This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Refining activation downsampling with SoftPool

Alexandros Stergiou
Utrecht University

a.g.stergiou@uu.nl

Ronald Poppe

r.w.poppe@uu.nl

Abstract

Convolutional Neural Networks (CNNs) use pooling to
decrease the size of activation maps. This process is cru-
cial to increase the receptive fields and to reduce computa-
tional requirements of subsequent convolutions. An impor-
tant feature of the pooling operation is the minimization of
information loss, with respect to the initial activation maps,
without a significant impact on the computation and mem-
ory overhead. To meet these requirements, we propose Soft-
Pool: a fast and efficient method for exponentially weighted
activation downsampling. Through experiments across a
range of architectures and pooling methods, we demon-
strate that SoftPool can retain more information in the re-
duced activation maps. This refined downsampling leads
to improvements in a CNN'’s classification accuracy. Ex-
periments with pooling layer substitutions on ImageNet1 K
show an increase in accuracy over both original architec-
tures and other pooling methods. We also test SoftPool on
video datasets for action recognition. Again, through the
direct replacement of pooling layers, we observe consistent
performance improvements while computational loads and
memory requirements remain limited'.

1. Introduction

Pooling layers are essential in convolutional neural net-
works (CNNis) to decrease the size of activation maps. They
reduce the computational requirements of the network while
also achieving spatial invariance, and increase the receptive
field of subsequent convolutions [6, 27, 43].

A range of pooling methods has been proposed, each
with different properties (see Section 2). Most architectures
use maximum or average pooling, both of which are fast and
memory-efficient but leave room for improvement in terms
of retaining important information in the activation map.

We introduce SoftPool, a kernel-based pooling method
that uses the softmax weighted sum of activations. We
demonstrate that SoftPool largely preserves descriptive

ICode is available at: http://www.tinyurl.com/softpool

Utrecht University

Grigorios Kalliatakis
University of Warwick

grigorios.kalliatakis@warwick.ac.uk

Figure 1. SoftPool illustration. The original image is sub-
sampled with a 2 X 2 (k=2) kernel. The output is based on the
exponentially weighted sum of the original pixels within the ker-
nel region. This can improve the representation of high-contrast
regions, present around object edges or specific feature activations.

activation features, while remaining computationally and
memory-efficient. Owing to better feature preservation,
models that include SoftPool consistently show improved
classification performance compared to their original im-
plementations. We make the following contributions:

e We introduce SoftPool: a novel pooling method based
on softmax normalization that can be used to down-
sample 2D (image) and 3D (video) activation maps.

e We demonstrate how SoftPool outperforms other pool-
ing methods in preserving the original features, mea-
sured using image similarity.

e Experimental results on image and video classification
tasks show consistent improvement when replacing the
original pooling layers by SoftPool.

The remainder of the paper is structured as follows. We
first discuss related work on feature pooling. We then de-
tail SoftPool (Section 3) and evaluate it in terms of feature
loss and image and video classification performance over
multiple pooling methods and architectures (Section 4).
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Figure 2. Pooling variants. R is the set of pixel values in the kernel neighborhood. (a,b) Average and maximum pooling are based

on averaging and maximum activation selection in a kernel. (c) Power Average pooling (L) [10,
raised to a power (p). The output is equal to max-pool for p — oo, and sum pooling when p = 1. (d) Stochastic pooling [
a randomly selected activation from the kernel region. (e) Stochastic Spatial Sampling (S3Pool) [
vertical regions given a specified stride. (f) Local Importance Pooling (LIP) [

] is proportional to average pooling
] outputs
] samples random horizontal and
] uses a trainable sub-net GG to enhance specific features.

(g) SoftPool (ours) exponentially weighs the effect of activations using a softmax kernel.

2. Related Work

Pooling for hand-crafted features. Downsampling is
a widely used technique in hand-coded feature extraction
methods. In Bag-of-Words (BoW) [7], images were viewed
as collections of local patches, pooled and encoded as vec-
tors [40]. Combinations with Spatial Pyramid Matching
[21] aimed to preserve spatial information. Later works
considered the selection of the maximum SIFT features in
a spatial region [44]. Pooling has primarily been linked to
the use of max-pooling, because of the feature robustness
of biological max-like cortex signals [31]. Boureau et al.
[2] studied maximum and average pooling in terms of their
robustness and usability, and found max-pooling to produce
representative results in low feature activation settings.

Pooling in CNNs. Pooling has also been adapted to
learned feature approaches, as seen in early works in CNNs
[22]. The main benefit of pooling has traditionally been the
creation of condensed feature representations which reduce
the computational requirements and enable the creation of
larger and deeper architectures [32, 36].

