
Pixel Difference Networks for Efficient Edge Detection

Zhuo Su1,∗ Wenzhe Liu2,* Zitong Yu1 Dewen Hu2 Qing Liao3 Qi Tian4
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Abstract

Recently, deep Convolutional Neural Networks (CNNs)
can achieve human-level performance in edge detection
with the rich and abstract edge representation capacities.
However, the high performance of CNN based edge detec-
tion is achieved with a large pretrained CNN backbone,
which is memory and energy consuming. In addition, it
is surprising that the previous wisdom from the traditional
edge detectors, such as Canny, Sobel, and LBP are rarely
investigated in the rapid-developing deep learning era. To
address these issues, we propose a simple, lightweight
yet effective architecture named Pixel Difference Network
(PiDiNet) for efficient edge detection. PiDiNet adopts novel
pixel difference convolutions that integrate the traditional
edge detection operators into the popular convolutional op-
erations in modern CNNs for enhanced performance on
the task, which enjoys the best of both worlds. Extensive
experiments on BSDS500, NYUD, and Multicue are pro-
vided to demonstrate its effectiveness, and its high train-
ing and inference efficiency. Surprisingly, when training
from scratch with only the BSDS500 and VOC datasets,
PiDiNet can surpass the recorded result of human percep-
tion (0.807 vs. 0.803 in ODS F-measure) on the BSDS500
dataset with 100 FPS and less than 1M parameters. A
faster version of PiDiNet with less than 0.1M parameters
can still achieve comparable performance among state of
the arts with 200 FPS. Results on the NYUD and Multicue
datasets show similar observations. The codes are avail-
able at https://github.com/zhuoinoulu/pidinet.

1. Introduction
Edge detection has been a longstanding, fundamental

low-level problem in computer vision [5]. Edges and object
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Figure 1. PDC benefits from both worlds with proper integration
of traditional operators and modern CNNs.

boundaries play an important role in various higher-level
computer vision tasks such as object recognition and de-
tection [29, 11], object proposal generation [6, 54], image
editing [10], and image segmentation [41, 4]. Therefore,
recently, the edge detection problem has also been revis-
ited and injected new vitality due to the renaissance of deep
learning [2, 23, 47, 60, 55, 31] .

The main goal of edge detection is identifying sharp im-
age brightness changes such as discontinuities in intensity,
color, or texture [53]. Traditionally, edge detectors based
on image gradients or derivatives information are popular
choices. Early classical methods use the first or second or-
der derivatives (e.g., Sobel [50], Prewitt [46], Laplacian of
Gaussian (LoG), Canny [5], etc.) for basic edge detection.
Later learning based methods [16, 9] further utilize various
gradient information [59, 37, 12, 15] to produce more accu-
rate boundaries.

Due to the capability of automatically learning rich rep-
resentations of data with hierarchical levels of abstraction,
deep CNNs have brought tremendous progress for vari-
ous computer vision tasks including edge detection and
are still rapidly developing. Early deep learning based
edge detection models construct CNN architectures as clas-
sifiers to predict the edge probability of an input image
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Input OutputFeature maps generated by vanilla convolution

Feature maps generated by pixel difference convolution

Figure 2. PiDiNet configured with pixel difference convolution (PDC) vs. the baseline with vanilla convolution. Both models were trained
only using the BSDS500 dataset. Compared with vanilla convolution, PDC can better capture gradient information from the image that
facilitates edge detection.

Table 1. Comparison between ours and some leading edge detec-
tion models in terms of efficiency and accuracy. The multiply-
accumulates (MACs) are calculated based on a 200×200 image,
FPS and ODS F-measure are evaluated on the BSDS500 test set.

HED [60] RCF [31] BDCN [18] PiDiNet PiDiNet(tiny)
Params 14.7M 14.8M 16.3M 710K 73K
MACs 22.2G 16.2G 23.2G 3.43G 270M
Throughput 78FPS 67FPS 47FPS 92FPS 215FPS
Pre-training ImageNet ImageNet ImageNet No No
ODS F-measure 0.788 0.806 0.820 0.807 0.787

patch [2, 47, 3]. Building on top of fully convolutional
networks [33], HED [60] performs end-to-end edge de-
tection by leveraging multilevel image features with rich
hierarchical information guided by deep supervision, and
achieves state-of-the-art performance. Other similar works
include [62, 23, 36, 55, 61, 31, 8, 18].

