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Abstract

Action localization networks are often structured as

a feature encoder sub-network and a localization sub-

network, where the feature encoder learns to transform

an input video to features that are useful for the local-

ization sub-network to generate reliable action proposals.

While some of the encoded features may be more useful

for generating action proposals, prior action localization

approaches do not include any attention mechanism that

enables the localization sub-network to attend more to the

more important features. In this paper, we propose a novel

attention mechanism, the Class Semantics-based Attention

(CSA), that learns from the temporal distribution of se-

mantics of action classes present in an input video to find

the importance scores of the encoded features, which are

used to provide attention to the more useful encoded fea-

tures. We demonstrate on two popular action detection

datasets that incorporating our novel attention mechanism

provides considerable performance gains on competitive

action detection models (e.g., around 6.2% improvement

over BMN action detection baseline to obtain 47.5% mAP

on the THUMOS-14 dataset), and a new state-of-the-art of

36.25% mAP on the ActivityNet v1.3 dataset. Further, the

CSA localization model family which includes BMN-CSA,

was part of the second-placed submission at the 2021 Ac-

tivityNet action localization challenge. Our attention mech-

anism outperforms prior self-attention modules such as the

squeeze-and-excitation in action detection task. We also ob-

serve that our attention mechanism is complementary to

such self-attention modules in that performance improve-

ments are seen when both are used together.

1. Introduction

The creation of digital videos and the need for video

understanding has exploded over the last decade due to

*denotes equal contribution
†Corresponding author

widespread availability and presence of digital cameras.

Two fundamental components of video understanding are

identifying the action components that are present in the

video [12, 22, 42] and localizing these actions across the

temporal axis [7, 13, 29, 46, 23] and also the spatial axis

[18, 37]. For video understanding tasks, it is crucial to

learn good video representations, learning relevant encoded

features that are useful for the video understanding tasks

[12, 23, 25]. These rich video representations or encoded

features can then be utilized to perform various video un-

derstanding tasks (e.g. a localization sub-network can use

these features for detecting action segments, etc.). This

paper focuses on the task of temporal action detection in

untrimmed videos, which has several applications such as

content-based video searching [21], video highlight gener-

ation [15] and surveillance [9].

With the availability of large-scale action recognition

and detection datasets (e.g. Kinetics-400 [5], Activi-

tyNet v1.3 [4], etc.) and the availability of high perfor-

mance computing services, deep learning approaches have

achieved enormous success in learning video representa-

tions or learning encoders that generate features which are

useful for video understanding tasks such as temporal ac-

tion detection [22, 12, 42, 35]. These encoder learning

processes can be very comprehensive - e.g. the encoder

learning process of BMN [23] (a recently proposed com-

petitive approach) first involves training a TSN-ResNet101

action recognition model [42] on Kinetics-400 action recog-

nition task [52] followed by fine-tuning the action recogni-

tion model on ActivityNet v1.3 [4], followed by extracting

action class-semantic rich features using the action recogni-

tion model, and finally using a localization encoder to en-

code features that are useful for video understanding tasks

such as action localization. These encoded features are pro-

cessed by the localization sub-network for generating action

proposals [51, 25, 23]. It is unlikely that all of these encoded

features will be equally useful or important for the local-

ization sub-network for a particular video. In fact, prior

works on attention in convolutional neural networks (Con-

vNets) have shown that attending to more important feature
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channels [19] or locations [43] can accelerate training and

usually improve network performances. Despite the possi-

bility that the importance of the encoded feature can vary

for different videos and the existing motivation from prior

works that have demonstrated improved ConvNet perfor-

mances via attention mechanisms [43, 19, 40], there are no

prior action localization networks that have attention mech-

anisms for attending to the more important encoded features

for accelerating training and improving performance.

