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Abstract

Bundle adjustment (BA) occupies a large portion of the
execution time of SfM and visual SLAM. Local BA over
the latest several keyframes plays a crucial role in visual
SLAM. Its execution time should be sufficiently short for ro-
bust tracking; this is especially critical for embedded sys-
tems with a limited computational resource. This study pro-
poses a learning-based bundle adjuster using a graph net-
work. It works faster and can be used instead of conven-
tional optimization-based BA. The graph network operates
on a graph consisting of the nodes of keyframes and land-
marks and the edges representing the landmarks’ visibility.
The graph network receives the parameters’ initial values
as inputs and predicts their updates to the optimal values.
It internally uses an intermediate representation of inputs
which we design inspired by the normal equation of the
Levenberg-Marquardt method. It is trained using the sum
of reprojection errors as a loss function. The experiments
show that the proposed method outputs parameter estimates
with slightly inferior accuracy in 1/60–1/10 of time com-
pared with the conventional BA.

1. Introduction
Structure-from-Motion (SfM) and visual SLAM (simul-

taneous localization and mapping) have been successfully
used in many real-world applications of computer vision,
robotics, augmented reality, and related areas [25, 29]. To
improve the accuracy and robustness of 3D reconstruction,
researchers have considered several different approaches,
such as feature-point-based methods [27], direct methods
[7], learning-based methods [24, 23], and their hybrids [3].

Among these, the feature-point-based methods are cur-

∗These authors contributed equally to this work.

(a) (b)

Figure 1. Limiting the computational time budget for local BA
results in frequent tracking failures. Left: Without a limit. Right:
With a limit. See the text for details.

rently the most widely used. Visual SLAM is often used
in embedded systems with limited computational resources,
narrowing choices to those using light-weight feature de-
scriptors, such as ORB-SLAM [16, 17]. Many SfM systems
also use feature-point-based methods; they are used to es-
timate camera poses for the subsequent step of multi-view
stereo, in which the dense surfaces of objects/scenes are re-
constructed.

Although it is comparatively smaller, the feature-point-
based methods still have a high computational cost. What
dominates in their execution time is the step of bundle ad-
justment (BA). It optimizes the unknown parameters, the
3D positions of the landmarks associated with the feature
points and camera poses, refining their initial values to get
accurate estimates. This step is usually the bottleneck in
terms of the speed of visual SLAM and SfM systems. Tak-
ing ORB-SLAM, for instance, it frequently performs BA
locally over several keyframes and their associated land-
marks, maintaining the accuracy of the most recent recon-
struction. BA occupies roughly 60–80% of the execution
time needed for the mapping operation.

More importantly, the speed of local BA determines
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the robustness of SLAM systems. Keyframe-based SLAM
systems such as ORB-SLAM can track landmarks more
stably when there are spatially denser keyframes. ORB-
SLAM employs the strategy of issuing more than sufficient
keyframes and culling unnecessary ones later. However, a
new keyframe cannot be created while local BA is running
due to the causality. Thus, the ability to complete local BA
quickly is necessary for issuing keyframes densely, and it
is a basis for robust SLAM. This requirement is more criti-
cal for embedded systems having low-speed processors. A
remedy is to set a limit on the computational budget for lo-
cal BA to balance the accuracy of SLAM and the robustness
of tracking. For example, we can set the maximum iteration
counts for local BA. However, this does not work well in
practice, as shown in Figure 1.

In this paper, we consider a learning-based method that
can perform BA more quickly. BA is essentially nonlin-
ear minimization of the sum of squares, and conventionally
the Levenberg-Marquardt method is employed. The method
iteratively solves a linear equation to obtain a small param-
eter update and updates the parameters until convergence.
When regarding the entire process as a black-box, which
receives initial parameter values and outputs their optimal
values, we replace it with computation by a graph network
[30, 28]. To be specific, we train the graph network with
a set of input-output pairs for some videos, i.e., the initial
values fed to BA and their optimized values, aiming at com-
puting the optimal parameter values in a shorter time.

We report the results of our experiments focusing on
monocular SLAM, in which we used OpenVSLAM [22]
as a testbed and evaluate the method on the KITTI dataset
[8]. In the experiments, we trained our graph network
on a few sequences from the dataset and tested it on the
other sequences. We create training samples by the con-
ventional BA’s inputs (i.e., g2o [13]) applied to the train-
ing sequences. Using them, we train the graph network us-
ing the sum of reprojection errors as a loss. Our method
achieved slightly lower accuracy with 1/60–1/10 of compu-
tational time compared with the original BA.

