkovo Institute of Science and Technology

ivan.skorokhodov@kaust.edu.sa gdsotnikov@edu.hse.ru mohamed.elhoseiny@kaust.edu.sa

Figure 1: Our method can generate infinite images of diverse and complex scenes that transition naturally from one into
another. It does so without any conditioning and trains without any supervision from a dataset of unrelated square images.

Abstract

In this work, we develop a method to generate infinite
high-resolution images with diverse and complex content.
It is based on a perfectly equivariant patch-wise genera-
tor with synchronous interpolations in the image and latent
spaces. Latent codes, when sampled, are positioned on the
coordinate grid, and each pixel is computed from an inter-
polation of the neighboring codes. We modify the AdaIN
mechanism to work in such a setup and train a GAN model
to generate images positioned between any two latent vec-
tors. At test time, this allows for generating infinitely large
images of diverse scenes that transition naturally from one
into another. Apart from that, we introduce LHQ: a new
dataset of 90k high-resolution nature landscapes. We test
the approach on LHQ, LSUN Tower and LSUN Bridge and
outperform the baselines by at least 4 times in terms of qual-
ity and diversity of the produced infinite images. The project
website is located at https://universome.github.io/alis.

1. Introduction
Modern image generators are typically designed to syn-

thesize pictures of some fixed size and aspect ratio. The

real world, however, continues outside the boundaries of
any captured photograph, and so to match this behavior,
several recent works develop architectures to produce in-
finitely large images [29, 10, 57], or images that partially
extrapolate outside their boundary [25, 43, 57].

Most of the prior work on infinite image generation fo-
cused on the synthesis of homogeneous texture-like patterns
[20, 2, 29] and did not explore the infinite generation of
complex scenes, like nature or city landscapes. The critical
challenge of generating such images compared to texture
synthesis is making the produced frames globally consis-
tent with one another: when a scene spans across several
frames, they should all be conditioned on some shared in-
formation. To our knowledge, the existing works explored
three ways to achieve this: 1) fit a separate model per scene,
so the shared information is encoded in the model’s weights
(e.g., [29, 40, 53, 11]); 2) condition the whole generation
process on a global latent vector [57, 25, 43]; and 3) predict
spatial latent codes autoregressively [10].

The first approach requires having a large-resolution
photograph (like satellite images) and produces pictures
whose variations in style and semantics are limited to the
given imagery. The second solution can only perform some
limited extrapolation since using a single global latent code

14144

!!

!! = ((" − $ − %) ⋅ !! + ($ + %) ⋅ !")/"

!
""
!"!#

"#
!

"!
"#

Figure 2: Illustration of our alignment procedure. We po-
sition initial latent codes (anchors) on the 2D coordinate
space and compute latent code wx for each position x as a
linear interpolation between its two neighboring anchors.

cannot encompass the diversity of an infinite scenery (as
also confirmed by our experiments). The third approach
is the most recent and principled one, but the autoregres-
sive inference is dramatically slow [15]: generating a single
2562 image with [10]’s method takes us ⇠10 seconds on a
single V100 GPU.

This work, like [10], also seeks to build a model with
global consistency and diversity in its generation process.
However, in contrast to [10], we approach the problem from
a different angle. Instead of slowly generating local latent
codes autoregressively (to make them coherent with one
another), we produce several global latent codes indepen-
dently and train the generator to connect them.

We build on top of the recently proposed coordinate-
based decoders that produce images based on pixels’ co-
ordinate locations [28, 25, 43, 1, 5] and develop the above
idea in the following way. Latent codes, when sampled,
are positioned on the 2D coordinate space — they consti-
tute the “anchors” of the generation process. Next, each
image patch is computed independently from the rest of the
image, and the latent vector used for its generation is pro-
duced by linear interpolation between nearby anchors. If
the distance d 2 R between the anchors is sufficiently large,
they cover large regions of space with the common global
context and make the neighboring frames in these regions
be semantically coherent. This idea of aligning latent and
image spaces (ALIS) is illustrated in Figure 2. An impor-
tant ingredient of our setup is the use of Fourier coordinate
embeddings [42, 45], which provide crucial positional in-
formation and help to model high-frequency details. We
inherit their design from INR-GAN [43].

Our model is GAN-based [14] and the generator is
trained to produce plausible images from any position in
space. This is in high contrast to existing coordinate-based
approaches that generate samples only from [0, 1]2 coordi-
nates area, which constitutes a single frame size. To make
the model generalize to any position in space, we do not in-
put global coordinates information. Instead, we input only
its position relative to the neighboring anchors, which, in
turn, could be located arbitrarily on the x-axis.