However, integration of traditional edge detectors with
modern CNNs were rarely investigated. The former were
merely utilized as auxiliary tools to extract candidate edge
points in some prior approaches [3, 2]. Intuitively, edges
manifest diverse specific patterns like straight lines, corners,
and “X” junctions. On one hand, traditional edge operators
like those shown in Fig. 1 are inspired by these intuitions,
and based on gradient computing which encodes important
gradient information for edge detection by explicitly calcu-
lating pixel differences. However, these handcrafted edge
operators or learning based edge detection algorithms are
usually not powerful enough due to their shallow structures.
On the other hand, modern CNNs can learn rich and hier-
archical image representations, where vanilla CNN kernels
serve as probing local image patterns. Nevertheless, CNN
kernels are optimized by starting from random initializa-
tion which has no explicit encoding for gradient informa-
tion, making them hard to focus on edge related features.

We believe a new type of convolutional operation can be
derived, to satisfy the following needs. Firstly, it can eas-
ily capture the image gradient information that facilitates
edge detection, and the CNN model can be more focused
with the release of burden on dealing with much unrelated
image features. Secondly, the powerful learning ability of
deep CNNs can still be preserved, to extract semantically
meaningful representations, which lead to robust and accu-
rate edge detection. In this paper, we propose pixel dif-
ference convolution (PDC), where the pixel differences in
the image are firstly computed, and then convolved with the
kernel weights to generate output features (see Fig. 3). We
show PDC can effectively improve the quality of the output
edge maps, as illustrated in Fig. 2.

On the other hand, leading CNN based edge detec-
tors suffer from the deficiencies as shown in Table 1: be-
ing memory consuming with big model size, being energy
hungry with high computational cost, running inefficiency
with low throughput and label inefficiency with the need of
model pre-training on large scale dataset. This is due to
the fact that the annotated data available for training edge
detection models is limited, and thus a well pretrained (usu-
ally large) backbone is needed. For example, the widely
adopted routine is to use the large VGG16 [49] architecture
that was trained on the large scale ImageNet dataset [7].

It is important to develop a lightweight structure, to
achieve a better trade-off between accuracy and efficiency
for edge detection. With pixel difference convolution, in-
spired by [19, 20], we build a new end-to-end architecture,
namely Pixel Difference Network (PiDiNet) to solve the
mentioned issues in one time. Specifically, PiDiNet con-
sists of an efficient backbone and an efficient task-specific
side structure (see Fig. 5), able to do robust and accurate
edge detection with high efficiency.
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2. Related Work

Using Traditional Edge Detectors to Help Deep CNN
Models for Edge Detection. Canny [5] and SE [9]
edge detectors are usually used to extract candidate contour
points before applying the CNN model for contour/non-
contour prediction [2, 3]. The candidate points can be also
used as auxiliary relaxed labels for better training the CNN
model [32]. Instead of relying on the edge information from
the hand-crafted detectors, PDC directly integrates the gra-
dient information extraction process into the convolutional
operation, which is more compact and learnable.

Lightweight Architectures for Edge Detection. Re-
cently, efforts have been made to design lightweight archi-
tectures for efficient edge detection [56, 57, 45]. Some of
them may not need a pretrained network based on large
scale dataset [45]. Although being compact and fast, the
detection accuracies with these networks are unsatisfactory.
Alternatively, lightweight architectures for other dense pre-
diction tasks [13, 58, 43, 25, 38, 63] and multi-task learn-
ing [24, 26] may also benefit edge detection. However, the
introduced sophisticated multi-branch based structures may
lead to running inefficiency. Instead, we build a backbone
structure which only uses a simple shortcut [19] as the sec-
ond branch for the convolutional blocks.