Incorporating attention at the encoded feature, while

not used before for action localization ConvNets, can eas-

ily be implemented with prominent self-attention meth-

ods (e.g. squeeze-and-excitation (SE) based attention [19],

transformer [40]), which learn the inter-dependencies of the

encoded feature to estimate the relative importance of the

features. In contrast, we propose a novel attention mecha-

nism that computes the relative importance of the features

based on class-specific semantically rich features that are

extracted by the action recognition model and that are used

at the input of the encoder in the action localization network

(Fig. 1). Our rationale on using these class-specific seman-

tically rich features is that the distribution of importance of

the encoded feature will likely depend based on which ac-

tion class (or action classes) the video contains. Evidence

for such class-specific dependency of importance distribu-

tion was demonstrated in an ablation study in [19] which

showed that some specific feature channels were more im-

portant than others for one particular class while having low

importance for another class within the ImageNet dataset

[36]. For action localization tasks, the class-semantics can

vary across the temporal axis since different action classes

can be present at different time points. Prior works on ac-

tion localization in the fully and weakly supervised setting

(where only class-level supervision is used to learn the tem-

poral boundaries of an action), use class semantic-rich clas-

sification features as input and have successfully pushed the

state of the art localization performances. This shows that

the class-semantics features contain useful information for

reliable action localization. To learn the importance of fea-

tures from the temporally varying class-semantics in videos,

our novel attention mechanism jointly learns from both the

channel and temporal axes of the encoder input features,

and provides attention both along the channel and temporal

axes of the encoded features. Our attention mechanism is

generic and can be easily applied to prior action localiza-

tion networks that have an encoder and a localization sub-

network (e.g. [23, 8, 46]) (Fig. 1). We demonstrate that

our attention mechanism considerably improves on baseline

ConvNets [23, 46, 8] on two major action detection datasets

(Thumos[20] and ActivityNet v1.3 [4]). Our ablation stud-

ies also show that our novel attention mechanism can pro-

vide complementary benefits when used together with self-

attention mechanisms (such as [19]).

2. Related Works

2.1. Attention in video understanding

Attention mechanisms are used in a variety of video

recognition tasks including fully supervised action recog-

nition [17, 30, 3, 38, 34], weakly supervised action de-

tection [41, 31, 26] and spatio-temporal action localiza-

tion [16]. In action recognition models, attention is used

for performing different operations, including weighted

spatio-temporal pooling or gating [38, 17, 44, 30], encod-

ing spatio-temporal features by capturing different kinds of

relations and dependencies [16, 3, 11]. In weakly super-

vised action detection methods [41, 31, 32], attention mech-

anism is used to rank clips for action detection, with the

weights learned from video level classification objectives.

Quader et al. [34] showed that some feature channels be-

come more important than others during training and intro-

duced an attention mechanism that focused on optimizing

those important feature channels to improved action and

gesture recognition performances. Unlike these methods,

our focus in this work is on fully supervised temporal ac-

tion localization, where we use our attention mechanism

to learn from temporal distribution of semantics of action

classes in the multi-crop clip representations and apply it

on our encoded features that are then processed by a local-

ization sub-network for generating action proposals.

2.2. Attention in temporal action localization

The above mentioned attention mechanisms proposed

for action recognition tasks [38, 41, 44, 17, 34] are not di-

rectly useful for action localization for the following rea-

sons: (1) action recognition models have spatio-temporal

RGB inputs whereas competitive action localization mod-

els use encoded temporal inputs, (2) an action recogni-

tion model’s learnable parameters (including any attention

mechanisms inside) are usually not part of the training

process of competitive action localization networks due to

computational constraints in end-to-end training [23, 46, 8,

50]. In fact, there exists no prior works on applying at-

tention mechanisms in competitive action localization net-

works. Recent competitive action localization ConvNets are

composed of an encoder sub-network that encodes features

for downstream localization task and a localization sub-

network that generates action proposals. The most straight-

forward application of attention in action localization net-

works is perhaps to apply channel-wise self-attention at

the encoder output via processing the inter-dependencies of

the encoder output using self-attention mechanisms such as

SE [19], CBAM [43] and transformer [40]. In this paper, we

explore such self-attention mechanisms, and more impor-

tantly, propose a novel attention mechanism that processes

the action class-specific semantically rich temporal features

at the input of the localization network to identify channel-
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Figure 1: The architecture of a generic action detection network with incorporation of our CSA attention mechanism. The

generic action detection architecture consists of three major components: (1) an action recognition-based feature encoder that

extracts class semantics rich features R, (2) a localization encoder sub-network that encodes R to F , and (3) a localization

sub-network that processes F for generating action proposals. Our attention mechanism learns attention weights from R and

applies attention on F both along the channel and the temporal axis, and then fuses the two attention-applied outputs.

wise and temporal-point-wise attention at the encoder out-

put; our rationale - the temporal variation of class-semantics

of a video can have important cues on which channels and

time-points the localization sub-network should attend to.