We utilize StyleGAN2 architecture [24] for our method

and modify only its generator component. Originally, Style-
GAN2 passes latent vectors into the decoder by modulating
and demodulating convolutional weights — an adjustment
of adaptive instance normalization layer (AdaIN) [18]. For
our generator, we redesign AdaIN to make it work with
the coordinate-based latent vectors and develop Spatially-
Aligned AdaIN (SA-AdaIN), described in Sec 3. Our
model is trained in a completely unsupervised way from a
dataset of unrelated square image crops, i.e. it never sees
full panorama images or even different parts of the same
panorama during training. By training it to produce real-
istic images located between arbitrary anchors describing
different content (for example, mountains and a forest), it
learns to connect unrelated scenes into a single panorama.
This task can be seen as learning to generate camera transi-
tions between two viewpoints located at semantically very
different locations.

We test our approach on several LSUN categories and
Landscapes HQ (LHQ): a new dataset consisting of 90k
high-resolution nature landscape images that we introduce
in this work. We outperform the existing baselines for all
the datasets in terms of infinite image quality by at least 4
times and at least 30% in generation speed.

2. Related work
Coordinates conditioning. Coordinates conditioning

is the most popular among the NeRF-based [33, 30] and
occupancy-modeling [32, 6, 26] methods. [35, 4, 41]
trained a coordinate-based generator that models a volume
which is then rendered and passed to a discriminator. How-
ever, several recent works demonstrated that providing posi-
tional information can help the 2D world as well. For exam-
ple, it can improve the performance on several benchmarks
[28, 1] and lead to the emergence of some attractive prop-
erties like extrapolation [25, 43] or super-resolution [43, 5].
An important question in designing coordinate-based meth-
ods is how to embed positional information into a model
[50, 13]. Most of the works rely either on raw coordi-
nates [28, 57] or periodic embeddings with log-linearly dis-
tributed frequencies [33]. [42, 45] recently showed that us-
ing Gaussian distributed frequencies is a more principled
approach. [38] developed a progressive growing technique
for positional embeddings.

Infinite image generation. Existing works on infinite
image generation mainly consider the generation of only
texture-like and pattern-like images [20, 2, 11, 29, 39], mak-
ing it similar to procedural generation [37, 34]. SinGAN
[40] trains a GAN model on a single image and is able to
produce its variations. Generating infinite images with di-
verse, complex and globally coherent content is a more in-
tricate task since one needs to seamlessly connect both lo-
cal and global features. LocoGAN [57] and Taming Trans-
formers (TT) [10] generate images with arbitrary aspect ra-

14145

tio and hence can be used for infinite image generation.
LocoGAN [57] uses a single global latent code, which leads
to content repetition (see Fig 7). TT [10] produces latent
codes autoregressively which makes the generated content
more diverse, but at the expense of being slower at test-
time. [27] proposes both a model and a dataset to generate
a sequence of images along a camera trajectory from a sin-
gle RGB frame. Our approach shares some resemblance to
image stitching [44], but instead of concatenating existing
images without seams, we generate from scratch an infinite
panorama. [21] constructed an infinite image by performing
image retrieval + stitching from a vast image collection.

Image extrapolation. Another close line of research is
image extrapolation (or image “outpainting” [54, 49]), i.e.,
predicting the surrounding context of an image given only
its part. The latest approaches in this field rely on using
GANs to predict an outlying image patch [16, 46, 51]. The
fundamental difference of these methods compared to our
problem design is the reliance on an input image as a start-
ing point of the generation process.

Adaptive Normalization. Instance-based normalization
techniques were initially developed in the style transfer lit-
erature [12]. Instance Normalization [47] was proposed to
improve feed-forward style transfer [48] by replacing con-
tent image statistics with the style image ones. CIN [9]
learned separate scaling and shifting parameters for each
style. AdaIN [18] developed the idea further and used shift
and scaling values produced by a separate module to per-
form style transfer from an arbitrary image. Similar to
StyleGAN [23], we use AdaIN [18] without shifting to in-
put latent information to the generator. But in contrast to its
setup, we compute the scale weights by interpolating nearby
latent codes using their coordinate positions instead of us-
ing global ones for the whole image.

Equivariant models. [55] added averaging operation to
a convolutional block to improve its invariance/equivariance
to shifts. [36] explored natural equivariance properties in-
side the existing classifiers. [8] developed a convolutional
module equivariant to sphere rotations, and [7] generalized
it to other symmetries. In our case, we manually construct
a model to be equivariant to shifts in the coordinate space.

3. Method
We build upon StyleGAN2 [24] architecture and modify

only its generator G as illustrated in Fig 4. All the other
components, including discriminator D, the loss terms, and
the optimization procedure, are left untouched.