Integrating Traditional Operators. The proposed PDC
is mostly related to the recent central difference convolu-
tion (CDC) [66, 65, 64, 67] and local binary convolution
(LBC) [21], of which both derive from local binary patterns
(LBP) [42] and involve calculating pixel differences during
convolution. LBC uses a set of predefined sparse binary
filters to generalize the traditional LBP, focusing on reduc-
ing the network complexity. CDC further proposes to use
learnable weights to capture image gradient information for
robust face anti-spoofing. CDC can be seen as one instan-
tiated case of the proposed PDC (i.e., Central PDC), where
the central direction is considered, as we will introduce in
Section 3. Like CDC, PDC uses learnable filters while be-
ing more general and flexible to capture rich gradient infor-
mation for edge detection. On the other hand, Gabor con-
volution [34] encodes the orientation and scale information
in the convolution kernels by multiplying the kernels with a
group of Gabor filters, while PDC is more compact without
any auxiliary traditional feature filters.

3. Pixel Difference Convolution

The process of pixel difference convolution (PDC) is
pretty similar to that of vanilla convolution, where the orig-
inal pixels in the local feature map patch covered by the
convolution kernels are replaced by pixel differences, when
conducting the convolutional operation. The formulations

w1 w2
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w8w7 w9

Pixel difference convolution
based on central differences (CPDC)

Pixel difference convolution 
based on angular differences (APDC)

Pixel difference convolution 
based on radial differences (RPDC)

Input feature map Output feature map

Convolve

Figure 3. Three instances of pixel difference convolution derived
from extended LBP descriptors [28, 30, 52]. One can derive other
instances by designing the picking strategy of the pixel pairs.

of vanilla convolution and PDC can be written as:

y = f(xxx,θθθ) =

k×k∑
i=1

wi · xi, (vanilla convolution) (1)

y = f(▽xxx,θθθ) =
∑

(xi,x′
i)∈PPP

wi · (xi − x′
i), (PDC) (2)

where, xi and x′
i are the input pixels, wi is the

weight in the k × k convolution kernel. PPP =
{(x1, x

′
1), (x2, x

′
2), ..., (xm, x′

m)} is the set of pixel pairs
picked from the current local patch, and m ≤ k × k.

To capture rich gradient information, the pixel pairs can
be selected according to different strategies, which can be
inspired from the numerous traditional feature descriptors.
Here, we utilize the ideas from the work in [42, 30, 52],
where the local binary pattern (LBP) and its robust variants,
extended LBP (ELBP), were used to encode pixel relations
from varying directions (angular and radial). Specifically,
ELBP are obtained by firstly calculating the pixel differ-
ences within a local patch (from m pixel pairs), resulting in
a pixel difference vector, and then binarizing the vector to
create an m-length 0/1 code. Then, the bag-of-words tech-
nique [27] is usually used to calculate the code distribution
(or histogram), which is regarded as the image representa-
tion. In ELBP, the angular and radial directions were will
demonstrated to help encode potential discriminative image
cues and be complementary for increasing the feature repre-
sentational capacity for various computer vision tasks, such
as texture classification [30, 28] and face recognition [52].

By integrating ELBP with CNN convolution, we de-
rive three types of PDC instances as shown in Fig. 3, in
which we name them as central PDC (CPDC), angular PDC
(APDC) and radial PDC (RPDC) respectively. The pixel
pairs in the local patch is easy to understand. For example,
for the APDC with kernel size 3 × 3, we create 8 pairs in
the angular direction in the 3× 3 local patch (thus m = 8),
then the pixel differences obtained from the pairs are con-
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volved with the kernel by doing an element-wise multipli-
cation with the kernel weights, followed by a summation, to
generate the value in the output feature map.

The derived PDC instances based on ELBP can be seen
as an extension of ELBP that are more flexible and learn-
able. Although being powerful, the original ELBP codes are
discrete with limited representative ability. While the use-
ful encodings of pixel relations in PDC will be preserved in
the trained convolution kernels, as during the training pro-
cess of CNN, the convolution kernels will be encouraged to
have higher inner product with those important encodings,
in order to create higher activation responses1. By training
from abundant of data, PDC is able to automatically learn
rich representative encodings for the task.
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Figure 4. Selection of pixel pairs and convolution in APDC.

