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Abstract

Image inpainting methods have shown significant im-
provements by using deep neural networks recently. How-
ever, many of these techniques often create distorted struc-
tures or blurry inconsistent textures. The problem is rooted
in the encoder layers’ ineffectiveness in building a com-
plete and faithful embedding of the missing regions from
scratch. Existing solutions like course-to-fine, progressive
refinement, structural guidance, etc. suffer from huge com-
putational overheads owing to multiple generator networks,
limited ability of handcrafted features, and sub-optimal uti-
lization of the information present in the ground truth. We
propose a distillation-based approach for inpainting, where
we provide direct feature level supervision while training.
We deploy cross and self-distillation techniques and de-
sign a dedicated completion-block in encoder to produce
more accurate encoding of the holes. Next, we demonstrate
how an inpainting network’s attention module can improve
by leveraging a distillation-based attention transfer tech-
nique and further enhance coherence by using a pixel-
adaptive global-local feature fusion. We conduct extensive
evaluations on multiple datasets to validate our method.
Along with achieving significant improvements over previ-
ous SOTA methods, the proposed approach’s effectiveness
is also demonstrated through its ability to improve existing
inpainting works.

1. Introduction
Image inpainting is aimed at filling damaged or substi-

tuting undesired areas of images with plausible and fine-
grained contents. It has a broad range of applications in
fields of restoring damaged photographs, retouching pic-
tures, etc. Early conventional works typically use low-level
features hand-crafted from the incomplete input image and
resort to priors (e.g., image statistics) or auxiliary data (e.g.,
external image databases). They either propagate low-level
features from surroundings to the missing regions following
a diffusive process [33, 2] or fill holes by searching and fus-
ing similar patches from the same image or external image
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databases [29]. Although these methods have good effects
in the completion of repeating structures, they are restricted
by the available image statistics and cannot produce novel
image contents. In recent years, deep learning based meth-
ods have been reported to surmount these limitations by uti-
lizing large volumes of training images. However, many of
these methods suffer from the severe ill-posedness of the
task. The hole regions are entirely empty, and without suffi-
cient guidance, neural networks struggle to reconstruct the
missing contents from scratch satisfactorily.

Works like [28, 15, 18] deploy a single generative model
to solve the task. To handle the inherent ill-posedness, a
large majority of works uses some form of guidance at in-
ference time. We can broadly divide these methods into
two categories: (a) Coarse-to-fine: One group of works
[47, 48, 22] deploys a two-stage architecture to do content
formation and texture refinement separately in a step-by-
step manner. These methods typically produce an inter-
mediate coarse image with recovered structures in the first
stage and send it to the second stage for texture generation.
Another group of works tries to inpaint the missing region
in a progressive manner using a single network [11, 17, 51].
(b) Structural guidance: Recently, [26] used edge generator
within the two-stage architecture. [44] proposed a contour
generator instead of edge. Such methods suffer from sev-
eral limitations: (a) It takes many more parameters to de-
ploy two generators. Methods like [44] require even more
parameters for the structure prediction branch. Progressive
or recurrent approaches typically suffer from slow inference
speed or high computational cost. (b) Although structural
knowledge improves performance, it is still limited due to
the handcrafted choice of the auxiliary information. For ex-
ample, the optimal structure information might vary from
one scene to another (edge vs. contour).

The inpainted image quality depends heavily on the
coarse network, and [35] experimentally verified that if we
remove the coarse network and train end-to-end only the
final network of such two-stage methods, it results in a no-
table drop in performance. In this work, we argue that the
root cause lies in how existing networks are trained. We
empirically show that when training a single network, using
the ground-truth image as the only supervision at the end
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Figure 1: Visualization of encoder features with and with-
out distillation.

fails to act as a strong enough regularizer, especially for the
initial layers (Fig. 1, 3rd column). Such weaknesses prop-
agate throughout the network resulting in poor inpainting
quality. Instead of using multiple networks or guidances
at inference, we show that if we can guide a network ac-
curately while training, even a single efficient network can
learn to solve the task much better without requiring a high
testing-load. We propose a distillation-guided training strat-
egy where we guide different layers of our network individ-
ually to converge to a much better optima and show that it
has the potential to improve existing works as well.