To produce an image with our generator, we first need to
sample anchors: latent codes that define the context in the
space region in which the image is located. In this work, we
consider only horizontal infinite image generation. Thus
we need only three anchors to define the context: left an-
chor wl, center anchor wc and right anchor wr. Following

! = 0.7 ! = 0.7 ! = 1.45 ! = 1.45

" = 0 " = 1/2 " = 1

Figure 3: Our generator has the equivariance property by
construction: we depict three samples with the coordinate
shifts of 0, 1/2 and 1, respectively, and this makes the re-
sulted output move accordingly. As highlighted by dash cir-
cles, pixel values are equal when their coordinates are equal
(up to numerical precision) for different samples. Sam-
ples remain of the same quality and diversity for any shift
s 2 (�1,1).

StyleGAN2, we produce a latent code w with the mapping
network w ⇠ F(z) where z ⇠ N (0, Idz).

To generate an image, we first need to define its location
in space. It is defined relative to the left anchor wl by a
position of its left border � 2 [0, 2 · d�W], where d is the
distance between anchors and W is the frame width. In this
way, � gives flexibility to position the image anywhere be-
tween wl and wr anchors in such a way that it lies entirely
inside the region controlled by the anchors. During training,
wl,wc,wr are positioned in the locations �d, 0, d respec-
tively along the x-axis and � is sampled randomly. At test
time, we position anchors wi at positions 0, d, 2d, 3d, ... and
move with the step size of � = W along the x-axis while
generating new images. This is illustrated in Figure 5.

Traditional StyleGAN2 inputs a latent code into the de-
coder via an AdaIN-like [18] weight demodulation mecha-
nism, which is not suited for our setup since we use differ-
ent latent codes depending on a feature coordinate position.
This forces us to modify it into Spatially-Aligned AdaIN
(SA-AdaIN), which we describe in Sec 3.2.

Our generator architecture is coordinate-based and, in-
spired by [25], we generate an image as 16 independent
vertical patches, which are then concatenated together (see
B for the illustration). Independent generation is needed
to make the generator learn how to stitch nearby patches
using the coordinates information: at test-time, it will be
stitching together an infinite amount of them. Such a de-
sign also gives rise to an attractive property: spatial equiv-
ariance, that we illustrate in Figure 3. It arises from the
fact that each patch does not depend on nearby patches,
but only on the anchors wl,wc,wr and its relative coor-
dinates position �. At each generator block, we concatenate
coordinates information, represented as Fourier positional
embeddings [42, 45]. We inherit coordinate layers without
changes from the INR-GAN [43] repository.

14146

!
CoordConst16×16×512

CoordConv 3x3

Upsample

SA-AdaIN

CoordConv 3x3

SA-AdaIN

CoordConv 3x3

SA-AdaIN

16×16

32×32

Affine

Affine

Affine

!" !! !#

"" "! "#
Mapping Network

Figure 4: Illustration of our proposed generator. In this il-
lustration, we omit some standard StyleGAN2 layers that
are not essential for our architecture to not clutter the ex-
position. The full architecture is provided in Appendix
B. CoordConst and CoordConv3x3 are analogs of Style-
GAN2’s Const and Conv3x3 blocks, but with coordinates
embeddings concatenated to the hidden representations (the
same way as in INR-GAN [43]).

3.1. Aligning Latent and Image Spaces

The core idea of our model is positioning global latent
codes (anchors) on the image coordinates grid and slowly
varying them with linear interpolation while moving along
the plane. In this way, interpolation between the latent
codes can be seen as the camera translation between the
scenes corresponding to neighboring anchors. We call those
anchors global because each one of them influences many
frames. The idea for 1D alignment (i.e., where we move
only along a single axis) is illustrated on Figure 2.

Imagine that we need to generate a pixel or intermedi-
ate feature value v at position (x, y) 2 R2. A traditional
generator would produce a latent code w and generate the
value based on it: v(x, y) = G(x, y;w). But in our case,
we make the latent code be dependent on x (it’s trivial to
generalize it to be dependent on both x and y):

v(x, y) = G(x, y;wx), (1)

where wx is computed as a linear interpolation between the

! ~ "(0, #) Mapping Network

$3

$2$1 $2$1
$1
$1 $2$1 $2 $4

$3$3

$2

Figure 5: Inference process of our model at test time for
d = 2W (i.e. the distance between anchors is twice larger
than the frame width). We sample new anchors wi on the
fly at positions 0, d, 2d, 3d, Since only relative positional
information is provided to the decoder, we can decode im-
ages at any location x 2 (�1,1).

nearby anchors wa and wb at positions a, b 2 R:

wx = ↵wa + (1� ↵)wb, (2)

and ↵ is the normalized distance from x to b: ↵ = (b �
x)/(b� a).