Recent efforts have focused on preserving relevant fea-
tures during downsampling. An overview of a number
of popular pooling methods appears in Figure 2. Initial
approaches include stochastic pooling [47], which uses a
probabilistic weighted sampling of activations within a ker-
nel region. Mixed pooling based on maximum and aver-
age pooling has been used either probabilistically [45] or
through a combination of portions from each method [23].
Based on the combination of averaging and maximization,
Power Average (L)) pooling [10, 14] utilizes a learned pa-
rameter p to determine the relative importance of both meth-

ods. When p = 1, the local sum is used, while p — oo
corresponds to max-pooling. More recent approaches have
considered grid-sampling methods. In S3Pool [48], the
downsampled outputs stem from randomly sampling the
rows and columns of the original feature map grid. Methods
that depend on learned weights include Detail Preserving
Pooling (DPP, [30]) that uses average pooling while enhanc-
ing activations with above-average values. Local Impor-
tance Pooling (LIP, [12]) utilizes learned weights as a sub-
network attention-based mechanism. Other learned pooling
approaches such as Ordinal Pooling [8], which order kernel
pixels in discerningly and assigning them trainable weights.
More recently, Zhao and Snoek [50] proposed a pooling
technique named LiftPool based on the use of four differ-
ent learnable sub-bands of the input. The produced output
is composed by a mixture of the discovered sub-bands.

Most of the aforementioned methods rely on different
combinations of maximum and average pooling. Instead of
combining existing methods, our work is based on a soft-
max weighting approach to preserve the basic properties of
the input while amplifying feature activations of greater in-
tensity. SoftPool does not require trainable parameters, thus
is independent to the training data used. Moreover, it is sig-
nificantly more computational and memory efficient com-
pared to learned approaches. In contrast to max-pooling,
our approach is differentiable. Gradients are obtained for
each input during backpropagation, which improves neural
connectivity during training. Through the weighted soft-
max, pooled regions are also less susceptible to vanishing
local kernel activations, a common issue with average pool-
ing. We demonstrate the effects of SoftPool in Figure 3,
where the zoomed-in regions show that features are not
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Figure 3. Examples of maximum, average and soft pooling. Images are 1200 x 1200 pixels with the 3x pooled equivalents reduced to
12.5% of the original size. Image selection was based on overall contrast (I, III, V, VIII, XII), color (II, IV, VI, IX), detail (IIL, V, X, XI,
XII) and texture (II, VII). Images on the bottom row are zoomed-in regions. A high resolution version of the regions appears alongside a

detailed discussion in §1 of the Supplementary Material.

completely lost as with hard-max selection, or suppressed
by the overall region through averaging.

3. SoftPool Downsampling

We start by formally introducing the forward flow of in-
formation in SoftPool and the gradient calculation during
backpropagation. We consider a local region (R) in an acti-
vation map (a) with dimension C' x H x W with C the num-
ber of channels, H the height and W the width of the acti-
vation map. For simplicity of notation, we omit the channel
dimension and assume that R is the set of indices corre-
sponding to the activations in the 2D spatial region under
consideration. For a pooling filter of size k x k, we consider
|R| = k2 activations. The output of the pooling operation is
ap and the corresponding gradients are denoted with Va;.

3.1. Exponential maximum kernels

SoftPool is influenced by the cortex neural simulations
of Riesenhuber and Poggio [28] as well as the early pooling
experiments with hand-coded features of Boureau et al. [2].
The proposed method is based on the natural exponent (e)
which ensures that large activation values will have greater
effect on the output. The operation is differentiable, which
implies that all activations within the local kernel neighbor-
hood will be assigned a proportional gradient, of at least a
minimum value, during backpropagation. This is in contrast
to pooling methods that employ hard-max or average pool-
ing. SoftPool utilizes the smooth maximum approximation
of the activations within kernel region R. Each activation

a; with index i is applied a weight w; that is calculated as
the ratio of the natural exponent of that activation with re-
spect to the sum of the natural exponents of all activations
within neighborhood R:

a;

€

- Z edj

JER
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The weights are used as non-linear transforms in con-
junction with the value of the corresponding activation.
Higher activations become more dominant than lower-
valued ones. Because most pooling operations are per-
formed in high-dimensional feature spaces, highlighting the
activations with greater effect is a more balanced approach
than simply selecting the average or maximum. In the latter
case, discarding the majority of the activations presents the
risk of losing important information. Conversely, an equal
contribution of activations in average pooling can corre-
spond to local intensity reductions by considering the over-
all regional feature intensity equally.

The output value of the SoftPool operation is produced
through a standard summation of all weighted activations
within the kernel neighborhood R:

a=>y wi*a ()

i€ER
In comparison to other max- and average-based pooling
approaches, using the softmax of regions produces normal-
ized results with a probability distribution proportional to
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the values of each activation with respect to the neighboring
activations for the kernel region. This is in direct contrast
to popular maximum activation value selection or averaging
all activations over the kernel region, where the output ac-
tivations are not regularized. A full forward and backward
information flow is shown in Figure 4.