2. Related Work

2.1. Speeding up Bundle Adjustment

BA is the core element of SfM and visual SLAM. It com-
putes camera poses and landmark positions that minimize
the sum of reprojection errors, for which the Levenberg-
Marquardt method is typically used. Its general algorithm
starts with initial values and iteratively updates the parame-
ters until convergence, where the updates are computed by
solving the normal equation having the size of the parame-
ters. In the case of BA, the equation’s matrix has a particu-
lar block structure because there is no direct interaction be-
tween camera poses and landmarks. This procedure makes

it possible to convert the normal equation into a reduced
camera system (RCS), which is smaller and can be solved
more efficiently [15, 10]

Several algorithms exist for solving the RCS, and the
fastest one differs depending on the problem size. With the
growing size of SfM, it has been examined how to solve
a large-scale problem efficiently, leading to inexact solvers
based on the conjugate gradient (CG) method [1]. For small
to mid-size problems (i.e., a few hundred images according
to [1]), exact solvers are superior, which use dense or sparse
Cholesky decomposition. In parallel to these, researchers
have also studied the implementation of the algorithms that
best utilize CPU, and GPU parallelism [12, 26].

Another approach uses the belief propagation (BP) algo-
rithm, mainly loopy BP such as Gaussian BP, on the factor
graph consisting of camera poses and landmarks, aiming
at estimating the marginal distribution of each parameter
[19, 6]. When implemented in CPU or GPU, it fails to yield
comparable performance to the above methods. Recently,
however, it has been shown [18] that a graph processor (i.e.,
Graphcore’s Intelligence Processing Unit) can run Gaussian
BP to perform BA at a competitive speed.

Our method is a learning-based method that uses a graph
network, which is orthogonal to any of the above methods,
although there is some similarity to each. The method iter-
atively updates the parameters from given initial values, as
with the LM method. However, it does not solve the nor-
mal equation; it directly predicts the updates from several
inputs (i.e., the latest parameters and a few derived terms)
whose design is inspired by the Levenberg-Marquardt up-
dates. This point is the major factor of the speed-up from
the standard BA. The graph network is built upon the factor
graph used in the BP-based BA.

2.2. Learning to Simulate Complex Dynamics by
Graph Networks

Graph networks (GNs) [5] are a type of graph neural net-
works [21]. Receiving a graph as input, a GN outputs a
graph of the same shape but with different attribute values
at their nodes and edges. During the propagation from the
input to the output, information is exchanged between its
nodes and edges in the form of message-passing. By train-
ing a GN using pairs of the input and the output, it can rep-
resent various phenomena emerging from interactions be-
tween multiple entities, where how to pass messages is ad-
justed.

This approach has been proven to be effective for learn-
ing complex forward dynamics, such as rigid body colli-
sion [4], particle-based simulation of complex physics [20],
robotic control [14], to name a few, as well as the behavior
of non-physical systems.

The idea of using machine learning models to perform
complex physics simulations is not new [9]. It learns to rep-
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resent the state transition between two time-points using ob-
servations as training data. It aims to avoid difficulties with
traditional simulation based on physical models, such as the
computational complexity or physical models’ inaccuracy.
However, making a universal ML model learn mapping with
large degrees of freedom in high-dimensional state space is
not simple. The success of GNs is attributable to the just
enough representation of the interaction between entities by
a graph.

We apply GNs to BA, where the input is the specified ini-
tial values for camera poses and landmarks, and the output
is their optimized values. We use the factor graph consisting
of camera poses and landmarks to construct a GN and tailor
the inputs for the message passing, inspired by the Hessian
used in the Levenberg-Marquardt method, enabling end-to-
end learning.

3. Proposed Method
3.1. Learning to Bundle-adjust

Given the initial values of camera poses and landmarks’
3D coordinates, BA computes their estimates that best re-
produce the given observations, i.e., the image coordinates
of the landmarks. Visual SLAM systems frequently con-
duct small-/mid-size BA internally, which usually uses the
Levenberg-Marquardt method. It iteratively updates the es-
timates by solving a linear equation. Its computational com-
plexity increases with the number of parameters; 5-15 up-
dates are necessary until convergence.