In this way, latent and image spaces become aligned with
one another: any movement in the coordinate space spurs
movement in the latent space and vice versa. By training
G to produce images in the interpolated regions, it implic-
itly learns to connect wa and wb with realistic inter-scene
frames. At test time, this allows us to connect any two in-
dependent wa and wb into a single panorama by generating
in-between frames, as can be seen in Figure 1.

3.2. Spatially Aligned AdaIN (SA-AdaIN)
Our G architecture is based on StyleGAN2’s generator,

which uses an AdaIN-like mechanism of modulating the
decoder’s convolutional weights. This mechanism is not
suited for our setup since one cannot make convolutional
weights be dependent on the coordinate position efficiently.
That is why we develop a specialized AdaIN variation that
can be implemented efficiently on modern hardware.

AdaIN [18] works the following way: given input h 2
Rc⇥s2 of resolution s

2 (for simplicity, we consider it to be
square), it first normalizes it across spatial dimensions and
then rescales and shifts with parameters �,� 2 Rc:

AdaIN(h,�,�) = � · h� µ(h)

�(h)
+ � (3)

14147

where µ(h),�(h) 2 Rc are mean and standard deviation
computed across the spatial axes and all the operations are
applied element-wise. It was shown that dropping the shift-
ing operation does not affect the performance much [24]:

AdaIN0(h,�) = � · h/�(h) (4)

thus we build on top of this simplified version of AdaIN.
Our Spatially-Aligned AdaIN (SA-AdaIN) is an analog

of AdaIN’ for a scenario where latent and image spaces are
aligned with one other (as described in Sec 3.1), i.e. where
the latent code is different depending on the coordinate po-
sition we compute it in. This section describes it for 1D-
case, i.e., when the latent code changes only across the hor-
izontal axis, but our exposition can be easily generalized to
the 2D case (actually, for any N -D).

While generating an image, ALIS framework uses
wl,wc and wr to compute the interpolations wx for the
required positions x. However, following StyleGAN2, we
input to the convolutional layers not the “raw” latent codes
w, but style vectors � obtained through an affine transform
� = A`w + b` where ` denotes the layer index. Since a
linear interpolation and an affine transform are interchange-
able, from the performance considerations we first compute
�l,�c,�r from wl,wc,wr and then compute the interpo-
lated style vectors �x instead of interpolating wl,wc,wr

into wx immediately.
SA-AdaIN works the following way. Given anchor style

vectors �l,�c,�r, image offset �, distance d between the
anchors and the resolution of the hidden representation
s, it first computes the grid of interpolated styles � =
[�1,�2, ...,�s] 2 Rs⇥c, where:

�k =

(
d���k/s

d �l +
�+k/s

d �c, if � + k/s > d

2d���k/s
d �c +

�+k/s�d
d �r, otherwise

(5)

This formulation assumes that anchors �l,�c,�r are located
at positions �d, 0, d respectively.

Then, just like AdaIN’, it normalizes h to obtain h̃ =
h/�(h). After that, it element-wise multiplies � and h,
broadcasting the values along the vertical positions:

[SA-AdaIN(x,�l,�c,�r, �)]k = �k · [h/�(h)]k, (6)

where we denote by [·]k the k-th vertical patch of a variable
of size s⇥ 1⇥ c. Note that since our G produces images in
a patch-wise fashion, we normalize across patches instead
of the full images. Otherwise, it will break the equivariance
and lead to seams between nearby frames.

SA-AdaIN is illustrated in Figure 6.

3.3. Which datasets are “connectable”?
As mentioned in [10], to generate arbitrarily-sized im-

ages, we want the data statistics to be invariant to their spa-
tial location in an image. This means that given an image

×
normalize

"

(a) AdaIN without shifting [24]

!!

!"
!#

! = "

"

Γ!

×
normalize

#

(b) Spatially-Aligned AdaIN

Figure 6: Top: AdaIN [18] without shifting (as explored
in [24]). Bottom: Spatially-Aligned AdaIN (SA-AdaIN).
Style vectors �`,�c,�r are positioned on the 2D coordinate
grid and a style vector in each location is computed as a
linear interpolation between neighboring anchors. For both
AdaIN and SA-AdaIN, we broadcast styles’ dimensions in
the multiplication operation to match the input tensor shape.

patch, one should be unable to confidently predict which
part of an image it comes from. However, many datasets
either do not have this property (like FFHQ [23]) or have
it only for a small number of images. To check if images
in a given dataset have spatially invariant statistics and to
extract a subset of such images, we developed the following
simple procedure. Given a dataset, we train a classifier on
its patches to predict what part of an image a patch is com-
ing from (we allocate < 10% of the dataset to do this). If
a classifier cannot do this easily (i.e., the accuracy is low),
then the dataset does have spatially invariant statistics. To
extract a subset of images with spatially invariant statistics,
we measure the classifier’s confidence on each image and
select those for which its confidence is low. The details are
in Appendix C.