Soft pool activation map
(8)

Activation map (a)

Forward

Backward _ ______—-_-

Activation map
gradient
(Va)

Soft pool activation map
gradient(Va)

Va; = w, + Va (i € R)
Figure 4. SoftPool calculation. In forward operation, in ,
the kernel uses the exponential softmax value of each activation
as weight and calculates the weighted sum for region R. These
weights are also used for the gradients (Va;), in blue. Activation
gradients are proportional to the calculated softmax weights.

3.2. Gradient calculation

During the update phase in training, gradients of all net-
work parameters are updated based on the error derivatives
calculated at the proceeding layer. This creates a chain of
updates, when backpropagating throughout the entire net-
work architecture. In SoftPool, gradient updates are pro-
portional to the weights calculated during the forward pass.

As softmax is differentiable, unlike maximum or
stochastic pooling methods, during backpropagation, a min-
imum non-zero weight will be assigned to every positive ac-
tivation within a kernel region. This enables the calculation
of a gradient for every non-zero activation in that region, as
shown in Figure 4.

In our implementation of SoftPool, we use finite ranges
of possible values given a precision level (i.e., half, single
or double) as detailed in §7 of the Supplementary Material.
We retain the differentiable nature of softmax by assigning
a lower arithmetic limit given the number of bits used by
each type preventing arithmetic underflow.

3.3. Feature preservation

An integral goal of sub-sampling is the preservation of
representative features in the input, while simultaneously
minimizing the overall resolution. Creating unrepresenta-
tive downsampled versions of the original inputs can be
harmful to the overall model’s performance as the repre-
sentation of the input is detrimental for the task.

Currently widely used pooling techniques can be inef-
fective in certain cases, as shown in Figures 3 & 5. Average
pooling decreases the effect of all activations in the region

equally, while max pooling selects only the single highest
activation in the region. SoftPool falls between the two, as
all activations in the region contribute to the final output,
with higher activations are more dominant than lower ones.
This balances the effects of both average and max pooling,
while leveraging the beneficial properties of both.

3.4. Spatio-temporal kernels

CNNSs have also been extended to 3D inputs to include
additional dimensions such as depth and time. To accom-
modate these inputs, we extend SoftPool to include an
additional dimension. For an input activation map a of
C x Hx W x T, with T the temporal extent, we trans-
form the 2D spatial kernel region R to a 3D spatio-temporal
region with an additional third temporal dimension.

The produced output holds condensed spatio-temporal
information. Issues that arise with the introduction of the
temporal dimension are discussed and illustrated in §3 of
the Supplementary Material. With the added dimension, de-
sired pooling properties such as limited loss of information,
a differentiable function, and low computational and mem-
ory overhead are even more important.

4. Experimental Results

We first evaluate the information loss for various pool-
ing operators. We compare the downsampled outputs to
the original inputs using standard similarity measures (Sec-
tion 4.2). We also investigate each pooling operator’s com-
putation and memory overhead (Section 4.3).

We then focus on the classification performance gain
when using SoftPool in a range of popular CNN architec-
tures and in comparison to other pooling methods (Sec-
tion 4.4). We also perform an ablation study where we re-
place max-pooling operations by SoftPool operations in an
InceptionV3 architecture (Section 4.5).

Finally, we demonstrate the merits of SoftPool for
spatio-temporal data by focusing on action recognition in
video (Section 4.7). Additionally, we investigate how trans-
fer learning performance is affected when SoftPool is used.

4.1. Experimental settings

Datasets. For our experiments with images, we employ
five different datasets for the tasks of image quality quanti-
tative evaluation and classification. For image quality and
similarity assessment we use high-resolution DIV2K [1],
Urban100 [18], MangalQ9 [25], and Flicker2K [I]. Ima-
geNet1K [29] is used for the classification task. For video-
based action recognition, we use the large-scale HACS [49]
and Kinetics-700 [3] datasets. Our transfer learning experi-
ments are performed on the UCF-101 [33] dataset.

Training implementation details. For the image classi-
fication task, we perform random region selection of 294 x
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Figure 5. Visual comparisons over pooling methods. Both images are from Urban100 [18]. Left image (img024) shows high contrasting
borders/edges. Right image (img078) presents the inverse of high local values within an overall low-valued region.