We use the widely used encoder-decoder architecture
[28, 18] as our backbone. The encoder is typically ex-
pected to generate a meaningful encoding for the hole re-
gions, while in the decoder, we refine that information using
dedicated tools like attention modules [47, 53]. We deploy
two networks: an auxiliary network (AN) and an inpainting
network (IN), where both have a similar encoder-decoder
backbone with three levels. The AN is used only for train-
ing to provide accurate information on what the missing re-
gions should contain. We start with an under-complete au-
toencoder as our AN, which takes the ground truth image
as input and tries to produce the same as output. The intu-
ition is that its features will be uncorrupted and can be used
to supervise the inpainting encoder. As the training pro-
gresses, we further finetune the AN using meta-networks to
produce more suitable uncorrupted features to help with the
inpainting task. We conceptually divide AN and IN at ev-
ery down/up-sampling level and each of these sub-networks
(representing all the encoder/decoder layers at that particu-
lar level) of the IN receives a supervisory signal from the
same sub-network of the AN as guidance. With these su-
pervisions, we use knowledge distillation to make the IN
learn from the “ideal” features of the AN.

Knowledge distillation (KD), introduced initially in the
deep learning setting [14], is a technique that transfers

knowledge from one architecture (teacher) to another (stu-
dent). We use the AN as the ‘teacher’ network that provides
supervisory signals for different layers of the ‘student’ IN.
For encoder, we use feature maps of AN to inform the IN
about the ideal embeddings of the holes. To make sure that
the IN encoder is able to mimic this ‘ideal’ target as close
as possible, we propose a dedicated ‘completion block.’ It
solely focuses on filling the holes by adaptively gathering
relevant information from the neighborhood. We show that
completion block coupled with AN’s intermediate supervi-
sion brings significant performance improvement to an en-
coder’s performance (Fig. 1, 4th column).

After generating a coarse embedding of the holes, we
focus on refining it in the decoder. Attention modules
are de facto standard for feature refinement, which inher-
ently assumes that the missing regions in the input fea-
ture are roughly complete, which is needed to generate a
valid pixel/patch-wise similarity score. This assumption
can fail for complex holes, hole boundaries, etc. We de-
sign a distillation-based attention transfer technique, where
we force the attention module of IN to learn the ideal
pixel/patch-wise similarities from the same module in the
AN. Further, to generate more refined results, we intro-
duce a pixel-adaptive global-local feature fusion technique,
which allows each hole pixel to generate content consistent
with the immediate local neighborhood and boundaries.
Our main contributions are as follows:
(1) We propose a distillation based training strategy for in-
painting. For encoder, we demonstrate the utility of deep
feature level supervision coupled with dedicated adaptive
completion-blocks that generates much better embedding
of the hole regions. (2) For decoder, we design an atten-
tion transfer technique that enables the attention module
to learn an ideal affinity-finding behavior for refining the
coarse embeddings from the encoder. Further, we design
a pixel-adaptive global-local consistent structure for gen-
erating more coherent results. (3) The proposed training
strategy directly helps the inpainting network to learn bet-
ter and does not require multiple generators or progressive
refinement at inference time, increasing efficiency. Our net-
work shows superior performance on 3 standard datasets.
We also verify the efficacy of the proposed distillation strat-
egy by demonstrating its role in improving existing SOTA
methods.