14148

(a) Taming Transformers [10] for unconditional generation (the original paper mainly focused on the conditional generation from semantic
masks/depth maps/etc).

(b) LocoGAN [57] in the StyleGAN2 [24] framework + Fourier positional embeddings [42, 45]. The method generates realistic scenes,
but has repeated content.

(c) ALIS (ours). The method generates diverse infinite scenes without repetition or stitching artifacts.

Figure 7: Qualitative comparison between different methods on LHQ and LSUN Tower. More samples are in Appendix F.

4. Landscapes HQ dataset

We introduce Landscapes HQ (LHQ): a dataset of
90k high-resolution (� 10242) nature landscapes that we
crawled and preprocessed from two sources: Unsplash
(60k) and Flickr (30k). We downloaded 500k of images in
total using a list of manually constructed 450 search queries

and then filtered it out using a blacklist of 320 image tags.
After that, we ran a pretrained Mask R-CNN to remove
the pictures that likely contain objects on them. As a re-
sult, we obtained a dataset of 90k high-resolution images.
Finally, we manually filtered out 10k images to construct
LHQ-base: a landscapes dataset that is guaranteed to in-
clude only high-quality images. The details are described

14149

Figure 8: Varying distance d between the anchors for LSUN
Tower and LHQ datasets. Larger distance leads to better
per-frame image quality, but produces repetitions artifacts
as depicted on Figure 10.

Figure 9: Failure cases of our method: 1) top 2 rows —
connecting too different anchors (like close-by water and
far-away mountains); and 2) bottom 2 rows — content rep-
etitions (which arise due to the usage of periodic positional
embeddings [45, 42]).

in Appendix D.

5. Experiments
Datasets. We test our model on 4 datasets: LSUN Tower

2562, LSUN Bridge 2562 and LHQ 2562 (see Sec 4). We
preprocessed each dataset with the procedure described in
Algorithm 1 in Appendix C to extract a subset of data with
(approximately) spatially invariant statistics. We empha-
size that we focus on infinite horizontal generation, but
the framework is easily generalizable for the joint verti-
cal+horizontal infinite generation. We also train ALIS on
LHQ 10242 to test how it scales to high resolutions.

Evaluation. We use two metrics to compare the meth-
ods: a popular FID measure [17] and our additionally pro-
posed 1-FID, which is used to measure the quality and di-

Figure 10: A problem of using large distance d between
the anchors (in the above case, model was trained with d =
16). Though it improves per-frame image quality, the model
starts repeating itself during the generation process. For all
the datasets, we use the preprocessing procedure described
in Sec 3.3.

Figure 11: ALIS allows to resample any part of an image
without breaking its “connectivity”: frames are still consis-
tent both locally and globally.

versity of an “infinite” image. It is computed in the follow-
ing way. For a model with the output frame size of 2562, we
first generate a very wide image of size 256⇥(50000 ·256).
Then, we slice it into 50000 frames of size 2562 without
overlaps or gaps and compute FID between the real dataset
and those sliced frames. We also compute a total number of
parameters and inference speed of the generator module for
each baseline. Inference speed is computed as a speed to
generate a single frame of size 2562 on NVidia V100 GPU.

Baselines. For our main baselines, we use two methods:
Taming Transformers (TT) [10] and LocoGAN [57]. For
LocoGAN, since by default it is a small model (5.5M pa-
rameters vs ⇡50M parameters in StyleGAN2) and does not
employ any StyleGAN2 tricks that boost the performance
(like style mixing, equalized learning rate, skip/resnet con-
nections, noise injection, normalizations, etc.) we reimple-
mented it on top of the StyleGAN2 code to make the com-
parison fair. We also replaced raw coordinates conditioning
with Fourier positional embeddings since raw coordinates
do not work for (�1,1) range and were recently shown
to be inferior [42, 45, 43, 1]. We called this model Loco-
GAN+SG2+Fourier. Besides the methods for infinite image

14150

Table 1: Scores for different models on different datasets in terms of FID and 1-FID. “N/A” denotes “not-applicable”.