DIV2K [1] Urban100 [15] Mangal09 [25]
Pooling method k=2 k=3 k=5 k=2 k=3 k=5 k=2 k=3 k=5
SSIM PSNR | SSIM_PSNR | SSIM_ PSNR | SSIM_ PSNR | SSIM_ PSNR | SSIM_ PSNR | SSIM_ PSNR | SSIM_ PSNR | SSIM__ PSNR
Average 0714 51247 | 0.578 44704 | 0417 29223 | 0.691 50.380 | 0.563 41.745 | 0.372 28270 | 0.695 54.326 | 0.582 43.657 | 0.396 29.862
Maximum 0.685 49.826 | 0.370 41.944 | 0.358 22.041 | 0.662 48266 | 0.528 40.709 | 0.330 20.654 | 0.671 50.085 | 0.544 41.128 | 0324 22.307
Pow-average 0419 35587 | 0.286 26329 | 0.178 16567 | 0.312 31911 | 0.219 24.698 | 0.124 15.659 | 0.381 29.248 | 0276 18.874 | 0.160  9.266
Sum 0408 35153 | 0.268 26.172 | 0.193 17.315 | 0.301 31.657 | 0.208 24.735 | 0.123 15243 | 0374 30.169 | 0.271 20.150 | 0.168 13.081
o L, 07 0.686 49912 | 0.542 43.083 | 0347 25.139 | 0.676 48.508 | 0.534 39.986 | 0.326 26.365 | 0.675 SI.721 | 0.561 41.824 | 0367 27.469
§ Gate[23] 0.689 50.104 | 0.560 43.437 | 0353 25.672 | 0.675 49769 | 0.537 40422 | 0328 26731 | 0.679 51.980 | 0.569 42.127 | 0.374 27.754
& Lite-S3DPP[30] | 0702 50.598 | 0.562 44076 | 0.396 27421 | 0684 49.947 | 0.551 40813 | 0365 27.136 | 0.691 52646 | 0.573 42794 | 0386 28.598
LIP[12] 0711 50.831 | 0.559 44.432 | 0401 28285 | 0.689 50.266 | 0.558 41.159 | 0.370 27.849 | 0.689 53.537 | 0.579 43.018 | 0.391 29.331
£ Stochastic [17] | 0.631 45362 | 0.479 39.895 | 0.295 21314 | 0.616 44342 | 0.463 37.223 | 0.286 19.358 | 0.583 46.274 | 0427 39.259 | 0255 22.953
& S3[48] 0.609 44760 | 0.454 39.326 | 0.280 20.773 | 0.608 44.239 | 0.459 36.965 | 0272 19.645 | 0.576 46.613 | 0.426 39.866 | 0.232 23.242
SoftPool (Ours) | 0.729 51436 | 0.594 44747 | 0.421 29.583 | 0.694 50.687 | 0.578 41851 | 0.394 28.326 | 0.704 54.563 | 0.586 43.782 | 0.403 30.114
Table 1. Quantitative results on benchmark high-res datasets. Best results from each similarity measure are denoted in bold.

294 height and width, which was then resized to 224 x 224.
We use an initial learning rate of 0.1 with an SGD optimizer
and a step-wise learning rate reduction every 40 epochs for
a total of 100 epochs. The epochs number was chosen as no
further improvements were observed for any of the models.
We also set the batch size to 256 across all models.

For our experiments on videos, we use a multigrid train-
ing scheme [42], with frame sizes between 4—16 and frame
crops of 90-256 depending on the cycle. On average, the
video inputs are of size 8 x 160 x 160. With the multigrid
scheme, the batch sizes are between 64 and 2048 with each
size counter-equal to the input size in every step to match
the memory use. We use the same learning rate, optimizer,
learning rate schedule and maximum number of epochs as
in the image-based experiments.

4.2. Downsampling similarity

We first assess the information loss of various pooling
operations. We compare the original inputs with the down-
sampled outputs in terms of similarity. We use three of
the most widely used kernel sizes (i.e., k X k, with k =
{2,3,5}). Our experiments are based on two standardized
image similarity evaluation metrics [41]:

Structural Similarity Index Measure (SSIM) is used
between the original and downsampled images. SSIM is
based on the computation of a luminance, contrast and
structural term. Larger index values correspond to larger
structural similarities between the images compared.

Peak Signal-to-Noise Ratio (PSNR) measures the com-
pression quality of the resulting image based on the Mean
Squared Error (MSE) inverse between the weighted aver-

ages of their channels. PSNR depends on the MSE with
higher values relate to lower errors between the two images.
Visual examples of different compression methods are
shown in Figure 5. The proposed SoftPool method can rep-
resent regions with borders between low and high frequen-
cies better than other methods, shown by the border of the
black bar in the left image. The inverse also hold true for
a high-frequency location within an overall low-frequency
region as shown in the left image. In such cases, max and
stochastic-based methods [ 14, 47, 48] over-amplify pixel lo-
cations while these pixels are completely lost with average
and gate [23] approaches. In contrast, SoftPool shows the
ability to preserve such patterns as also shown in Figure 6.
In Tables 1 and 3, we show the average SSIM and PSNR
values obtained on DIV2K [1], Urban100 [18], Mangal09
[25], and Flicker2K [ 1] high-resolution datasets over differ-
ent kernel sizes. For both measures, SoftPool outperforms
all other methods by a reasonable margin. Notably, it signif-
icantly outperforms non-trainable and stochastic methods.
The randomized strategy of stochastic methods does not ef-
fectively allow their use as a standalone method as they lack
non-linear operations. Trainable approaches are bounded
by both the image types they have been trained on as well
as on the discovered channel correlations during pooling.