To complete this BA computation in a shorter time, we
replace the Levenberg-Marquardt method with a learning-
based method. Specifically, we train a model that receives
the initial values of the camera poses and the landmarks and
outputs their estimates. Such a model needs to fulfill the
following requirements:

• It can handle a variable number of inputs/outputs, i.e.,
M camera poses and N landmarks, where M and N
differ at each time. The provided observations also dif-
fer.

• It can predict the parameters as accurately as possible,
despite that there are large degrees of freedom in the
mapping from the input to the output.

To fulfill these requirements, we employ the graph net-
work framework [5]. It uses a graph to make use of in-
ductive bias of the problem at hand and performs infer-
ence on it; graphs are created adaptively depending on in-
puts. In this study, we use the popular graph representation
with BA, i.e., a bipartite graph between two types of nodes,
i.e., keyframes (i.e., camera poses) and landmarks, whose
edges reflect the visibility of landmarks from keyframes.
This graph handles all the possible interactions between

(b) The learning-based BA with graph networks

(a) The standard BA based on the Levenberg-Marquardt method
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Figure 2. Comparison of the standard BA based on the Levenberg-
Marquardt method and the proposed learning-based method.

keyframes and landmarks, making it possible to use the in-
ductive bias in our problem. However, there remains a large
degree of freedom in designing the components in the graph
network. How should we choose a proper design?

Our solution is to mimic the Levenberg-Marquardt
method; see Figure 2. As it will not contribute to speed-up
if we perform the exact computation, we consider bypass-
ing a part of the Levenberg-Marquardt computation with a
learnable model. Our preliminary tests have found that it
works to train a model to predict the update of parameters
from the block diagonal elements of the Hessian matrix and
the gradient.

Following the Levenberg-Marquardt method, we update
the parameters multiple times, while the count of updates is
fixed, not ‘until convergence.’ We design a graph-network
(GN) block to update the parameters once and stack them
to perform multiple counts of updates. We train the stack of
GN blocks so that the final output will minimize reprojec-
tion errors. Thus, note that we do not attempt or expect to
make each block predict a Levenberg-Marquardt update.
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3.2. Predicting Parameter Updates

The updating equation of the Levenberg-Marquardt
method is written as

(H+ λI)∆ξ = g, (1)

where H is the Hessian matrix1; g is the gradient vector;
and ∆ξ is the updates of the parameter ξ. We use hxx

αα (α =
1, . . . , N) and {hωω

κκ , hωt
κκ, htω

κκ, htt
κκ} (κ = 1, . . . ,M) to

denote the diagonal blocks of H. Omitting the off-diagonal
blocks and the gradient descent term λI, we rewrite the left
hand side of (1 as



hxx
11

. . .
hxx
NN

hωω
11 hωt

11
hωt
11 htt

11

. . .
hωω
MM hωt

MM
htω
MM htt

MM





∆x1

...
∆xN

∆ω1

∆t1
...

∆ωM

∆tM


,

(2)
where ∆xα’s are the updates of the landmarks’ 3D coor-

dinates and {∆ωκ, ∆tκ}’s are those of the camera poses.
The block hxx

αα and the associated component of g are as
follows:

hxx
αα =

M∑
j=1

IαjRjWαjW
⊤
αjR

⊤
j , (3a)

gxα = 2

M∑
j=1

IαjRjWαjeαj , (3b)

where Iαj ∈ {0, 1} indicates the visibility of α-th landmark
from j-th camera pose; Rj is the rotation matrix of j-th
camera pose; Wαj is a 3 × 2 matrix calculated from α-th
landmark and j-th camera pose; and eαj is the difference
from the reprojected image point and its observation.

The blocks hωω
κκ and hωt

κκ and the associated component
of g are as follows:

hωω
κκ =

N∑
i=1

Iiκ(xi−tκ)×RκWiκW
⊤
iκR

⊤
κ {(xi−tκ)×I}, (4a)

hωt
κκ =

N∑
i=1

Iiκ(xi − tκ)×RκWiκW
⊤
iκR

⊤
κ , (4b)

gωκ = 2

N∑
i=1

Iiκ(xi − tκ)×RκWiκeiκ, (4c)

where xi is i-th landmark and tκ is the translation vector of
κ-th camera pose.