3. Technical Approach

We first document the layout for a generic action local-

ization architecture (Fig. 1), which consists of a pre-trained

action recognition ConvNet that extracts class-semantic rich

features Ri,t ∈ {r1,t, . . . , rCin,t} (Cin represents the num-

ber of feature channels at each timepoint) at equidistantly

distributed temporal points over the length of a video (t ∈
{1, . . . , T}). Action localization ConvNet (composed of

sub-networks for encoder and localization) is trained with R

as input to generate action proposals (Fig. 1). As the Con-

vNet is trained, the encoder sub-network learns to encode

the class-semantic rich features R to another temporally se-

quential feature Fi,t ∈ {f1,t, . . . , fCout,t} more suitable for

subsequent action localization tasks (e.g. generating the

start and end temporal points of proposals and using confi-

dence maps to group the start and end points [23]), and the

localization sub-network learns to use F to perform these

localization tasks.

In this work, we use standard action recognition, en-

coder, and localization sub-networks, and we only concen-

trate on the attention mechanism on F (as shown in Fig. 1

by the pink dashed line). In Sec. 3.1, we propose our novel

attention mechanism that learns from the local temporal dis-

tribution of class-specific semantically rich features R (or

class semantics-based attention (CSA)) to estimate a use-

fulness or attention score for all feature channels and tem-

poral points, which is then used to compute the attention-

modified encoder feature FA as the new input to the lo-

calization sub-network. In Sec. 3.2, we provide technical

description of our attention mechanism.

3.1. Class semantics­based attention (CSA)

To help the localization sub-network attend more to fea-

ture channels and temporal locations that are more useful

for localization tasks, there needs to be an attention mecha-

nism that has the ability to adjust Fi,t based on how useful

or important it is to the action localization tasks. To mitigate

the lack of input-adaptive channel/temporal attention mech-

anism in prior action localization networks, we propose an

attention module that estimates the per-channel and per-

timepoint attention weights independently and apply them

independently on the localization encoder sub-network out-

put F . We now discuss in detail about design of our atten-

tion module: its input, its joint learning framework, and the

rationale behind this design choice, including the choice of

input and the learning framework.

Input for the attention modules: Based on prior works

on attention, the more straightforward approach for ap-

plying attention on F is to use F itself, similar to self-

attention frameworks such as the SE block [19]. The F

features are likely more potent for identifying background

from foreground (having been trained for action localiza-
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tion), while the R features are more potent for identifying

which action class/classes the video belongs to (having been

trained for action recognition). Assuming that our chan-

nel/temporal attention mechanisms are more dependent on

the action class information-rich R features rather than the

foreground/background class information-rich F features,

R is likely a better input choice for the attention modules,

and we choose it as input to our attention modules. Com-

paring with self-attention modules that use F as their input,

we find that our CSA performs significantly better (Sec.

4.3), suggesting that such class semantics-based (or R in-

put) based attention mechanisms can be more potent.

Joint learning from class-semantics and temporal

context: In contrast to the task of image classification in

the ablation study of [19] that had image as input, action

localization tasks have video inputs that not only have class

semantic information at different time points, but there is

also variation of these class-semantics across the temporal

axis. For example, ‘drinking coffee’ action segment in a

video can be preceded by ‘cooking’ action and followed by

‘washing dishes’ action. Thus, local temporal understand-

ing of R can provide indications on which class-semantics

are more dominant at a time point. Also, since boundary de-

tection is an important task for action localization network,

temporal understanding of this variation of these class se-

mantics could provide indications on which temporal posi-

tions are more important for boundary points.

Computation of the attention weights: The attention

weights are computed by two separate attention modules,

each of which have the class semantics rich R feature as

its input. Each of the attention modules (one estimating

per-channel attention weight and the other estimating per-

timepoint attention weight) learns from the local temporal

variation of R to compute the per-channel and per-timepoint

attention weights. Then we apply our channel and tem-

poral attention on F (Fig. 1) (or enable the localization

sub-network to attend to more important feature channels

and temporal locations to get FAC
and FAT

, respectively

(Fig. 1). Finally, we aggregate FAC
and FAT

to get our fi-

nal attention modified encoder output FA (Fig. 1). Next, we

present the technical description of the attention module.