Converting PDC to Vanilla Convolution. According to
Eq. 2, one may notice that the computational cost and mem-
ory footprint by PDC are doubled compared with the vanilla
counterpart. However, once the convolution kernels have
been learnt, PDC layers can be converted to vanilla convo-
lutional layers by instead saving the differences of the ker-
nel weights in the model, according to the locations of the
selected pixel pairs. In this way, the efficiency is maintained
during inference. Taking APDC as an example (Fig. 4),
conversion is done with the following equations:

y = w1 · (x1 − x2) + w2 · (x2 − x3) + w3 · (x3 − x6) + ...

= (w1 − w4) · x1 + (w2 − w1) · x2 + (w3 − w2) · x3 + ...

= ŵ1 · x1 + ŵ2 · x2 + ŵ3 · x3 + ... =
∑

ŵi · xi. (3)

It is worth mentioning that we can also use this tweak
to speed up the training process, where the differences of
kernel weights are firstly calculated, followed by the con-
volution with the untouched input feature maps. We have
illustrated more details in the appendix.

4. PiDiNet Architecture
As tried by some prior works [56, 45, 57], we believe it is

both necessary and feasible to solve the inefficiency issues
mentioned in Section 1 in one time by building an architec-
ture with small model size and high running efficiency, and
can be trained from scratch using limited datasets for effec-
tive edge detection. We construct our architecture with the
following parts (Fig. 5).

1Usually, higher activation responses are considered to be more salient,
as adopted in many network pruning methods [17, 51]

Efficient Backbone. The building principle for the back-
bone is to make the structure slim while own high run-
ning efficiency. Thus we do not consider the sophis-
ticated multi-branch lightweight structures proposed for
many other tasks [13, 38, 63], since they may not appeal
to parallel implementation [35], leading to unsatisfactory
efficiency for the edge detection task. Inspired from [19]
and [20], we use the separable depth-wise convolutional
structure with a shortcut for fast inference and easy train-
ing. The whole backbone has 4 stages and max pooling lay-
ers are among them for down sampling. Each stage has 4
residual blocks (except the first stage that has an initial con-
volutional layer and 3 residual blocks). The residual path
in each block includes a depth-wise convolutional layer, a
ReLU layer, and a point-wise convolutional layer sequen-
tially. The number of channels in each stage is reasonably
small to avoid big model size (C, 2× C, 4× C and 4× C
channels for stage 1, 2, 3, and 4 respectively).
Efficient Side Structure. To learn rich hierarchical edge
representation, we also use the side structure as in [60] to
generate an edge map from each stage respectively, based
on which a side loss is computed with the ground truth
map to provide deep supervision [60]. To refine the feature
maps, beginning from the end of each stage, we firstly build
a compact dilation convolution based module (CDCM) to
enrich multi-scale edge information, which takes the input
with n × C channels, and produces M (M < C) channels
in the output to relieve the computation overhead, followed
by a compact spatial attention module (CSAM) to eliminate
the background noise. After that, a 1×1 convolutional layer
further reduces the feature volume to a single channel map,
which is then interpolated to the original size followed by
a Sigmoid function to create the edge map. The final edge
map, which is used for testing, is created by fusing the 4
single channel feature maps with a concatenation, a convo-
lutional layer and a Sigmoid function.

The detailed structure information can be seen in Fig. 5,
noting that we do not use any normalization layers for sim-
plicity since the resolutions of the training images are not
uniform. The obtained architecture is our baseline. By re-
placing the vanilla convolution in the 3× 3 depth-wise con-
volutional layer in the residual blocks with PDC, we get the
proposed PiDiNet.
Loss Function. We adopt the annotator-robust loss func-
tion proposed in [31] for each generated edge map (includ-
ing the final edge map). For the ith pixel in the jth edge
map with value pji , the loss is calculated as:

lji =


α · log(1− pji ) if yi = 0

0 if 0 < yi < η

β · log pji otherwise,

(4)

where yi is the ground truth edge probability, η is a pre-
defined threshold, meaning that a pixel is discarded and not
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Figure 5. PiDiNet architecture.

considered to be a sample when calculating the loss if it
is marked as positive by fewer than η of annotators to avoid
confusing, β is the percentage of negative pixel samples and
α = λ · (1− β). After all, the total loss is L =

∑
i,j l

j
i .