Similarly, the blocks htω
κκ and htt

κκ and the associated
component of g are:

htω
κκ =

N∑
i=1

IiκRκWiκW
⊤
iκR

⊤
κ {(xi − tκ)× I}, (5a)

1We mean the Gauss-Newton approximation of the full Hessian here.

htt
κκ =

N∑
i=1

IiκRκWiκW
⊤
iκR

T
κ , (5b)

gtκ = 2

N∑
i=1

IiκRκWiκeiκ. (5c)

We use these block-diagonal components of H and
the associated block components of g to predict the up-
dates of landmarks and camera poses. To be specific, we
use a predictor ϕLM to predict the update of landmark as
∆xα = ϕLM(hxx

αα, g
x
α). We use a predictor ϕKF to pre-

dict the update of the rotation and translation components
as [∆ω⊤

κ ,∆t⊤κ ]
⊤ = ϕKF(hωω

κκ , h
ωt
κκ, h

tω
κκ, h

tt
κκ, g

ω
κ , g

t
κ). For

each of these predictors, we employ a four-layer neural net-
work; details will be given below. We train ϕLM and ϕKF

to predict those updates so that S iterations of the updates
yield the optimal parameters minimizing the sum of the re-
projection errors.

3.3. Implementation with Graph Network

We implement our learning-based BA using the graph
network framework [5]. One may think that it receives a
graph with initial parameter values and outputs the same
graph but with optimal parameter values. As mentioned
above, our graph is a common bipartite graph whose ver-
tices are keyframes (i.e., camera poses) and landmarks; its
edges connect these two types of vertices according to the
visibility of the landmarks, as shown in Figure 3.

We denote the κ-th keyframe vertex by V KF
κ and the α-

th landmark vertex by V LM
α , respectively. We use Eακ to

denote the edge connecting V KF
κ and V LM

α , if any. The ver-
tices V KF

κ and V LM
α retain the parameter values (Rκ, tκ) and

xα as their attributes, respectively. Each of them also re-
tains a flag named un-fixed, using which we control which
keyframe or landmark to lock to resolve the gauge freedom,
as is commonly done in BA. The edge Eακ retains normal-
ized image coordinates of keypoints (i.e., the observation of
a landmark) as its attribute.

As is shown in Figure 2, the parameter values are up-
dated by a series of S GN blocks. We use an identical GN
block, including learnable weights for all the blocks. Fig-
ure 3 shows the design of a single GN block. It receives
the whole graph, i.e., the graph structure and the parameter
values stored at the vertices. It consists of five components,
i.e., the two vertex predictors ϕKF and ϕLM, which are ex-
plained above, two vertex aggregators ρKF and ρLM, and one
edge predictor ϕE. The latter three (i.e., ρKF, ρLM, and ϕE) do
not have learnable weights; they exist to calculate the inputs
to ϕKF and ϕLM according to the graph structure. They also
enable backpropagation of gradients from the final output
to the input through the stack of GN blocks.

More specifically, ϕE operates independently on each
edge, as shown in Figure 4(a), receiving as inputs (Rκ, tκ)
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Figure 3. Overview of the GN block.

(a) Edge predictor

(b) Vertex aggregator

landmark keyframe

Figure 4. The information flow of (a) the edge predictor ϕE and (b)
the vertex aggregators ρLM and ρKF.

and xα from its connecting verteces and calculating the
component terms shared in the right hand sides of (3), (4),
and (5), i.e., eακ, RκWακ, and (xα− tκ), which are fed to
ρLM and ρKF.

As shown in Figure 4, the vertex aggregator ρLM op-
erates independently on each landmark vertex to perform
the summation over the connecting keyframe verteces j =
1, . . . ,M , as in (3). Similarly, ρKF operates independently
on each keyframe vertex to perform the summation over
i = 1, . . . , N as in (4) and (5).

The outputs of these aggregators are fed to the two
vertex predictors ϕLM and ϕKF, which predict the up-
dates as ∆xα = ϕLM(hLMαα, g

LM
α ) and [∆ω⊤

κ ,∆t⊤κ ]
⊤ =

ϕKF(hωω
κκ , h

ωt
κκ, h

tω
κκ, h

tt
κκ, g

ω
κ , g

t
κ), respectively, as men-

tioned earlier. For each of these predictors, we employ
a four-layer MLP (multi-layer perceptron); its details are
shown in Table 1. It employs layer normalization [2] at the
first layer and three linear layers followed by ReLU and one
linear layer for the output. The numbers indicate the hid-
den units and the outputs in the MLP. Note that learnable

Table 1. Design of the neural network used for the two vertex pre-
dictors.

Predictor Hidden units / Activation Outputs

ϕLM 12/ReLU 9/ReLU 9/ReLU 3
ϕKF 42/ReLU 18/ReLU 18/ReLU 6

weights exist only in these predictors. Figure 5 shows a di-
agram illustrating more details of the GN block.