2. Related Works
Image Inpainting: Deep learning-based image inpaint-

ing approaches [18, 28] are generally based on generative
adversarial networks (GANs) to generate the pixels of a
missing region. [45] and [47] devised feature shift and
contextual attention operations, respectively, to allow the
model to borrow feature patches from distant areas of the
image. [22] used a coherent semantic attention layer to en-
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sure semantic relevance between swapped features. [44, 26]
filled images with contour/edge completion and image com-
pletion in a step-wise manner. [32] first predicted smooth
structure and used that for the final stage. [51] used cas-
caded generators to progressively fill in the image. These
approaches attempted to solve inpainting tasks by adding
structural constraints, but they still suffer from the limita-
tion of handcrafted guidance, huge load of two generators
and lack of local semantic consistency.
Distillation: Distillation technique is mainly used in image
classification [14], image segmentation [23], image restora-
tion [37], captioning [39], etc. A large quantity of ap-
proaches have been proposed to reinforce the efficiency of
student models’ learning capability as the student learns
from more informative sources. There are several other
variants of this technique that extend this idea to train a
student model which not only learns from the outputs of
the teacher but also uses the intermediate representations
learned by the teacher as additional guidance. [41] pro-
posed ensemble of teachers, [25] showed cascaded distil-
lation. Few recent works [1, 9] have shown that distilling
from an identical teacher network trained on the exact same
task (self-distillation) can also significantly improve the stu-
dent. In this work, addressing the diverse needs of different
parts of the network, we deploy three variants of distillation:
(a) Distillation between two networks’ encoder-features (b)
Distillation between same network’s encoder-features (c)
Distillation between attention module’s affinity-finding be-
havior (instead of directly distilling the decoder features).

3. Method
Our overall architecture is shown in Fig. 2. We use a

standard encoder-decoder architecture as the backbone of
both IN and AN, following its wide use in existing litera-
ture [28, 18, 40, 38, 31]. Every level of the IN encoder con-
tains stack of standard convolution layers followed by an
adaptive filtering block (Completion Block, Sec 3.1). Sim-
ilarly, every level of the decoder in IN consists of convolu-
tional layers followed by an attention module and adaptive
filtering block. These two modules in the decoder are used
in parallel and the outputs are dynamically fused for each
pixel (Sec. 3.3). The AN has a similar architecture, except
that it does not contain any adaptive filtering block, which
is mainly used in the IN for filling holes. The input to the
IN and AN branch are the masked and ground-truth images,
respectively. We have provided the layerwise details in the
supplementary material. We first discuss deep feature level
supervision in the encoder, followed by the guiding mecha-
nism in the decoder.

3.1. Intermediate Supervision in Encoder

The supervision in the encoder can intuitively be divided
into two parts: (a) What to Fill. (b) How to fill. First, we

discuss the distillation-based loss function added to every
level of the IN-encoder. We design two types of distilla-
tion losses - (a) Cross-Distillation (CD), which are added
between the same encoder levels of IN and AN, (b) Self-
Distillation (SD): which are added between different levels
(deep to shallow) of the IN itself. We describe CD and SD
in detail next (i.e., What to Fill), followed by the description
of a dedicated completion module (i.e., How to fill).
Cross-Distillation (CD): Information transferability in dif-
ferent layers was explored in [46]. [10] argued that if the
student could produce comparable features as teacher, it
should be able to perform similarly. For CD, the student
IN-encoder tries to mimic the behavior of the teacher AN-
encoder. If the outputs from the lth layer of the AN encoder
and inpainting encoder are x∗

l and xl, then a regularizing
term can be defined as:

R(θ, x)l,l = ||(xl − γ(x∗
l ))⊙M ||22 (1)

where x is the input, and θ represents the parameters of the
inpainting network, M is the mask with value ‘1’ for the
missing regions and ‘0’ elsewhere. γ represents a meta net-
work [16]. Instead of directly mimicking uncorrupted fea-
ture x∗

l from the AN, we allow our network to learn a trans-
formation γ representing convolutional operation, to make
it more helpful for the inpainting task. Similar motivation
can be extracted from inductive transfer learning settings
[27], where the target domain is identical to the source do-
main, and the target task is different from the source task.
The teacher-student pair has to be chosen such that the in-
painting network is not over-regularized and stuck in a non-
optimal minima. Using a similar encoder-decoder structure
for both the modules, we use the down-sampling layers of
the network as the breakpoints. However, considering the
difference in tasks, every feature channel of the AN encoder
might not be equally beneficial. Thus, we use another set of
meta-networks (ρ) consisting of fully-connected layers, to
decide which feature channels of the AN model are useful
and relevant for the inpainting task. If there are L encoder
levels, then for each of the L pairs, we introduce transfer
importance predictor, which enforces different penalties for
each channel according to their utility for the target task.
For each pair, the cross distillation loss can be written as

R(θ, x, ρl)lcross =
∑
c∈C

ρlc(x
∗
l )||(xl − γ(x∗

l ))c ⊙M ||22 (2)

where l ∈ {1, L} and ρlc : RC×H×W → RC is the non-
negative weight of channel c with

∑
c∈C ρlc = 1.