5. Experiments

5.1. Datasets and Implementation

Experimental Datasets. We evaluate the pro-
posed PiDiNet on three widely used datasets, namely,
BSDS500 [1], NYUD [48], and Multicue [39]. The ex-
perimental settings about data augmentation and configu-
ration on the three datasets follow [60, 31, 18] and the de-
tails are given below. BSDS500 consists of 200, 100, and
200 images in the training set, validation set, and test set
respectively. Each image has 4 to 9 annotators. Training
images in the dataset are augmented with flipping (2×),
scaling (3×), and rotation (16×), leading to a training set
that is 96× larger than the unaugmented version. Like prior
works [60, 31, 18], the PASCAL VOC Context dataset [40],
which has 10K labeled images (and augmented to 20K with
flipping), is also optionally considered in training. NYUD
has 1449 pairs of aligned RGB and depth images which
are densely labeled. There are 381, 414 and 654 images
for training, validation, and test respectively. We combine
the training and validation set and augment them with flip-
ping (2×), scaling (3×), and rotation (4×) to produce the
training data. Multicue is composed of 100 challenging
natural scenes and each scene contains a left- and right-
view color sequences captured by a binocular stereo cam-
era. The last frame of left-view sequences for each scene,
which is labeled with edges and boundaries, is used in our
experiments. We randomly split them to 80 and 20 im-

ages for training and evaluation respectively. The process
is independently repeated twice more. The metrics are then
recorded from the three runs. We also augment each train-
ing image with flipping (2×), scaling (3×), and rotation
(16×), then randomly crop them with size 500×500.

Performance Metrics. During evaluation, F-measure
at both Optimal Dataset Scale (ODS) and Optimal Image
Scale (OIS) are recorded for all datasets. Since efficiency
is one of the main focuses in this paper, all the models are
compared based on the evaluations from single scale images
if not specified.

Implementation Details. Our implementation is based
on the Pytorch library [44]. In detail, PiDiNet (and the base-
line) is randomly initialized and trained for 14 epochs with
Adam optimizer [22] with an initial learning rate 0.005,
which is decayed in a multi-step way (at epoch 8 and 12
with decaying rate 0.1). If VOC dataset is used in training
for evaluating BSDS500, we train 20 epochs and decay the
learning rate at epoch 10 and 16. λ is set to 1.1 for both
BSDS500 and Multicue, and 1.3 for NYUD. The threshold
η is set to 0.3 for both BSDS500 and Multicue. No η is
needed for NYUD since the images are singly annotated.

5.2. Ablation Study

To demonstrate the effectiveness of PDC and to find the
possibly optimal architecture configuration, we conduct our
ablation study on the BSDS500 dataset, where we use the
data augmented from the 200 images in the training set (op-
tionally mixed with the VOC dataset) for training and record
the metrics on the validation set.

Architecture Configuration. We can replace the vanilla
convolution with PDC in any block (we also regard the ini-
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Table 2. Possible configurations of PiDiNet. ‘C’, ‘A’, ‘R’ and
‘V’ indicate CPDC, APDC, RPDC and vanilla convolution re-
spectively. ‘×n’ means repeating the pattern for n times sequen-
tially. For example, the baseline architectrue can be presented as
“[V]×16”, and ‘C-[V]×15’ means using CPDC in the first block
and vanilla convolutions in the later blocks. All the models are
trained using BSDS500 training set and the VOC dataset, then
evaluated on BSDS500 validation set.