Method Bridge 2562 Tower 2562 Landscapes 2562 Speed #paramsFID 1-FID FID 1-FID FID 1-FID
Taming Transformers [10] 56.06 58.27 50.16 51.32 61.95 64.3 9981 ms/img 377M
LocoGAN [57]+SG2+Fourier 9.02 264.7 8.36 381.1 7.82 211.2 74.7 ms/img 53.7M
ALIS (ours) 10.24 10.79 8.83 8.99 10.48 10.64 53.9 ms/img 48.3M

w/o coordinates 13.21 13.92 10.32 10.17 12.63 13.07 46.8 ms/img 47.1M
StyleGAN2 (config-e) 7.33 N/A 6.75 N/A 3.94 N/A 32.4 ms/img 47.1M

generation, we compute the performance of the traditional
StyleGAN2 as a lower bound on the possible image gener-
ation quality on a given dataset.

Each model was trained on 4 v100 GPUs for 2.5 days,
except for TT, which was trained for 5 days since it is a
two-stage model: 2.5 days for VQGAN and then 2.5 days
for Transformer. For TT, we used the official implemen-
tation with the default hyperparameters setup for uncon-
ditional generation training. See Appendix E for the de-
tailed remarks on the comparison to TT. For StyleGAN2-
based models, we used config-e setup (i.e. half-sized high-
resolution layers) from the original paper [24]. We used
precisely the same training settings (loss terms, optimizer
parameters, etc.) as the original StyleGAN2 model.

Ablations. We also ablate the model in terms of how
vital the coordinates information is and how distance be-
tween anchors influences generation. For the first part,
we replace all Coord-* modules with their non-coord-
conditioned counterparts. For the second kind of ablations,
we vary the distance between the anchors in the coordinate
space for values d = 1, 2, 4, 8. This distance can also be
understood as an aspect ratio of a single scene.

Results. The main results are presented in Table 1, and
we provide the qualitative comparison on Figure 7. To
measure 1-FID for TT, we had to simplify the procedure
since it relies on GroupNorm in its decoder and generated
500 images of width 256 ⇥ 100 instead of a single image
of width 256 ⇥ 50000. We emphasize, that it is an eas-
ier setup and elaborate on this in Appendix E. Note also,
that the TT paper [10] mainly focused on conditional im-
age generation from semantic masks/depths maps/class in-
formation/etc, that’s why the visual quality of TT’s samples
is lower for our unconditional setup.

The 1-FID scores on Table 1 demonstrate that our pro-
posed approach achieves state-of-the-art performance in the
generation of infinite images. For the traditional FID mea-
sured on independent frames, its performance is on par with
LocoGAN. However, the latter completely diverges in terms
of infinite image generation because spatial noise does not
provide global variability, which is needed to generate di-
verse scenes. Moreover, we noticed that LocoGAN has
learned to ignore spatial noise injection [23] to make it eas-

ier for the decoder to stitch nearby patches, which shuts off
its only source of scene variability. For the model with-
out coordinates conditioning, image quality drops: visu-
ally, they become blurry (see Appendix F) since it is harder
for the model to distinguish small shifts in the coordinate
space. When increasing the coordinate distance between
anchors (the width of an image equals 1 coordinate unit),
traditional FID improves. However, this leads to repetitious
generation, as illustrated in Figure 10. It happens due to
short periods of the periodic coordinate embeddings and an-
chors changing too slowly in the latent space. When most of
the positional embeddings complete their cycle, the model
has not received enough update from the anchors’ move-
ment and thus starts repeating its generation. The model
trained on 10242 crops of LHQ achieves FID/1-FID scores
of 10.11/10.53 respectively and we illustrate its samples in
Figure 1 and Appendix F.

As depicted in Figure 9, our model has two failure
modes: sampling of too unrelated anchors and repetitious
generation. The first issue could be alleviated at test-time
by using different sampling schemes like truncation trick
[3, 24] or clustering the latent codes. A more principled ap-
proach would be to combine autoregressive inference of TT
[10] with our ideas, which we leave for future work.

One of our model’s exciting properties is the ability to
replace or swap any two parts of an image without breaking
neither its local nor global consistency. It is illustrated in
Figure 11 where we resample different regions of the same
landscape. For it, the middle parts are changing, while the
corner ones remain the same.

6. Conclusion

In this work, we proposed an idea of aligning the latent
and image spaces and employed it to build a state-of-the-art
model for infinite image generation. We additionally pro-
posed a helpful 1-FID metric and a simple procedure to
extract from any dataset a subset of images with approxi-
mately spatially invariant statistics. Finally, we introduced
LHQ: a novel computer vision dataset consisting of 90k
high-resolution nature landscapes.