3.2. Technical description of the CSA

We use a simple attention block consisting of a 1D con-

volution (with kernel size k) that operates succinctly to

learn jointly from both the temporal and the channel axes of

R. On the temporal axis, this 1D convolution has a receptive

field of k, and on the channel axis, it has a receptive field of

Cin (or the entire length of feature channels). Thus, it cap-

tures information available from the global channel context

as well as from the local temporal context simultaneously.

Note that our CSA attention has two attention modules: one

computes per-channel attention and the other computes per-

time-point attention. To achieve this, we compute a chan-

nel attention vector and a temporal attention vector in par-

allel, assigning weights to specific channel-temporal input

locations. Then, we perform late-fusion through a simple

concatenation operation. We downsize the resultant output

number of channels to that of class features F using a sim-

ple projection layer to be subsequently processed by the lo-

calization sub-network.

The input to our temporal attention block is the RCin×T ,

where Cin and T correspond to number of input channels

and temporal points respectively. Similarly, let Cout denote

number of output channels, and F denotes the encoder fea-

ture which would be modified by our attention mechanism.

Our temporal attention is computed as:

yT = Avg{t=1,2,...,T}

(

fTconvCin×T
(R)

)

(1)

AT = sigmoid(fcT (yT )) (2)

FAT
= (AT✶1×Cout

)
T
◦ F (3)

where, fTconvCin×T
is the core component of the tem-

poral attention block, which has a 1D-convolutional layer

of kernel size 3, a ReLU activation function. This block

learns global channel context and local temporal context,

and outputs a T dimensional vector yT . A fully connected

layer(denoted by fcT )-sigmoid map on top of yT yields T

dimensional attention vector AT . Finally, Hadamard op-

eration with the encoder feature F yields FAT
, temporal

attention modified encoder feature.

Similarly, we formulate our channel attention mecha-

nism to obtain the channel attention modified encoder fea-

ture FAC
= AC✶1×T ◦ F .

In the end, the attention modified encoder feature FA is

computed using these two outputs. We compute this out-

put by combining our channel attention modified encoder

feature and temporal attention modified encoder feature by

simply concatenating them, and mapping the number of

channels back to Cout using a convolution-ReLU block

f2Cout×Cout

TC . An alternative way to perform fusion is to add

both the temporal and channel attended features together.

However, this results in an averaging effect that diminishes

the contribution from each of the attention modules. Math-

matically,

FCout×T
A = f2Cout×Cout

TC ([FAT
;FAC

]) (4)

where “;” denotes the concatenation operator, and FCout×T
A

denotes the final encoder output, modulated by temporal

and channel attention mechanisms. The localization sub-

network uses this output and performs subsequent steps re-

quired for localizing all the individual actions in the video.
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4. Experiments and results

4.1. Experimental setup

Datasets: To validate the utility of our CSA attention

mechanism, we choose two popularly used action detec-

tion datasets - ActivityNet v1.3 [4] and THUMOS-14 [20].

ActivityNet v1.3 is a larger-scale action localization bench-

mark (containing around 10K training and around 5K vali-

dation videos [4]) compared to the THUMOS-14 challenge

dataset (containing 200 training and 213 validation videos

[20]). However, THUMOS-14 has more fine-grained action

segment annotations overall (around 15 action instances per

video) [49, 20] compared to ActivityNet v1.3 (around 1.65

action instances per video) [4].

Evaluation metric for detection: Mean Average Precision

(mAP) is popularly used to quantitatively evaluate differ-

ent approaches [23, 25, 46, 29, 27, 51], where the Average

Precision (AP) is calculated on each action class respec-

tively. We report the mAP at different Intersection over

Union (IoU) thresholds and also report the overall mAP.