Architecture C-[V]×15 A-[V]×15 R-[V]×15
ODS / OIS 0.775 / 0.794 0.774 / 0.794 0.774 / 0.792
Architecture [CVVV]×4 [AVVV]×4 [RVVV]×4
ODS / OIS 0.773 / 0.792 0.771 / 0.790 0.772 / 0.791
Architecture [CCCV]×4 [AAAV]×4 [RRRV]×4
ODS / OIS 0.772 / 0.791 0.775 / 0.793 0.771 / 0.787
Architecture [C]×16 [A]×16 [R]×16
ODS / OIS 0.767 / 0.786 0.768 / 0.786 0.758 / 0.777
Architecture Baseline [CARV]×4 (PiDiNet)
ODS / OIS 0.772 / 0.792 0.776 / 0.795

Table 3. More comparisons between PiDiNet and the baseline
architecture in multiple network scales by changing the nubmer
of channels C (see Fig. 5). The models are trained using the
BSDS500 training set, and evaluated on BSDS500 validation set.

Scale Baseline (ODS / OIS) PiDiNet (ODS / OIS)
Tiny (C=20) 0.735 / 0.752 0.747 / 0.764
Small (C=30) 0.738 / 0.759 0.752 / 0.769
Normal (C=60) 0.736 / 0.751 0.757 / 0.776

Table 4. Ablation on CDCM, CSAM and shortcuts. The models
are trained with BSDS500 training set and VOC dataset, and eval-
uated on BSDS500 validation set.

CSAM CDCM Shortcuts ODS / OIS
✗ ✗ ✓ 0.770 / 0.790
✗ ✓ ✓ 0.775 / 0.793
✓ ✓ ✓ 0.776 / 0.795
✓ ✓ ✗ 0.734 / 0.755

tial convolutional layer as a block in the context) in the
backbone. Since there are 16 blocks, and a brute force
search for the architecture configurations is not feasible,
hence we only sample some of them as shown in Table 2 by
gradually increasing the number of PDCs. We found replac-
ing the vanilla convolution with PDC only in a single block
can even have obvious improvement. More replacements
with the same type of PDC may no longer give extra per-
formance gain and instead degenerate the model. We con-
jecture that the PDC in the first block already obtains much
gradient information from the raw image, and an abuse of
PDC may even cause the model fail to preserve useful in-
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Figure 6. Exploration on the scalability of PiDiNet. The struc-
ture sizes are changed by slimming or widening the basic PiDiNet.
Bottom row shows the number of parameters for each model. The
models are trained with or without VOC dataset.

formation. The extreme case is that when all the blocks are
configured with PDC, the performance becomes worse than
that of the baseline. The best configuration is ‘[CARV]×4’,
which means combing the 4 types of convolutions sequen-
tially in each stage, as different types of PDC capture the
gradient information in different encoding directions. We
will use this configuration in the following experiments.

To further demonstrate the superiority of PiDiNet over
the baseline, which only uses the vanilla convolution, we
give more comparisons as shown in Table 3. It constantly
proves that PDC configured architectures outperform the
corresponding vanilla convolution configured architectures.

CSAM, CDCM and Shortcuts. The effectiveness of
CSAM, CDCM and residual structures are demonstrated in
Table 4. The addition of shortcuts is simple yet important,
as they can help preserve the gradient information captured
by the previous layers. On the other hand, the attention
mechanism in CSAM and dilation convolution in CDCM
can give extra performance gains, while may also bring
some computational cost. Therefore, they can be used to
tradeoff between accuracy and efficiency. In the following
experiments, we note PiDiNet without CSAM and CDCM
as PiDiNet-L (meaning a more lightweight version).

5.3. Network Scalability

PiDiNet is highly compact with only 710K parameters
and support training from scratch with limited training data.
Here, we explore the scalability of PiDiNet with different
model complexities as shown in Fig. 6. In order to com-
pare with other approaches, the models are trained in two
schemes, both use the BSDS500 training and validation set,
while with or without mixing the VOC dataset during train-
ing. Metrics are recorded on BSDS500 test set. As ex-
pected, compared with the basic PiDiNet, smaller models
suffer from lower network capacity and thus with degener-
ated performances in terms of both ODS and OIS scores. At
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Figure 7. Comparison with other methods in terms of network complexity, running efficiency and detection performance (on BSDS500
dataset). The running speeds of FINED [56] are cited from the original paper, and the rest are evaluated by our implementations

Table 5. Comparison with other methods on BSDS500 dataset. ‡

indicates the speeds with our implementations based on a NVIDIA
RTX 2080 Ti GPU. † indicates the cited GPU speeds.