14151

References
[1] Ivan Anokhin, Kirill Demochkin, Taras Khakhulin, Gleb

Sterkin, Victor Lempitsky, and Denis Korzhenkov. Image
generators with conditionally-independent pixel synthesis.
arXiv preprint arXiv:2011.13775, 2020. 2, 7, 13, 14

[2] Urs Bergmann, Nikolay Jetchev, and Roland Vollgraf. Learn-
ing texture manifolds with the periodic spatial gan. arXiv
preprint arXiv:1705.06566, 2017. 1, 2, 12, 13, 14

[3] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
arXiv preprint arXiv:1809.11096, 2018. 8

[4] Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. arXiv
preprint arXiv:2012.00926, 2020. 2

[5] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning con-
tinuous image representation with local implicit image func-
tion. arXiv preprint arXiv:2012.09161, 2020. 2

[6] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5939–5948, 2019. 2

[7] Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max
Welling. Gauge equivariant convolutional networks and the
icosahedral cnn. In International Conference on Machine
Learning, pages 1321–1330. PMLR, 2019. 3

[8] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max
Welling. Spherical cnns. arXiv preprint arXiv:1801.10130,
2018. 3

[9] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kud-
lur. A learned representation for artistic style. arXiv preprint
arXiv:1610.07629, 2016. 3

[10] Patrick Esser, Robin Rombach, and Björn Ommer. Taming
transformers for high-resolution image synthesis, 2020. 1, 2,
3, 5, 6, 7, 8, 11, 12, 13, 14, 17, 19, 20

[11] Anna Frühstück, Ibraheem Alhashim, and Peter Wonka. Ti-
legan: synthesis of large-scale non-homogeneous textures.
ACM Transactions on Graphics (TOG), 38(4):1–11, 2019.
1, 2, 13

[12] Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Im-
age style transfer using convolutional neural networks. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 2414–2423, 2016. 3

[13] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,
and Yann N Dauphin. Convolutional sequence to sequence
learning. In International Conference on Machine Learning,
pages 1243–1252. PMLR, 2017. 2

[14] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial networks. arXiv
preprint arXiv:1406.2661, 2014. 2

[15] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li,
and Richard Socher. Non-autoregressive neural machine
translation. arXiv preprint arXiv:1711.02281, 2017. 2

[16] Dongsheng Guo, Hongzhi Liu, Haoru Zhao, Yunhao Cheng,
Qingwei Song, Zhaorui Gu, Haiyong Zheng, and Bing

Zheng. Spiral generative network for image extrapolation. In
European Conference on Computer Vision, pages 701–717.
Springer, 2020. 3

[17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a
two time-scale update rule converge to a local nash equilib-
rium. arXiv preprint arXiv:1706.08500, 2017. 7

[18] Xun Huang and Serge Belongie. Arbitrary style transfer in
real-time with adaptive instance normalization. In Proceed-
ings of the IEEE International Conference on Computer Vi-
sion, pages 1501–1510, 2017. 2, 3, 4, 5

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learn-
ing, pages 448–456. PMLR, 2015. 18

[20] Nikolay Jetchev, Urs Bergmann, and Roland Vollgraf. Tex-
ture synthesis with spatial generative adversarial networks.
arXiv preprint arXiv:1611.08207, 2016. 1, 2, 12, 13, 14

[21] Biliana Kaneva, Josef Sivic, Antonio Torralba, Shai Avidan,
and William T Freeman. Infinite images: Creating and ex-
ploring a large photorealistic virtual space. Proceedings of
the IEEE, 98(8):1391–1407, 2010. 3

[22] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine,
Jaakko Lehtinen, and Timo Aila. Training generative adver-
sarial networks with limited data. In Proc. NeurIPS, 2020.
13

[23] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 4401–4410, 2019. 3, 5,
8

[24] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improving
the image quality of StyleGAN. In Proc. CVPR, 2020. 2, 3,
5, 6, 8, 13

[25] Chieh Hubert Lin, Chia-Che Chang, Yu-Sheng Chen, Da-
Cheng Juan, Wei Wei, and Hwann-Tzong Chen. COCO-
GAN: generation by parts via conditional coordinating. In
IEEE International Conference on Computer Vision (ICCV),
2019. 1, 2, 3, 12, 13, 14

[26] Gidi Littwin and Lior Wolf. Deep meta functionals for shape
representation. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1824–1833,
2019. 2

[27] Andrew Liu, Richard Tucker, Varun Jampani, Ameesh
Makadia, Noah Snavely, and Angjoo Kanazawa. Infinite
nature: Perpetual view generation of natural scenes from a
single image. arXiv preprint arXiv:2012.09855, 2020. 3

[28] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski
Such, Eric Frank, Alex Sergeev, and Jason Yosinski. An
intriguing failing of convolutional neural networks and the
coordconv solution. arXiv preprint arXiv:1807.03247, 2018.
2

[29] Chaochao Lu, Richard E. Turner, Yingzhen Li, and Nate
Kushman. Interpreting spatially infinite generative models,
2020. 1, 2, 12, 13, 14