For fair comparison between different networks, we use

pre-trained and publicly available action recognition mod-

els (the CUHK classifier [52] for ActivityNet v1.3 [4] and

UntrimmedNets [41] for THUMOS-14 [20]), and we use

the publicly available R features (TSN features [42] avail-

able in [48] for ActivityNet v1.3 [4] and TSN features [42]

available in [46] for THUMOS-14 [20]). Finally, to evaluate

proposal quality, we calculate Average Recall (AR) under

different Average Number of proposals (AN) as AR@AN

(AN varied from 1 to 100), and compute the area under the

AR vs. AN curve (AUC).

Implementation details: We incorporate our CSA atten-

tion mechanism on three competitive and popularly used

action localization networks, BMN [23], GTAD [46] and

DBG [8]. As is originally used in BMN [23], GTAD [46]

and DBG [8], we use a temporal scale of T = 100 for

ActivityNet v1.3 and T = 256 for Thumos14. Action lo-

calization model performances can also vary depending on

the quality of the encoded features that are originally ex-

tracted from video sequences (i.e. the quality of the R fea-

ture (Sec. 2.2)). Therefore, for fair comparison with other

action detection benchmarks, we use the publicly available

R features (TSN features [42] available in [48] for Activi-

tyNet v1.3 [4] and TSN features [42] available in [46] for

THUMOS-14 [20]). We use Adam optimizer with an ini-

tial learning rate of 0.001 with weight decay 1e−4 and train

for 10 epochs on both the datasets using a step size of 7 for

ActivityNet v1.3 and 3 for THUMOS-14. To compare util-

ity of CSA against self-attention mechanisms, SE, CBAM

and transformer [19, 43, 40], we implement SE, CBAM and

transformer [19, 43, 40] at the encoder output (self-attention

i.e., attention applied on encoder output learns the attention

weights based on the encoder output). To further evalu-

ate whether our CSA benefits only from learning from pro-

cessing the class-semantics rich encoder input features or

whether it also benefits from the design of the CSA module,

we experiment with replacing the CSA architecture with the

SE architecture (FF-CSA in Table 5).

4.2. CSA’s impact on action localization

Performance improvement: Incorporating CSA atten-

tion within baseline action localization ConvNets provides

consistent performance gains on both the THUMOS-14

(3.8% on GTAD baseline and 6.2% on BMN baseline, Table

1) and the AcitivityNet v1.3 (0.52% on GTAD baseline and

0.6% on BMN baseline, Table 2), and yields a new state-of-

the-art (SotA) performance of 36.25%mAP on the Activi-

tyNet v1.3 dataset when used with BMN baseline [23] and

publicly available TSP [1] encoded features. On the more

challenging THUMOS-14 dataset that has higher number of

action instances per video, the performance gains with CSA

attention are significantly better than that on ActivityNet.

This significant difference is perhaps due to a stronger ne-

cessity of using our CSA attention module (which helps the

localization sub-network attend to important feature chan-

nels and temporal points) on the more difficult action de-

tection tasks on videos that have higher number of action

segments, boundaries and action classes. We also note that

while the performance gains on THUMOS-14 across differ-

ent tIoU are similar (e.g. 5.9% improvement over BMN

baseline at tIoU=0.3 and 6.2% improvement over BMN

baseline at tIoU=0.7), the performance actually drops on

ActivityNet v1.3 for high tIoU=0.95. These action seg-

ments where the baseline BMN ConvNet performs better

are mostly long duration action segments. Both of the above

observations suggest that our CSA attention is particularly

effective on challenging videos that either have higher num-

ber of action segments or have small duration action seg-

ments. In terms of proposal quality, DBG [8] has the SotA

AUC among prior approaches. We find that incorporating

CSA within DBG improves AR@AN for all AN values (Ta-

ble 3) and improves overall AUC by 0.8%.