Self-Distillation (SD): For self-distillation ([50, 12]), the
deeper layers of the IN act as the teacher, and the shal-
lower layer of IN act as student, which, in turn, forces the
shallower layers to generate better content for the hole re-
gions. Intuitively, such a strategy directly resonates with
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Figure 2: An overview of our method. Top branch shows the inpainting network and bottom branch shows the auxiliary
network. For simplicity, each meta network is shown only for a single layer.

inpainting task as the deeper layers of the same inpainting
network contain more complete information for the hole re-
gions. Note that the features in different depths have differ-
ent sizes, so we add extra layers to align them while train-
ing. If xl is the encoder feature from the lth level, the self
distillation loss can be expressed as

R(θ, x, ϕl)lself =
∑
c∈C

ϕl
c(xd)||(fl(xl)−xl+1)c⊙M ||22 (3)

where l ∈ {1, L − 1} and ϕl
c : RC×H×W → RC is the

non-negative weight of channel c with
∑

c∈C ϕl
c = 1, fl is

conv. layer to make xl of the same dimension as xl+1.
Cross distillation provides a more complete target for the
hole regions, but shallower layers might struggle to achieve
it initially. Self distillation provides a more task-related
and achievable target for those layers. As the training pro-
gresses, the deeper layers will be benefited more from cross-
distillation, which will, in turn, improve the operation of
self-distillation. The information will gradually flow from
deeper to shallower layers. As shown in Network Analy-
sis section, both of these losses, when used together, result
in the best performance. The final distillation loss can be
expressed as

Rdistil =

L∑
l=1

Rl
cross +

L−1∑
l=1

Rl
self (4)

Adaptive Completion-block (CB) in Encoder: CD and
SD provide a target Rdistil to the IN encoder. But, how
easy is it to mimic the ‘ideal’ behavior? The encoder layers
are expected to extract meaningful features from the uncor-
rupted regions as well as fill the holes with coarse infor-
mation accurately, which are two different tasks. Instead

of relying on the same encoder to do both, we disentangle
these two tasks and use a dedicated block for updating the
holes. Mask-based convolution is proposed in [20, 48], but
they still utilize the same layers for both regions. [49] uses
separate normalization techniques for the two regions. But
extending such an idea to our approach is not straightfor-
ward. Although intuitive, simply using parallel layers in
the whole encoder will significantly increase the number of
parameters and be sub-optimal due to the static nature of
standard CNN layers.
The completion block (CB) is used at the end of each en-
coder level to update the hole regions. If x′

l is the feature
output of lth encoder level, the output of the CB block is

xl = x′
l + fada−conv(x

′
l)⊙M (5)

where fada−conv is the transformation applied in the com-
pletion block. Elementwise multiplication with M ensures
that it only updates the holes.

It is common to use dilated convolutions, convolutions
with large kernels, or multi-scale structure [43] in inpaint-
ing networks to extract information from a large neighbor-
hood while filling the holes. These approaches have two
major limitations: (a) Required computations increase due
to multiple convolutional layers. (b) The static CNN lay-
ers fail to handle the varying need of diverse hole regions.
Instead, we design our CB with adaptive convolution lay-
ers ([30], [36]), where each pixel can decide where to look
for information in the neighborhood (spatially-varying off-
set) and how much importance to give to different regions
(spatially-varying weights).
Let y = fada−conv(x

′
l) be the output of the adaptive convo-

lutional layer. Given input feature map x′
l ∈ RC×H×W , we

use two convolutional layers to generate a spatially vary-
ing kernel V with offsets ∆ and perform the convolutional
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operation as

yj =

K∑
k=1

(Vj,jk)(x
′
l[j + jk +∆jk]) (6)

where K is the kernel size, j defines the output pixel lo-
cation, jk defines position of the convolutional kernel of
dilation 1. Vj,jk = fker(x

′
l) ∈ RK2×H×W and ∆jk =

foff (x
′
l) ∈ R2K2×H×W are the learnable pixel dependent

kernel and offsets, respectively. fker and fker represents
convolutional layers. The kernels (V ) and offsets (∆) vary
from one pixel to another, but are fixed for all the channels
promoting efficiency. We also use shared weight and offset
prediction layers for all the completion blocks.