14152

[30] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,
Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. Nerf in the wild: Neural radiance fields for uncon-
strained photo collections. arXiv preprint arXiv:2008.02268,
2020. 2

[31] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International conference on machine learning, pages 3481–
3490. PMLR, 2018. 13

[32] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4460–4470, 2019. 2

[33] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conference on Computer Vision, pages
405–421. Springer, 2020. 2

[34] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer,
and Luc Van Gool. Procedural modeling of buildings. In
ACM SIGGRAPH 2006 Papers, pages 614–623, 2006. 2

[35] Michael Niemeyer and Andreas Geiger. Giraffe: Represent-
ing scenes as compositional generative neural feature fields.
arXiv preprint arXiv:2011.12100, 2020. 2

[36] Chris Olah, Nick Cammarata, Chelsea Voss, Lud-
wig Schubert, and Gabriel Goh. Naturally occur-
ring equivariance in neural networks. Distill, 2020.
https://distill.pub/2020/circuits/equivariance. 3

[37] Yoav IH Parish and Pascal Müller. Procedural modeling of
cities. In Proceedings of the 28th annual conference on Com-
puter graphics and interactive techniques, pages 301–308,
2001. 2

[38] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo-
Martin Brualla. Deformable neural radiance fields. arXiv
preprint arXiv:2011.12948, 2020. 2

[39] Tiziano Portenier, Siavash Bigdeli, and Orçun Göksel.
Gramgan: Deep 3d texture synthesis from 2d exemplars.
arXiv preprint arXiv:2006.16112, 2020. 2

[40] Tamar Rott Shaham, Tali Dekel, and Tomer Michaeli. Sin-
gan: Learning a generative model from a single natural im-
age. In Computer Vision (ICCV), IEEE International Con-
ference on, 2019. 1, 2

[41] Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. arXiv preprint arXiv:2007.02442, 2020. 2

[42] Vincent Sitzmann, Julien N.P. Martel, Alexander W.
Bergman, David B. Lindell, and Gordon Wetzstein. Implicit
neural representations with periodic activation functions. In
Proc. NeurIPS, 2020. 2, 3, 6, 7, 12, 15

[43] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. arXiv
preprint arXiv:2011.12026, 2020. 1, 2, 3, 4, 7, 12, 13, 14

[44] Richard Szeliski. Image alignment and stitching: A tutorial.
Foundations and Trends® in Computer Graphics and Vision,
2(1):1–104, 2006. 3

[45] Matthew Tancik, Pratul P Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan T Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. arXiv preprint arXiv:2006.10739, 2020. 2,
3, 6, 7, 12, 15

[46] Piotr Teterwak, Aaron Sarna, Dilip Krishnan, Aaron
Maschinot, David Belanger, Ce Liu, and William T Free-
man. Boundless: Generative adversarial networks for image
extension. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 10521–10530, 2019.
3

[47] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-
stance normalization: The missing ingredient for fast styliza-
tion. arXiv preprint arXiv:1607.08022, 2016. 3

[48] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Im-
proved texture networks: Maximizing quality and diversity
in feed-forward stylization and texture synthesis. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6924–6932, 2017. 3

[49] Basile Van Hoorick. Image outpainting and harmoniza-
tion using generative adversarial networks. arXiv preprint
arXiv:1912.10960, 2019. 3

[50] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-
lia Polosukhin. Attention is all you need. arXiv preprint
arXiv:1706.03762, 2017. 2

[51] Yi Wang, Xin Tao, Xiaoyong Shen, and Jiaya Jia. Wide-
context semantic image extrapolation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 1399–1408, 2019. 3

[52] Yuxin Wu and Kaiming He. Group normalization. In Pro-
ceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 18, 19

[53] Rui Xu, Xintao Wang, Kai Chen, Bolei Zhou, and
Chen Change Loy. Positional encoding as spatial inductive
bias in gans. arXiv preprint arXiv:2012.05217, 2020. 1

[54] Zongxin Yang, Jian Dong, Ping Liu, Yi Yang, and Shuicheng
Yan. Very long natural scenery image prediction by outpaint-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 10561–10570, 2019. 3

[55] Richard Zhang. Making convolutional networks shift-
invariant again. In International Conference on Machine
Learning, pages 7324–7334. PMLR, 2019. 3, 11, 12

[56] Shengyu Zhao, Zhijian Liu, Ji Lin, Jun-Yan Zhu, and Song
Han. Differentiable augmentation for data-efficient gan
training. arXiv preprint arXiv:2006.10738, 2020. 13

[57] Łukasz Struski, Szymon Knop, Jacek Tabor, Wiktor Daniec,
and Przemysław Spurek. Locogan – locally convolutional
gan, 2020. 1, 2, 3, 6, 7, 8, 12, 13, 14

14153