4.3. Latency and memory use

Memory and latency costs of pooling operations are
largely overlooked as a single operation has negligible la-
tency times and memory consumption. However, because
of the parallelization of deep learning models, operations
may be performed thousands of times per step. Eventually,
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Params Original SoftPool (pre-train SoftPool (from scratch
Model ™) GFLOP top-1 ¢ top-5 top-1 e top?S top-1 ( top—S)
ResNet18 11.7 1.83 69.76  89.08 | 70.56 (+0.80) 89.89 (+0.81) | 71.27 (+1.51) 90.16 (+1.08)
ResNet34 21.8 3.68 7330 91.42 | 74.03 (+0.73) 91.85 (+0.43) | 74.67 (+1.37) 92.30 (+0.88)
ResNet50 25.6 4.14 76.15 92.87 | 76.60 (+0.45) 93.15 (+0.28) | 77.35 (+1.17)  93.63 (+0.76)
ResNet101 44.5 7.87 77.37 93.56 | 77.74 (+0.37) 93.99 (+0.43) | 78.32 (+0.95) 94.21 (+0.65)
ResNet152 60.2 11.61 7831 94.06 | 78.73 (+0.42) 9447 (+0.41) | 79.24 (+0.92) 94.72 (+0.66)
DenseNet121 8.0 2.90 74.65 92.17 | 75.27 (+0.57) 92.60 (+0.43) | 75.88 (+1.23) 92.92 (+0.75)
DenseNet161 28.7 7.85 77.65 93.80 | 78.12 (+0.47) 94.15 (+0.35) | 78.72 (+0.93) 94.41 (+0.61)
DenseNet169 14.1 3.44 76.00 93.00 | 76.49 (+0.49) 93.38 (+0.38) | 76.95 (+0.95) 93.76 (+0.76)
ResNeXt50 32x4d 25.0 4.29 77.62 93.70 | 78.23 (+0.61) 93.97 (+0.27) | 78.48 (+0.86) 93.37 (+0.67)
ResNeXt101 32x8d 88.8 7.89 79.31 94.28 | 78.89 (+0.58) 94.73 (+0.45) | 80.12 (+0.81) 94.88 (+0.60)
Wide-ResNet50 68.9 11.46 | 78.51 94.09 | 79.14 (+0.63) 94.51 (+0.42) | 79.52 (+1.01) 94.85 (+0.76)

Table 2. Trained from scratch and pre-trained pairwise comparisons of top-1 and top-5 accuracies on ImageNet1K between the
original networks and the same networks with pooling replaced by SoftPool. Extensive runs are reporeted in the Supplementary Material.

Flicker2K[1]

Pooling CPU (ms) | CUDA (ms) b b3 b5
(F/1TB) | (JF/1B) | SSIM PSNR | SSIM PSNR | SSIM PSNR
Avg 9/49 14776 0.709 51.786 | 0.572 44.246 | 0.408 28.957
Max 91/152 195/267 | 0.674 47.613 | 0385 40.735 | 0.329 21.368
Pow-avg 741329 120/433 0.392 34319 | 0271 26.820 | 0.163 15453
Sum 26/163 7917323 0.386 34.173 | 0.265 26.259 | 0.161 15218
L,[14] 116 /338 2147422 | 0.683 48617 | 0437 42.079 | 0341 24.432
Gate [23] 245/339 327/540 | 0.687 49314 | 0449 42722 | 0358 25.687
DPP [30] 427/860 | 634/1228 | 0.691 50.586 | 0.534 43.608 | 0.385 27.430
LIP[12] 134/257 2587362 | 0.696 50.947 | 0.548 43.882 | 0.390 28.134
Stoch. [47] | 162/341 2197485 0.625 46.714 | 0.474 38.365 | 0.264 21.428
S3 [48] 233/410 345/486 | 0.611 46.547 | 0476 37.706 | 0.252 21.363
SoftPool 31/156 56/234 0.721 52.356 | 0.587 44.893 | 0.416 29.341

Table 3. Latency and pixel similarity. Latency times for forward
( F) and backward (1 B) are averaged over ImageNet1K [29].

a slow or memory-intensive pooling operation can have a
detrimental effect on the performance.