3.2. Attention Transfer using Distillation in Decoder

Attention modules are widely used in inpainting litera-
ture [47, 17, 53] for its affinity-finding property. It gener-
ally divides the input feature map into small patches/pixels,
finds the feature similarity of the holes with rest of the im-
age, and then refines the holes by taking a weighted sum
of the similar features, where the weight is measured by
the similarity. The inherent assumption is that the features
coming to the attention module are coarsely completed. If
the encoder encodes wrong information for a hole region,
the attention module will further aggregate similar wrong
information from the entire image, leading to erroneous re-
sults. This problem becomes significant for complex big
holes and hole boundaries. Recently, [34] also reported sim-
ilar behavior and deployed a parallel coarse branch to force
the hole regions to be filled coarsely before feeding it to the
attention module.
We address this problem by directly making the attention
module mimic an ideal affinity-finding behavior from the
AN. At every decoder level (of both AN and IN), we deploy
an attention module. As the AN’s feature maps are uncor-
rupted, the measured pairwise similarity between different
patches/pixels will be accurate, even for the hole regions.
We exploit this knowledge and make the inpainting model
behave similarly.
Instead of convolution based attention module of [47] which
measures patch-similarities, we calculate pixel-similarities
([42, 53]) using much efficient matrix-multiplication based
operations while giving equivalent performance. Note that,
our proposed scheme can be easily extended to other vari-
ants of attention module as well and we analyse some of the
possibilities in Sec. 4.2. Given decoder feature dl at level l,
the pairwise weightage can be calculated as

ri,j =
exp(pi,j)∑N
i=1 exp(pi,j)

(7)

where pi,j = fQ(d
i)T fK(dj), fQ and fK are 1x1 convolu-

tional layers, N is the total number of pixels, d is the input

feature. The output of this attention layer is given by

ai =

N∑
j=1

(ri,jdj) (8)

If rAN
i,j is the relation learned in AN branch, we minimize

the distance between the IN similarity matrix (ri,j) and the
AN similarity matrix (rAN

i,j ). We further allow each pixel to
adaptively select the relative importance of the learned sim-
ilarity from the AN network using a meta-network t, con-
sisting of fully connected layers. The attention transfer loss
can be calculated as

Ratt =
∑
i∈H

ti(d
AN
i )(

N∑
j=1

(rAN
i,j − ri,j)

2) (9)

where H denotes the hole region indicated by ‘1’ in mask
M , ti lies between 0 and 1 and is generated using a single
convolutional layer followed by sigmoid operation.

3.3. Pixel-adaptive Global-Local Fusion (PGL):

We have observed that directly deploying an attention
module in the decoder may result in repetitive and am-
biguous content, like discontinuities among the missing and
background regions. As shown in Fig. 7, it results in curved
edges near boundaries or repetitive tree leaves. The need
for global-local consistency was highlighted by some of the
earlier works like [15], which proposed the use of two sep-
arate discriminators. While attention is good at modeling
long-range global context, it is less capable of extracting
fine-grained local feature patterns. On the other hand, CNN
layers learn shared position-based kernels over a local win-
dow that maintains translation equivariance and can capture
features like edges and shapes more accurately. We hypoth-
esize that both global and local interactions are important
for filling the missing regions and thus allow each pixel to
adaptively select the relative weightage for a branch. The
fused output can be expressed as

OGL = fatt(D)⊙W + fada−conv(D)⊙ (1−W ) (10)

where W = sigmoid(fw(D)) is the per-pixel weightage
map, fw is a single convolutional layer, D is the input fea-
ture map, OGL is the fused output, fatt and fada−conv are
the global attention and local adaptive convolution modules
respectively. Even though attention has already been used
extensively, the combination of attention and adaptive con-
volutions is significantly better than attention alone and pro-
duces much better locally consistent results.
Training the Meta Networks: We use several meta net-
works to allow the IN to take only useful guidance and re-
ject others. These meta networks are applied to the output
of the AN (Eqs. 2,3,9) and only used for training. There
are four sets of meta networks: transformation γ finetunes
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the AN network features to be more helpful for inpaint-
ing while ρc, ϕc and t give more weightage to the useful
features. We update the meta-networks intending to max-
imize the inpainting performance. We follow the standard
approach of bilevel scheme [4, 6, 7, 8] to train the meta-
networks parameterized by Ψ.