3.4. Training the Graph Network

We train the graph network as follows. Choosing a
monocular image sequence, we first apply a conventional
SLAM system to it and extract local BA runs; each run pos-
sesses a multi-view system consisting of several keyframes
and landmarks observed from them, initial values of the pa-
rameters, and the observations (i.e., the landmarks image
coordinates from the keyframes).

We treat each BA run as an independent training sample.
We construct a graph based on the structure of the multi-
view system, feed it along with initial parameter values to
the graph network, obtaining their updated estimates; see
Figure 6. As mentioned earlier, the graph network is a stack
of S GN blocks, and each block is identical, including the
learnable weights in the two vertex predictors. As it predicts
only parameter updates, we add them to the initial values to
get the parameter estimates. We then calculate the loss for
the estimate.

For the loss, we use the sum of the reprojection errors
used in the standard BA, i.e., the sum of the differences of
the image coordinates of the landmarks computed by the
estimates from their observations. Following ORB-SLAM,
we employ the Huber loss to ensure robustness in the pres-
ence of erroneous point correspondences, which is given by

L(ex, ey) = ρ(ex) + ρ(ey) (6a)

ρ(e) =

{
1
2e

2 for |e| ≤ δ,
δ(|e| − 1

2δ) otherwise,
(6b)

where ex and ey are the reprojection error in x and y direc-
tions in an image; we set δ to 2.0 as in ORB-SLAM. We
compute the sum of loss values over multiple BA runs in a
minibatch and use the Adam optimizer [11] to reduce the
loss.

4. Experimental Results
We conduct experiments to test the proposed method.

4.1. Experimental Configuration

We evaluate the performance of the proposed method on
the monocular video sequences from the KITTI dataset [8].
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It contains multiple independent sequences of a vehicle run-
ning on different urban streets. We select some sequences
from them for training our graph network and test it on other
sequences.

We employ OpenVSLAM [22], an ORB-based visual
SLAM using g2o [13], for BA [15] as a testbed. We re-
place the g2o::SparseOptimizer class (with related classes
and functions in g2o performing BA) with our method, and
evaluate and compare its performance with the original BA
by g2o. To do this, we first run the visual SLAM with g2o
on the selected sequence and extract all the runs of local
BA. We use them for training our graph networks.

In the experiments reported in Sec. 4.2, we create a test
dataset in the same way as above from the other sequences

and report the residual Huber loss of the final estimates. In
the experiments of Sec. 4.3, we report the performance of a
complete SLAM system in which the g2o BA is replaced
with the proposed method. We run it on the KITTI se-
quences from the start to the end (or until tracking is lost)
and evaluate its accuracy.

We report the residual Huber loss below, which are ob-
tained when the horizontal images size (i.e., 1,226 pixels)
is normalized to 1.0. We use the Graph Nets library [5]
for the implementation of the graph network. For the train-
ing with Adam optimizer, we set the initial learning rate to
1.0× 10−2, and the learning rate decay = 0.99.
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4.2. Performance as a Bundle-adjuster

As mentioned above, we first evaluate the performance
of the proposed method when applied to each of the BA runs
extracted from the test sequences. We use here a KITTI
sequence K05 for training and K06, K08, K10, K11, and
K12 for test. We chose these sequences, since they contain
relatively more frequent scene changes. The former has 850
BA runs and the latter has 3030 BA runs in total.

4.2.1 GN Steps and Error Decrease

As explained in Sec. 3.3, our method uses the graph net-
work consisting of the S-stack of GN blocks sharing the
same parameters. Figure 7 shows the residual Huber loss
for different S’s. It decreases as S increases, but increases
at S = 5. A similar phenomenon is reported in a previ-
ous study of applying graph networks to physics simulation
[20]; a larger number of steps lead to worse results. We
choose S = 4 from the result and use it in the experiments
below.

4.2.2 Performance on Individual BA Runs

Figure 8 shows the residual Huber loss averaged over all the
BA runs of each sequence for the proposed method and the
original g2o BA. It can be seen that the proposed method
decreases the loss for all the sequences, although it is mod-
estly worse than the g2o BA. Note that there is a certain
amount of gap between the test sequences. This evaluation
validates the generalization ability of the proposed method.
We obtained similar results for different combinations of
sequences for training and test.