Method ODS OIS FPS
Human .803 .803
Canny [5] .611 .676 28
Pb [37] .672 .695 -
SCG [59] .739 .758 -
SE [9] .743 .763 12.5
OEF [16] .746 .770 2/3
DeepEdge [2] .753 .772 1/1000†

DeepContour [47] .757 .776 1/30†

HFL [3] .767 .788 5/6†

CEDN [62] .788 .804 10†

HED [60] .788 .808 78‡

DeepBoundary [23] .789 .811 -
COB [36] .793 .820 -
CED [55] .794 .811 -
AMH-Net [61] .798 .829 -
RCF [31] .806 .823 67‡

LPCB [8] .808 .824 30†

BDCN [18] .820 .838 47‡

FINED-Inf [56] .788 .804 124†

FINED-Train [56] .790 .808 99†

Baseline .798 .816 96‡

PiDiNet .807 .823 92‡,∗

PiDiNet-L .800 .815 128‡

PiDiNet-Small .798 .814 148‡

PiDiNet-Small-L .793 .809 212‡

PiDiNet-Tiny .789 .806 152‡

PiDiNet-Tiny-L .787 .804 215‡

∗ “PiDiNet” is slightly slower than “Baseline” because RPDC is
a 5x5 convolution after conversion.

the same time, training with more data constantly leads to
higher accuracy. It is noted that the normal scale PiDiNet,
can achieve the ODS and OIS scores at the same level as
that recorded in the HED approach [60], even when trained
from scratch only using the BSDS500 dataset (i.e., 0.789
vs. 0.788 in ODS and 0.803 vs. 0.808 in OIS for PiDiNet
vs. HED). However, with limited training data, widening
the PiDiNet architecture may cause the overfitting problem,

Figure 8. Precision-Recall curves of our models and some com-
petitors on BSDS500 dataset.

as shown in the declines in the second half of the curves.
In the following experiments, we only use the tiny, small,
and normal versions of PiDiNet, dubbed as PiDiNet-Tiny,
PiDiNet-Small and PiDiNet respectively.

5.4. Comparison with State-of-the-arts

On BSDS500 dataset. We compare our methods with
prior edge detection approaches including both traditional
ones and recently proposed CNN based ones, as summa-
rized in Table 5 and Fig. 8. Firstly, we notice that our
baseline model can even achieve comparable results, i.e.,
with ODS of 0.798 and OIS of 0.816, already beating most
CNN based models like CED [55], DeepBoundary [23] and
HED [60]. With PDC, PiDiNet can further boost the per-
formance with ODS of 0.807, being the same level as the
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Table 6. Comparison with other methods on NYUD dataset. ‡

indicates the speeds with our implementations based on a NVIDIA
RTX 2080 Ti GPU.

Methods ODS OIS ODS OIS ODS OIS FPS
gPb-UCM [1] .632 .661 1/360
gPb+NG [14] .687 .716 1/375
SE [9] .695 .708 5
SE+NG+ [15] .710 .723 1/15

RGB HHA RGB-HHA
HED [60] .720 .734 .682 .695 .746 .761 62‡

LPCB [8] .739 .754 .707 .719 .762 .778 -
RCF [31] .743 .757 .703 .717 .765 .780 52‡

AMH-Net [61] .744 .758 .716 .729 .771 .786 -
BDCN [18] .748 .763 .707 .719 .765 .781 33‡