Algorithm 1: The overall training procedure.

Dataset Dtrain = (xi, yi), learning rate α;
Total Loss Ltot = Linp +Rdistil +Ratt;
while Not Done do

Sample a batch B ⊂ Dtrain;
for i = 0; i < T − 1; i = i+ 1 do

Update θ to minimize Ltot(θ|x, y,Ψ);
end
Measure Linp(θ|x, y) and update Ψ to minimize

it.
end

4. Experiments
Experiment Setup: We evaluate our methods on

Places2 [54], CelebA [24] and Paris StreetView [5] datasets.
We use irregular masks from [20]. The irregular mask
dataset contains 12000 irregular masks and the masked area
in each mask occupies 0-60% of the total image size. We
train our model with batch size 6 using the Adam optimizer
and learning rate of 2e−4. The approximate number of itera-
tions for CelebA and PSV are 400,000 where as for Places2
it is 2,500,000. All experiments are conducted using Py-
torch on an Ubuntu 16 system, i7 3.40GHz CPU and an
NVIDIA RTX2080Ti GPU.
Loss: The AN network is pre-trained with simple L1 loss.
For the inpainting network, the final loss is

Rinp = λrRrecon + λd(Rdistil +Ratt) + λsRstyle (11)

where Rrecon represents the spatially-varying reconstruc-
tion loss [43] and Rstyle represents standard style loss [3].
For hyper-parameters, we found 1 for λr, 20 for λd and 150
for λs to give optimal results.
Comparison Models: We compare with several state-of-
the-art methods: PIC [53], PC [20], GC [48], SF [32], EQ
[21], EC [26] and RFR [17].
Quantitative Comparisons: We compare our model quan-
titatively in terms of peak signal-to-noise ratio (PSNR),
structural similarity index (SSIM), mean l1 loss, LPIPS [52]
and FID [13] score. Table 1 lists the results with different
ratios of irregular masks for the three datasets. The missing
results in the table are due to the limitation in computational
resources. As shown in Table 1, our method produces ex-
cellent results and comfortably surpasses all the comparing
models.

GT Input V ∆ rnodistil rdistil

Figure 3: Adaptive filter and attention visualization.

Qualitative Comparisons: Figs. 4, 6, 5 compare our
method with previous state-of-the-art approaches on the
Places2, Paris StreetView, and CelebA datasets, respec-
tively. Our results have significantly fewer noticeable in-
consistencies, especially for large holes. Compared to the
other methods, our model outperforms the-state-of-the-art
with more consistent colors and structures. Additionally,
we evaluate our model on some real inpainting scenarios on
images from [19], as shown in Fig. 8.

4.1. Network Analysis

We perform the following experiments, as reported in
Table 2 on Places2 dataset. Baseline: Backbone trained
with Rrecon and Rstyle only. Net1: Baseline + CD. Net2:
Baseline + SD. Net3: Baseline + SD + CD. Net4: Net3 +
completion blocks. Net5: Baseline + CB. Net6: Net4 +
general attention module. Net7: Net6 + attention-transfer.
Net8: Net7 + PGL. Note that, for a fair comparison with
our final model Net8, we have added the same number of
parameters in the baseline to compensate for the few layers
of completion blocks and adaptive filters in decoder.
Distillation in encoder: For Net1 and Net2, the addition of
cross and self distillation losses, respectively, shows signif-
icant improvement over baseline. Using both SD and CD
(Net3) performs better than the individual techniques, rein-
forcing the need for self and cross distillation in an entan-
gled manner. Net4 with adaptive-convolution based com-
pletion block shows improvement over Net3. Interestingly,
Net5, which uses only completion blocks without supervi-
sion, shows sub-optimal improvement, showing that distil-
lation and completion blocks complement each other. As
shown in Fig. 1, we observe that inpainting encoder’s fea-
tures With distillation (Column 4) are more complete and
visually show correlation with the uncorrupted AN features.
Distillation in attention module: Net6 deploys attention
modules in the decoder. In Net7, we use additional atten-
tion transfer technique. Along with the quantitative gains
of Net7 over Net6, we visualize the attention map for a par-
ticular degraded pixel in columns 4 and 5 of Fig. 3. We
observe that holes near the boundary between two different
regions are most prone to error while using a standard at-