CSA accelerates training: Incorporating CSA attention

on baseline BMN and GTAD speeds up convergence of the

networks with faster reduction in both training and valida-

tion losses. Fig. 2 shows the comparison of loss curves for

baseline and SE BMN models with CSA. We find that CSA

has a steeper loss curve for both training and validation as

compared to SE attention suggesting that CSA helps the net-

work to learn better. To test whether the mAP performance

improvement from incorporating CSA is simply from accel-

erated training, we train baseline BMN for higher number of

epochs (20 instead of original 10 epochs). We find no im-

provement in baseline BMN performance, suggesting that

our CSA attention module not only accelerates training but
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tIoU Avg

Method 0.3 0.4 0.5 0.6 0.7 mAP

R-C3D [47] 44.8 35.6 28.9 - - -

SSN [51] 51.9 41.0 29.8 - - -

CBR [14] 50.1 41.3 31.0 19.1 9.9 30.3

ETP [33] 48.2 42.4 34.2 23.4 13.9 32.4

BSN [25] 53.5 45.0 36.9 28.4 20.0 36.8

MGG [28] 53.9 46.8 37.4 29.5 21.3 37.8

BMN [23] 56.0 47.4 38.8 29.7 20.5 38.4

GTAD [46] 54.5 47.6 40.2 30.8 23.4 39.3

TAL-Net [6] 53.2 48.5 42.8 33.8 20.8 39.8

CMS-RC3D[2] 54.7 48.2 40.0 - - -

GTAN [29] 57.8 47.2 38.8 - - -

*GTAD-PGCN 66.4 60.4 51.6 37.6 22.0 47.8

GTAD (Ours) 54.5 48.2 39.9 30.4 21.2 38.8

BMN (Ours) 58.5 51.6 42.9 32.1 21.2 41.3

GTAD-CSA 58.4 52.8 44.0 33.6 24.2 42.6

BMN-CSA 64.4 58.0 49.2 38.2 27.8 47.5

Table 1: Quantitative comparison of the proposed CSA

module with competing methods on THUMOS-14 action

detection dataset in terms of mAP @tIoU. BMN+CSA beats

all prior approaches by large margins. * denotes proposal-

level post-processing methods that are complementary to

other works including CSA.

Figure 2: Comparison of training and validation loss curves

of CSA with SE attention and baseline BMN on ActivityNet

v1.3.

also leads to better optimized networks for action detection.

Computational considerations: The added computation

cost with CSA attention (around 1ms/video) is similar to

that of the efficient SE [19] mechanism. This is because

the architecture of CSA is mostly similar to that of SE ex-

cept that it includes an extra lightweight 1D convolution that

learns jointly from both class-semantics and temporal con-

text. Note that CSA provides considerably more mAP gain

tIoU Avg

Method 0.5 0.75 0.95 mAP

R-C3D [47] 26.80 - - 12.70

*CMS-RC3D[2] 32.92 18.36 1.13 18.46

TCN [10] 36.17 21.12 3.89 -

*TAL-Net [6] 38.23 18.30 1.30 20.22

CDC [39] 43.83 25.88 0.21 22.77

Xiong et al.[45] 39.12 23.48 5.49 23.98

SSTAD [24] 44.39 29.65 7.09 29.17

BSN [25] 46.45 29.96 8.02 30.03

BMN [23] 50.07 34.78 8.29 33.85

GTAD [46] 50.36 34.60 9.02 34.09

*GTAN [29] 52.61 34.14 8.91 34.31

DBG [8] 36.69 26.61 7.33 25.67

DBG (Ours) 37.68 27.39 7.76 26.43

BMN (Ours) 51.73 35.74 6.53 34.83

GTAD (Ours) 51.45 35.86 8.86 35.17

DBG-CSA 40.08 29.45 8.78 28.52

BMN-CSA 52.44 36.69 5.18 35.43

GTAD-CSA 51.88 36.88 8.74 35.69

BMN-CSA-SE 52.45 36.75 6.38 35.58

BMN-CSA-Trans 52.03 36.71 9.23 35.69

BMN (TSP [1]) 52.56 36.86 6.46 35.89

BMN-CSA (TSP) 52.64 37.75 7.94 36.25

Table 2: Quantitative comparison of the proposed CSA

module with competing methods on ActivityNet v1.3 ac-

tion detection dataset in terms of mAP @tIoU. BMN+CSA

beats all prior two-stage approaches by notable margins

and achieves SotA results, one-stage approaches are marked

with * which are end-to-end trained from raw RGB frames.