PiDiNet .733 .747 .715 .728 . 756 .773 62‡

PiDiNet-L .728 .741 .709 .722 .754 .770 88‡

PiDiNet-Small .726 .741 .705 .719 .750 .767 115‡

PiDiNet-Small-L .721 .736 .701 .713 .746 .763 165‡

PiDiNet-Tiny .721 .736 .700 .714 .745 .763 140‡

PiDiNet-Tiny-L .714 .729 .693 .706 .741 .759 206‡

recently proposed RCF [31] while still achieving nearly 100
FPS. The fastest version PiDiNet-Tiny-L, can also achieve
comparable prediction performance with more than 200
FPS, further demonstrating the effectiveness of our meth-
ods. Noting all of our modes are trained from scratch using
the same amount of training data as in RCF, LPCB, BDCN,
etc. (i.e., the training and validation set, mixed with the
VOC dataset), without the ImageNet pretraining. We also
show some qualitative results in Figure 9. A more detailed
comparison in terms of network complexity, running effi-
ciency and accuracy can be seen in Fig. 7.
On NYUD dataset. The comparison results on the
NYUD dataset are illustrated on Table 6. Following the
prior works, we get the ‘RGB-HHA’ results by averaging
the output edge maps from RGB image and HHA image to
get the final edge map. The quantitative comparison shows
that PiDiNets can still achieve highly comparable results
among the state-of-the-art methods while being efficient.
Please refer to the appendix for the Precision-Recall curves.
On Multicue dataset. We also record the evaluation re-
sults on Multicue dataset and the comparison results with
other methods are shown on Table 7. Still, PiDiNets achieve
promising results with high efficiencies.

6. Conclusion
In conclusion, the contribution in this paper is three-fold:

Firstly, we derive the pixel difference convolution which in-
tegrates the wisdom from the traditional edge detectors and
the advantages of the deep CNNs, leading to robust and
accurate edge detection. Secondly, we propose a highly
efficient architecture named PiDiNet based on pixel dif-
ference convolution, which are memory friendly and with
high inference speed. Furthermore, PiDiNet can be trained

Table 7. Comparison with other methods on Multicue dataset. ‡

indicates the speeds with our implementations based on a NVIDIA
RTX 2080 Ti GPU.

Method Boundary Edge FPS
ODS OIS ODS OIS

Human [39] .760 (.017) .750 (.024)
Multicue [39] .720 (.014) .830 (.002) -
HED [60] .814 (.011) .822 (.008) .851 (.014) .864 (.011) 18‡

RCF [31] .817 (.004) .825 (.005) .857 (.004) .862 (.004) 15‡

BDCN [18] .836 (.001) .846 (.003) .891 (.001) .898 (.002) 9‡

PiDiNet .818 (.003) .830 (.005) .855 (.007) .860 (.005) 17‡

PiDiNet-L .810 (.005) .822 (.002) .854 (.007) .860 (.004) 23‡

PiDiNet-Small .812 (.004) .825 (.004) .858 (.007) .863 (.004) 31‡

PiDiNet-Small-L .805 (.007) .818 (.002) .854 (.007) .860 (.004) 44‡

PiDiNet-Tiny .807 (.007) .819 (.004) .856 (.006) .862 (.003) 43‡

PiDiNet-Tiny-L .798 (.007) .811 (.005) .854 (.008) .861 (.004) 56‡

BDCNCEDRCF PiDiNetImage GT

Figure 9. A qualitative comparison of network outputs with some
other methods, including RCF [31], CED [55] and BDCN [18].

from scratch only using limited data samples, while achiev-
ing human-level performances, breaking the convention that
high performance CNN based edge detectors usually need a
backbone pretrained on large scale dataset. Thirdly, we con-
duct extensive experiments on BSDS500, NYUD, and Mul-
ticue datasets for edge detection. We believe that PiDiNet
has created new state-of-the-art performances considering
both accuracy and efficiency.

Future Work. As discussed in Section 1, edge detec-
tion is a low level task for many mid- or high-level vi-
sion tasks like semantic segmentation and object detection.
Also, some low level tasks like salient object detection may
also benefit from the image boundary information. We hope
pixel difference convolution and the proposed PiDiNet can
go further and be useful in these related tasks.
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Pietikäinen, and Li Liu. Dynamic group convolution for ac-
celerating convolutional neural networks. In ECCV, pages
138–155. Springer, 2020. 4
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