To test the computation and memory overhead, we report
running-time memory use and inference on both CPU and
GPU (CUDA) in Table 3. We detail our testing environment
and implementation in §7 of the Supplementary Material.

From Table 3 we observe that our implementation of
SoftPool achieves low inference times on both CPU and
CUDA operations, while remains memory-efficient. This is
because of it’s simplicity and ease of parallelization. Soft-
Pool is second to only average pooling in terms of latency
and memory use as operations can be performed in-place.

4.4. Classification performance on ImageNet1K

We investigate whether classification accuracy improves
as a result of SoftPool’s superior ability to retain infor-
mation. We replace the pooling layers from ResNet [16],
DenseNet [17], ResNeXt [43] and wide-ResNet [46] net-
works with SoftPool. We consider two distinct settings. In
the from scratch setting, we replace the pooling operators
of the original models by SoftPool and train with weights
randomly initialized. In the pre-trained setting, we replace
pooling layers of the original trained networks and evaluate
the effects of the pooling strategy change without further
training. Results of both settings appear in Table 2.

5 10043y0S  (JH) [euIdLO

=S [004)0S 7=

s [004)J0S  €:

p=!

Original (HR)  SoftPool k,s=2  SoftPool k,s=3  SoftPool k,s=4

Figure 6. Results after SoftPool pooling with different kernel
and stride sizes. Image (img003) is from Urban100 [18].

Networks trained from scratch with pooling layers re-
placed by SoftPool yield consistent accuracy improvements
over the original networks. The same trend is also visible
for the pre-trained networks for which the models have been
trained with their original pooling methods. We now discuss
the results per CNN architecture family.

ResNet [16]. By training from scratch with SoftPool, an
average top-1 accuracy improvement of 1.17% is observed
with a maximum of 1.51% on ResNetl8. When replacing
pooling layers on pre-trained networks, we obtain an aver-
age of +0.59% accuracy. All ResNet-based models only in-
clude a single pooling operation after the first convolution.
Thus, results are based on a single layer replacement which
emphasizes the merits of using SoftPool.

DenseNet [17]. Based on the DenseNet overall archi-
tecture that incorporates five pooling operations, we replace
the max pooling operation that follows after the first layer
and average pooling layers between Dense blocks with our
proposed method. Top-1 accuracy gains are in the 0.93-
1.23% range when training from scratch and 0.47-0.57%
with substitution on pre-trained networks. Top-5 accuracy
follows similar incremental trends.
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Model pooling replacement | statistic (y?) p-value (p)
ResNet18 90.08 2.28¢ 21
ResNet34 15.04 1.05¢~4
ResNet50 Max — SoftPool 61.80 3.80e~15
ResNet101 23.13 1.51¢~6
ResNet152 50.29 1.32¢712
DenseNet121 411.02 2.19° 91
DenseNet161 Avg+Max — SoftPool 46.52 9.06e~12
DenseNet169 27.32 1.72¢77
ResNeXt50 32x4d Max — SoftPool 45.13 1.855*31
ResNeXt101 32x8d 695.87 2.36e753
wide-ResNet50 Max — SoftPool 39.41 3.43¢~10
Incept%onVl Max — SoftPool 106.41 5.98¢2°
InceptionV3 80.19 3.39¢19

Table 4. McNemar’s [9, 26] statistical significance for pooling
substitution results correlation. The top-1 accuracies on Ima-
geNet1K val set from Tables 2, 5 and 6 are used. A detailed view
of the statistics is presented in §6 in the Supplementary Material.

Pooling Networks

N
N N N D RN Q
@ SV Y éex\”' O
ée} $e,\ éa\ @ & & &

A S T S LN
Original (Max) (Max) (Max) (Max) (Avg+Max) (Max)
69.76  73.30 76.15 77.62 74.65 69.78
Stochastic [47] 70.13 7334 76.11 7771 74.84 70.14
S3 [48] 70.15 7356 7624 77.82 74.85 70.17
Ly [27] 7045 7374 7656  77.86 74.93 70.32
Gate [14] 70.74  73.68 76775 7798 74.88 70.52
DPP [30] 70.86 7425 77.09 78.20 75.37 70.95
LIP[12] 70.83 7395 77.13 78.14 75.31 70.77

SoftPool (ours) 71.27 74.67 77.35 78.48 75.88 71.43
Table 5. Pooling layer substitution top-1 accuracy for a variety of
pooling methods. Experiments were performed on Imagenet1 K.

ResNeXt [43]. Average of 0.83% top-1 accuracy im-
provement when trained from scratch. The best model,
ResNeXt101 32x8d, achieves 80.12% top-1 accuracy
(+0.81%) and 94.88% top-5 accuracy (+0.60%) with Soft-
Pool. On the pre-trained settings, we note average improve-
ments of +0.59% on top-1 and +0.36% top-5 accuracies.
We again note these accuracies come by a replacement of
their only pooling operation after the first convolution layer.