2486



PSNR↑ SSIM↑ Mean l↓1 FID ↓ LPIPS ↓

Mask Ratio 10-20% 30-40% 40-50% 10-20% 30-40% 40-50% 10-20% 30-40% 40-50% 10-20% 30-40% 40-50% 40-50%

Places2

PIC 26.78 21.72 19.04 0.930 0.781 0.622 0.0133 0.0357 0.0590 28.44 49.14 66.54 0.2810
PC 26.88 22.12 20.10 0.934 0.784 0.690 0.0128 0.0325 0.0480 25.46 45.21 61.28 0.2556
GC 26.81 22.04 20.12 0.929 0.813 0.694 0.0129 0.0339 0.0468 26.12 45.84 61.74 0.2564
SF 28.28 23.31 21.24 0.949 0.823 0.765 0.0143 0.0307 0.0412 13.53 32.24 43.11 0.1719
EC 27.19 22.18 20.24 0.933 0.820 0.712 0.0128 0.0324 0.0452 18.69 40.43 52.92 0.2052
Ours 29.15 24.21 22.35 0.954 0.841 0.788 0.0103 0.0272 0.0364 10.45 29.14 38.28 0.1612

CelebA

PIC 30.71 24.68 21.37 0.965 0.880 0.740 0.0094 0.0254 0.0439 12.42 17.14 23.28 0.1606
PC 32.73 26.71 24.30 0.972 0.918 0.856 0.0062 0.0179 0.0272 7.44 14.44 16.25 0.1317
GC 32.59 26.68 24.31 0.973 0.914 0.859 0.0063 0.0180 0.0270 8.14 15.02 17.18 0.1342
SF 33.25 27.24 24.94 0.979 0.936 0.881 0.0089 0.0188 0.0259 4.96 9.54 11.90 0.0941
EC 32.48 26.66 24.38 0.975 0.915 0.871 0.0064 0.0181 0.0262 5.08 10.45 13.56 0.1064
RFR 33.52 27.54 25.46 0.979 0.929 0.890 0.0056 0.0168 0.0227 4.17 9.13 11.67 0.0870
Ours 34.14 28.49 25.97 0.981 0.943 0.902 0.0051 0.0144 0.0201 4.04 7.54 9.96 0.0742

PSV

PIC 28.86 24.91 23.67 0.930 0.819 0.753 0.0132 0.0319 0.0432 29.74 50.18 69.28 0.3012
PC 30.38 25.32 23.87 0.936 0.836 0.761 0.0103 0.0256 0.0373 23.41 45.15 66.13 0.2634
GC 30.88 25.58 23.81 0.943 0.839 0.772 0.0085 0.0223 0.0379 28.44 45.02 65.26 0.2670
SF 31.53 26.38 24.62 0.956 0.861 0.791 0.0106 0.0224 0.0299 17.82 34.44 46.36 0.1732
EC 30.78 25.57 23.92 0.940 0.839 0.778 0.0086 0.0223 0.0308 23.44 46.93 66.84 0.2148
EQ 32.61 26.55 24.44 0.959 0.872 0.800 0.0074 0.0184 0.0278 19.38 44.52 59.40 0.2867
RFR 31.75 26.33 24.61 0.954 0.861 0.802 0.0076 0.0204 0.0282 19.46 38.19 48.71 0.1933
Ours 33.05 27.27 25.72 0.959 0.875 0.812 0.0071 0.0165 0.0236 15.44 31.04 41.28 0.1614

Table 1: Numerical comparisons on three datasets. ↑ Higher is better. ↓ Lower is better.