4.2.3 Computational Time

We also evaluated the computational time of our method.
We measured the elapsed real-time from the start to the end
of each BA run on a PC with an Intel Core i7-2600K CPU
@ 3.40GHz. Figure 9 shows the histogram of the elapsed
time for the proposed method and the g2o BA. The results
show that our method takes only about 1/60–1/10 of the
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Figure 8. The averaged (residual) Huber loss over the local BA
runs of each sequence for the initial value, g2o, and the proposed
method.
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Figure 9. Computational time (erapsed real time) needed for each
BA run by the proposed method and the g2o BA.

time needed by the g2o BA (0.2 → 0.003sec). Since the
g2o BA needs 5–15 iterations for each run, restricting its
iterations to 1/10 to save computational time is not realis-
tic. As shown in Figure 1(b), even more mild constraint on
the computational budget leads to frequent tracking failures.
The proposed method runs five times faster (i.e., from 0.2
to 0.04sec in the histogram peak) than the g2o BA when it
is incorporated in the full SLAM pipeline.

4.3. Performance of Complete SLAM

The performance on individual BA runs will not fully
represent how well the entire SLAM system works. Thus,
we test the SLAM system with the g2o BA replaced with
the proposed method. This evaluation is important, since
the proposed method shows slightly worse performance on
individual BA runs than the original BA. The worse per-
formance could lead to the accumulation of errors, or even
tracking failures.

We evaluate here the residual Huber loss of the land-
marks that are tracked at each frame. If the proposed
method fails to optimize the parameters, then the residual
loss will increase as time goes. Figure 10 shows an exam-
ple for a sequence K07, while the graph network is trained
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Figure 10. An example of how the (mean) residual Huber loss of
the tracked landmarks varies within a sequence (KITTI K07).

on K04, K05, and K06. It is seen that the residual Hu-
ber loss temporarily increases from frame 1 to 20. How-
ever, it decreases to a reasonable level after that (i.e., from
frame 21 to 35), showing that the proposed method opti-
mizes the parameters well. It is also seen that there occa-
sionally emerges very large errors, e.g., at frames 37, 45, 80,
118, 137, 256, and 334; these are mostly caused by large ap-
pearance changes at these frames. Our method can handle
these cases properly. Overall, the residual loss is controlled
to be within a low range.

Figure 11 shows the trajectory and the landmarks esti-
mated by the SLAM systems with the original g2o BA and
the proposed method. Figure 12 shows the absolute tra-
jectory error measured using the ground truth vehicle tra-
jectory. The RMSE for the system with the original g2o
BA is 8.26m, and that for the proposed method is 11.90m.
Although the proposed method yields slightly worse trajec-
tory accuracy, the result shows that the proposed method
serves as a valid bundle adjuster. Checking its performance
on various combinations of sequences for trainng and test,
we confirm the robustness of the proposed method at the
cost of slightly lower accuracy.

5. Conclusion
In this study, we have explored the possibility of replac-

ing the standard Levenberg-Marquardt method for BA with
a learning-based approach. To precisely model the struc-
ture of the multi-view systems dealt with in local BA, we
design a graph network implementing the bipartite graph
composed of the nodes of keyframes and landmarks and the
edges corresponding to the landmarks’ visibility. We train
it to predict the geometric parameters.

We design the graph network as a stack of multiple iden-
tical GN (graph network) blocks. For the design of the GN

(a) (b)

Figure 11. Reconstructed trajectories and landmarks by (a) the
conventional BA (g2o) and (b) the proposed method.

(a) (b)

RMSE=8.26 RMSE=11.90

Figure 12. Errors of estimated trajectories of (a) the conventional
BA (g2o) and (b) the proposed method.

block, we employ an approach inspired by the normal equa-
tion of the Levenberg-Marquardt method. We use its com-
ponents (i.e., the block-diagonal elements of the Hessian
and the gradients) as the ‘intermediate representation’ of in-
puts to predict the parameters. We design two vertex predic-
tors, which predict keyframe and landmark parameters, and
implement them as neural networks. We also design auxil-
iary components to compute the inputs to the predictors. We
then train the whole graph network to predict the parameter
updates that minimize the sum of reprojection errors.

We have confirmed through experiments on the KITTI
dataset that the proposed method works well as a bundle
adjuster. It is slightly worse in the estimation of geometric
parameters than the standard BA but works robustly. We
will examine the performance of the proposed method in a
more variety of training and test data in the future. There
remains much room for improvements such as more op-
timal network structures and better design of intermediate
representation of inputs fed to the predictors (i.e., neural
networks).
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