Wide-Resnet-50 [46]. We observe top-1 and top-5 ac-
curacy increases of 1.01% and 0.76% when trained from
scratch with SoftPool. The initialized network also achieves
improvements with +0.63% top-1 and +0.42% top-5.

These combined experiments demonstrate that by re-
placing a single (ResNet, ResNeXt and Wide-ResNet) or
only five pooling layers (DenseNet) with SoftPool lead to a
modest but important increase in accuracy. To understand
whether these improvements are statistically significant, we
performed a McNemar’s test [9, 26] to calculate the prob-
abilities (p) of marginal homogeneity between the original
and SoftPool-replaced networks. The results are summa-
rized in Table 4 for the models obtained in the from scratch
setting. As shown for all networks, p<0.01 correspond-
ing to a > |99% confidence that the improved results are
indeed due to the change in the pooling operations.

Pooling layer substitution with SoftPool

Layer N I I m v VvV VI VI
pooly v v v v v v v
pools v v v v v v
mized 5p_q v v v v v
mixed 6, v v v v
mized 6p_, v v v
mized Tq v v
mixed Typ—q v
Top-1 (%) 7745 7793 78.14 7837 7842 78.65 78.83 79.04
Top-5 (%) 93.56 93.61 93.68 93.74 93.78 93.84 9390 93.98

Table 6. Progressive layer substitution for InceptionV3. Exper-
iments are performed on ImageNet1K. Column numbers refer to
the number of replaced pooling layers, marked with v'.

Memory and computation requirements. We also
summarize the number of parameters and GLOPs in Ta-
ble 2. SoftPool does not include trainable variables and thus
does not affect the number of parameters, in contrast to re-
cent pooling methods [12, 14, 20, 30]. We also depart from
these methods as the number of GFLOPs remains the same
as the maximum and average pooling that we replace.

Pooling method comparisons. In Table 5, we com-
pare multiple pooling methods across six networks trained
from scratch. SoftPool performs similarly to learnable ap-
proaches without requiring additional convolutions, while
outperforming stochastic methods. These classification ac-
curacies correlate with image similarities in Table 1. This
enforces the notion that pooling methods that retain infor-
mation will also improve classification accuracy.

4.5. Multi-layer ablation study

In order to better understand how SoftPool affects the
network performance at different depths, we use an Incep-
tionV3 model [37] which integrates pooling in its layer
structure. We systematically replace the max-pool opera-
tions within Inception blocks at different network layers.

From the top-1 and top-5 results summarized in Table 6,
we observe that the accuracy increases with the number of
pooling layers that are replaced with SoftPool. An average
increase of 0.23% in top-1 accuracy is obtained with single
layer replacements. The final top-1 accuracy surge between
the original network with max-pool (N) and the SoftPool
model (VII) is +1.59%. This shows that SoftPool can be
used as direct replacement regardless of the network depth.

4.6. Object detection performance

We additionally present results for object detection in or-
der to evaluate the capabilities of SoftPool to preserver lo-
cal features. In Table 8, we include comparisons for object
detection on MS COCO with RetinaNet [24] and Mask R-
CNN [15] for several backbones. The results show an av-
erage +1.0% AP improvement, +1.1% on AP5¢ and +1.3%
on AP-5. This further demonstrates the merits of SoftPool
in preserving important local information.
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Model GFLOPs

HACS Kinetics-700

UCF-101

top-1(%) top-5(%) top-1(%) top-5(%) top-1(%) top-5(%)
13d-50 [19]* 53.16 78.36 93.76 49.08 72.54 93.13 96.29
r3d-101 [19]** 78.52 80.49 95.18 52.58 74.63 95.76 98.42
r(2+1)d-50 [39]** 50.04 81.34 94.51 49.93 73.40 93.92 97.84
13D [4]%* 55.27 79.95 94.48 53.01 69.19 92.45 97.62
ir-CSN-101 [38]# 17.26 N/A N/A 54.66 73.78 95.13 97.85
MF-Net [5]1* 22.50 78.31 94.62 54.25 73.38 93.86 98.37
SlowFast r3d-50 [1 17 36.71 N/A N/A 56.17 75.57 94.62 98.75
SRTG r3d-50 [35]11 53.22 80.36 95.55 53.52 74.17 96.85 98.26
SRTG r(2+1)d-50 [35]11 50.10 83.77 96.56 54.17 74.62 95.99 98.20
SRTG r3d-101 [35]ft 78.66 81.66 96.37 56.46 76.82 97.32 99.56
13d-50 with SoftPool (Ours) 53.16 79.82 94.64 50.36 7372 93.90 97.02
SRTG r(2+1)d-50 with SoftPool (Ours)  50.10 84.78 97.72 55.27 75.44 96.46 98.73
SRTG r3d-101 with SoftPool (Ours) 78.66 83.28 97.04 57.76 77.84 98.06 99.82

** re-implemented models trained from scratch. {1 models and weights from official repositories. {* unofficial models trained from scratch.
t models from unofficial repositories with official weights. T* official models trained from scratch.