Masked Img GT PIC PC GC SF EC Ours

Figure 4: Qualitative results on Places2.

tention module and may lead to the accumulation of wrong
global information. In row 1 of Fig. 3, we visualize the
attention map for a missing region in left eye, which lies
very close to the eye and skin boundary. For attention with-
out distillation (column 5), the missing region is wrongly
considered as a skin pixel and the network scouts for other
skin regions to fill it. For the proposed attention with distil-
lation (column 6), it is able to find correct affinity relation
and gather information from the other eye region.
Pixel-adaptive global-local feature fusion (PGL): Net8,
which is our final model, utilizes pixelwise adaptive fusion
of global and local information. We visualize the pixelwise
weight map W in columns 2 and 3 of Fig. 7, where lighter
color represents more weightage to attention module. For
initial layers of decoder (column 2), we can see that most of
the hole regions prefer the attention module, which is useful
for refining inner regions of big holes. But, as we go deeper,
regions with high texture or sharp edges are leaning towards
local consistency, which aids in processing the collected

global information (from earlier stages) and merging with
the neighborhood. We show the final output with and with-
out using PGL in columns 5 and 4. Without PGL, we can
observe that the highlighted tree region’s texture is repet-
itive, and the tree on the left shows inconsistency. These
are more accurately reproduced with PGL (column 5). To
analyze the adaptive filtering module’s behavior, we calcu-
late the variation of weight and offset of the filters and plot
the spatial distribution as a map (Fig. 3, column 3 and 4).
Although the computed filter wights are not directly inter-
pretable, it can be seen that the variation of the filters agrees
with the degradation. We also observe that, regions near the
holes show higher offset variation which denotes that those
regions are indeed looking into a larger local neighborhood
compared to a static CNN layer.

4.2. Generalization Experiments

We perform the following experiments to verify the gen-
eralizability of the distillation based approach. We apply
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Masked Img GT PC GC EC SF RFR Ours

Figure 5: Qualitative comparisons on CelebA dataset.

Masked Img PIC GT GC PC

SF EQ EC RFR Ours

Figure 6: Qualitative comparisons on PSV dataset.

Input W (initial
layer)

W (final
layer)

W/o PGL With PGL

Figure 7: Comparison results for pixelwise global-local
consistency (PGL).

GT Input Output

Figure 8: Results on real inpainting cases.

our distillation technique (CD, SD coupled with CB while
keeping the total no. of parameters same) to some existing
works: GC, EC, SF. EC is a two-stage networks, where the
first stage is used to predict the edges. Thus, we add super-
vision only in the final stage of EC. For GC, regions of the
coarse result is not obvious, so we add the supervision in

Methods CD SD CBa Att AttD PGL PSNR
Baseline 22.36

Net1 ✓ 22.84
Net2 ✓ 22.79
Net3 ✓ ✓ 22.98
Net4 ✓ ✓ ✓ 23.54
Net5 ✓ 22.54
Net6 ✓ ✓ ✓ ✓ 23.62
Net7 ✓ ✓ ✓ ✓ ✓ 24.08
Net8 ✓ ✓ ✓ ✓ ✓ ✓ 24.21

Table 2: Network Analysis on Places2 dataset (30-40%).

the coarse network. These experiments are denoted by ∗ in
Table 3. The performance boost shows that the distillation
technique can be used to improve existing works. Next, to
verify the advantage of adaptive feature level supervision
compared to handcrafted edges, we remove the first stage
from EC and only use the second stage for inpainting along
with distillation losses and CB. These experiments are de-
noted by # in Table 3. Utilizing the additional supervision,
these methods can still achieve a performance close to the
original one. † indicates the experiment where we added the
attention transfer technique to the contextual attention used
in GC. The observed improvement proves the utility of the
proposed attention transfer technique for any standard at-
tention module.

GC GC* GC† EC EC* EC# SF SF* SF#

PSNR 22.04 22.74 22.41 22.18 22.62 22.06 23.31 23.70 23.19
SSIM 0.813 0.831 0.824 0.820 0.832 0.818 0.823 0.833 0.807

Table 3: The results of applying distillation based supervi-
sion to different backbone networks. The results are based
on Places2 (30-40% mask).

5. Conclusions
This work presented a method for improving inpaint-

ing performance by using knowledge distillation. We de-
sign different distillation based guidances for different lay-
ers throughout the network. Extensive comparisons, abla-
tion studies demonstrate the superiority of the approach.
Acknowledgement: Support from Institute of Eminence
(IoE) project No. SB20210832EEMHRD005001 is grate-
fully acknowledged.
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