Module AR@1 AR@5 AR@10 AR@100 AUC (%)

BMN 34.27 50.77 57.27 73.53 65.98

DBG 31.02 49.66 57.45 76.51 68.19

BMN-CSA 35.04 51.63 57.90 74.04 66.82

DBG-CSA 32.46 50.48 58.27 77.12 68.89

Table 3: Comparison of AR@AN for baseline methods and

methods with our CSA module on ActivityNet v1.3 dataset

Module 0.3 0.4 0.5 0.6 0.7 mAP

Trans 55.1 48.8 41.3 30.5 19.7 39.1

CBAM 56.8 50.3 42.3 31.9 22.3 40.7

SE 62.4 54.8 46.1 34.2 23.6 44.2

Ours 64.4 58.0 49.2 38.2 27.8 47.5

Table 4: Comparison of other attention modules with our

CSA module on THUMOS-14
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compared to SE (Table 4).

4.3. Ablation studies

Comparison with self-attention mechanisms: CSA is

different from self-attention mechanisms in two ways:

(1) CSA estimates the attention weights based on class-

semantics rich features at the encoder input and applies it at

the encoder output whereas self-attention mechanisms ap-

plied at the encoder output estimates the attention weights

based on localization-information rich features at the en-

coder output itself, (2) CSA learns jointly from both class-

semantics and temporal context facilitated by a simple 1D

convolution. Our CSA attention mechanism outperforms

three popular self-attention mechanisms we experimented

with, namely the transformer (Trans) [40], CBAM [43] and

SE [19] attention mechanisms when applied at the encoder

output of the BMN (Table 4). CSA outperforms all of these

attention mechanisms. Interestingly, we find the training

loss with including Transformer in BMN to be lower than

BMN without the attention module, yet the validation mAP

with Transformer is lower showing signs of over-fitting.

This is not the case for our CSA attention or SE/CBAM,

all of which provide mAP gains as well. To find whether

self-attention mechanisms and our CSA can be complemen-

tary, we incorporate SE after all the 1D convolution layers

in the BMN encoder, except at the encoder output where

we incorporate the CSA attention. As shown in Table 2

we find that this provides additional gain of 0.15% mAP.

We also conduct the same experiment with Transformer in-

stead of SE and find an additional gain of 0.26% mAP. This

complementary behavior between the two attention mech-

anisms (i.e. CSA with self-attention) is perhaps due to the

difference in the inputs - SE/Transformer learns from the

localization-rich features within the encoder sub-network,

whereas CSA learns from the class-semantics rich features

at the encoder input R.

Module 0.3 0.4 0.5 0.6 0.7 mAP

FF-CSA 60.9 54.1 45.8 35.5 24.1 44.1

G-CSA 61.7 54.9 46.2 36.2 24.7 44.8

CSA (1-Conv) 64.1 56.3 48.2 38.1 26.6 46.7

LG-CSA 59.8 53.2 44.4 34.5 24.4 43.3

Table 5: Ablation study of using different variations of CSA

module on THUMOS-14. Note: CSA 1-Conv is used for

fair comparison with other baselines having single convolu-

tional layer.

Alternate design choices for CSA We experiment with

different design choices for computing the attention weights

via processing of the input features R with different varia-

tions to the 1D convolution design choice. These variants

Channel Temporal 0.3 0.4 0.5 0.6 0.7 mAP

✓ 62.1 55.8 46.4 36.5 24.7 45.1

✓ 62.5 56.2 46.5 36.9 26.1 45.7

✓ ✓ 64.1 56.3 48.2 38.1 26.6 46.7

Table 6: Ablation study of different components of CSA

(with one convolution) on THUMOS-14 dataset.

Module 0.3 0.4 0.5 0.6 0.7 mAP

k=1 62.8 55.8 47.2 36.4 24.9 45.4

k=3 64.1 56.3 48.2 38.1 26.6 46.7

k=5 57.9 49.5 40.4 30.8 20.5 39.8

1-Conv 64.1 56.3 48.2 38.1 26.6 46.7

2-Conv 64.4 58.0 49.2 38.2 27.8 47.5

3-Conv 61.8 54.7 45.3 35.5 23.9 44.2

Table 7: Effect of different kernel size and number of con-

volutional blocks inside CSA module on THUMOS-14

are: (1) Direct (FF) - not using the 1D convolution at all,

(2) global context learning (G) - using a transformer en-

coder [40] that has global receptive field instead of the con-

volution block. (3) Local context learning (L) - We use

1D convolution to locally process the temporal scales of

the input features for computing the attention weights. (4)