Table 7. Action recognition top-1 and top-5 accuracy for HACS, Kinetics-700 and UCF-101. Models are trained on HACS and fine-
tuned for Kinetics-700 and UCF-101, except for ir-CSN-101 and SlowFast r3d-50 (see text). N/A means no trained model was provided.

Original SoftPool
AP APsy APy; | APs APy APL | AP AP5; APy | APs APy APL
ResNetl8 | 283 487 316 | 126 33.6 409|297 502 333 | 141 352 426
ResNet34 | 31.6 508 339 | 151 360 436|328 521 355|162 373 450
ResNet50 | 340 525 365 | 170 374 451 | 349 534 376 | 18.0 385 464
ResNetl01 | 39.1 59.1 423 | 21.8 427 502 | 39.8 599 433 | 224 435 511
ResNet34 | 329 536 327 | 145 351 432|340 548 341 | 157 36.6 44.6
ResNet50 | 33.6 552 353 | 154 368 453|345 562 364 | 162 377 463
ResNetl01 | 382 603 41.7 | 20.1 41.1 502 | 39.0 61.1 426 | 209 420 513

Table 8. Object detection single-mode results (bounding box AP)
on COCO test-dev for models with original backbone net-
works and the same backbone networks with pooling layers re-
placed by SoftPool. All models are pre-trained on ImageNet1K.

Backbone

aNet | 2
RetinaNet | =
a2

o

Mask
R-CNN

4.7. Classification performance on video data

Finally, we demonstrate the merits of SoftPool in han-
dling spatio-temporal data. Specifically, we address action
recognition in videos where the input to the network is a
stack of subsequent video frames. Representing time-based
features stands as a major challenge in action recognition
research [34]. The main challenge in space-time data down-
sampling is the inclusion of key temporal information with-
out impacting the spatial quality of the input.

In this experiment, we use popular time-inclusive net-
works and replace the original pooling methods with Soft-
Pool. Most space-time networks extend 2D convolutions to
3D to account for the temporal dimension. They use stacks
of frames as inputs. For the tested networks with SoftPool,
the only modification is that we use SoftPool to deal with
the additional input dimension (see Section 3.4).

We trained most architectures from scratch on HACS
[49] using author provided implementations. Results for
Kinetics-700 and UCF-101 are fine-tuned from the HACS-
trained models. We make exceptions for ir-CSN-101 and
SlowFast, for which we used the networks trained by the au-
thors. ir-CSN-101 [38] is pre-trained on IG65M [13] while
SlowFast [ 1] is pre-trained on ImageNet.

Results appear in Table 7. We report the performance
of three models with the original and SoftPool-replaced
implementations. For 3D conv ResNet-50 (r3d-50), us-

ing SoftPool increases the top-1 classification accuracy by
1.46%. The accuracy performance also increases by 1.00%
and 1.63% for the two SRTG models [35]. For the SRTG
ResNet-(2+1) network, we observe state-of-the-art perfor-
mance on HACS. Also when using space-time data, Soft-
Pool does not add computational complexity (GFLOPS).
For the performance on Kinetics-700, we observe im-
portant performance gains. An average of 1.22% increase
in top-1 accuracy is shown for the three models that have
their pooling operations substituted by SoftPool. The best
performing model is SRTG r3d-101 with SoftPool, which
achieves a top-1 accuracy of 57.76% and a top-5 accuracy
score 77.84%. These models also outperform state-of-the-
art models such as SlowFast r3d-50 and ir-CSN-101.
When fine-tuning on UCF-101, the average accuracy
gain is 0.66% despite an almost saturated performance.
SRTG r3d-101 with SoftPool is the best performing model
with a top-1 accuracy of 98.06% and top-5 of 99.82%.

5. Conclusions

We have introduced SoftPool, a novel pooling method to
better preserve informative features and, consequently, im-
prove CNN classification and detection performance. Soft-
Pool uses the softmax within a kernel region where each
of the activations has a proportional effect on the output.
Activation gradients are relative to the weights assigned to
them. SoftPool is differentiable, which benefits efficient
training. Moreover, it does not require additional parame-
ters nor increases the number of performed operations. We
have shown the merits of SoftPool through experimentation
on image similarity, image classification, object detection
and action recognition in videos. The increase in classifi-
cation performance combined with the low computation re-
quirements make SoftPool an excellent replacement for cur-
rent pooling operations, including max and average pooling.
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