Local-Global Context learning (LG) - To see if local and

global information complement each other, we apply lo-

cal 1D convolutional operation followed by a global trans-

former operation. Tables 5, 6 show the results of using

different variants and we find that local information (i.e.,

local temporal features) is key for computing the attention

weights as compared to others. While global information

can perhaps help in providing better attention weights, we

conjecture that since learning such global information re-

quires modules with higher number of learnable parameters

(e.g. transformer encoder requires more parameters than a

simple 1D convolution), it becomes difficult to train the at-

tention sub-network. On that note, we also experiment with

the hyper-parameters within the attention module (Table 7)

by increasing the number of sequential 1D convolution - we

find supporting evidence in here as well in that increasing

the number of sequential 1D convolution from one to two

improves the results whereas from two to three decreases

the performance significantly. Similarly, increasing the ker-

nel size from 3 to 5, which increases the number of learn-

able parameters, leads to inferior performance, suggesting

that larger CSA modules with higher number of learnable

parameters could be difficult to train.

Location of application of CSA attention We conduct

an ablation to study the effect of applying the CSA atten-
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Figure 3: Qualitative results from THUMOS-14 dataset. Green segments show groundtruth and blue segments show predicted

segments using BMN-CSA model. Our model is able to accurately detect diverse length sport domain actions.

Module 0.3 0.4 0.5 0.6 0.7 mAP

Start-CSA 60.9 53.6 44.9 34.3 23.3 43.4

Middle-CSA 63.8 57.1 47.7 36.9 25.3 46.2

CSA (2-Conv) 64.4 58.0 49.2 38.2 27.8 47.5

Table 8: Ablation study of applying the CSA module at

different locations of the encoder module on THUMOS-14

dataset. Start-CSA applies attention at the encoder input.

Middle-CSA applies attention at the middle of the encoder.

tion module at different locations within the encoder mod-

ule. We identify three cases - (1) At the start (2) At the

middle and (3) At the output of the encoder. Table 8 shows

the results of applying the CSA attention module at the three

locations. We find that the attention applied at the end of the

encoder (input to the localization sub-network) outperforms

other results. CSA attention applied to the input features

gives significantly lower (3.9% drop) results. This shows

that applying attention at F optimally modulates the fea-

tures such that it helps to localize the start/end times and

their corresponding scores more precisely, while not inter-

fering with the encoder sub-network that has a separate ob-

jective of learning a better feature encoding process for the

input R.

5. Discussion

We find CSA to consistently provide performance gains

when incorporated with publicly available and readily re-

producible baseline networks [23, 8, 46] on popular action

localization datasets (THUMOS-14 and ActivityNet v1.3)

with different sets of publicly available encoded features

(e.g. TSN features [42], TSP features [1]). We also find that

CSA is better than self-attention mechanisms, and in ad-

dition provides complementary gains when used with self-

attention mechanisms. Our BMN-CSA with TSP features

currently have the SotA in ActivityNet v1.3 and was a core

technical contribution behind achieving a top position in

the 2021 ActivityNet temporal localization challenge. Fur-

ther, Fig. 3 shows qualitative results of the SotA BMN-

CSA model on THUMOS-14 dataset. From the figure, it

can be observed that our model is accurately able to detect

action segments of two different categories of different ac-

tion lengths. Despite these promising results on consistent

performance gains and current SotA, our CSA evaluation is

currently limited in not being tested with other competitive

baseline architectures that have been shown to have better

performance than BMN [23], e.g. GTAD-PGCN [46]. We

envision that incorporating CSA in such improved network

architectures will yield better SotA performances.

6. Conclusion

In this paper, we proposed a novel attention mechanism,

CSA, for action detection networks that utilizes action-class

semantics to compute attention weights. CSA mechanism

is effective in applying attention along both the channel and

the temporal axes of the encoded feature of an action local-

ization network. We demonstrate that CSA is generic and

is easily integrated with prior action detection approaches.

Incorporating CSA provides consistent performance gains

on action detection tasks, and incorporating it in prior SotA

benchmarks yields new SotA results - e.g. 36.25% mAP on

the ActivityNet v1.3.
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