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Abstract

In egocentric videos, the face of a wearer capturing the
video is never captured. This gives a false sense of se-
curity that the wearer’s privacy is preserved while shar-
ing such videos. However, egocentric cameras are typi-
cally harnessed to wearer’s head, and hence, also capture
wearer’s gait. Recent works have shown that wearer gait
signatures can be extracted from egocentric videos, which
can be used to determine if two egocentric videos have
the same wearer. In a more damaging scenario, one can
even recognize a wearer using hand gestures from egocen-
tric videos, or identify a wearer in third person videos such
as from a surveillance camera. We believe, this could be
a death knell in sharing of egocentric videos, and fatal
for egocentric vision research. In this work, we suggest a
novel technique to anonymize egocentric videos, which cre-
ate carefully crafted, but small, and imperceptible optical
flow perturbations in an egocentric video’s frames. Impor-
tantly, these perturbations do not affect object detection or
action/activity recognition from egocentric videos but are
strong enough to dis-balance the gait recovery process. In
our experiments on benchmark EPIC-Kitchens dataset, the
proposed perturbation degrades the wearer recognition per-
formance of [42], from 66.3% to 13.4%, while preserving
the activity recognition performance of [10] from 89.6%
to 87.4%. To test our anonymization with more wearer
recognition techniques, we also developed a stronger, and
more generalizable wearer recognition method based on
camera egomotion cues. The approach achieves state-of-
the-art (SOTA) performance of 59.67% on EPIC-Kitchens,
compared to 55.06% by [42]. However, the accuracy of our
recognition technique also drops to 12% using the proposed
anonymizing perturbations.

1. Introduction
Egocentric videos are typically captured through wear-

able cameras harnessed on a person’s head, recording
in a hand-free style, without any explicit user interven-
tion. The unique perspective gives a wearer ability to
share his/her experience as seen through his/her own eyes.

Egocentric Video

Identity removal by adding noise to camera motion

Anonymized egocentric video (Our Proposal)

Figure 1: Wearer recognition from egocentric videos is a critical
privacy breach. In this paper we propose to add carefully crafted,
but subtle 3D rotations in the egocentric videos which can lead to
the failure of wearer recognition techniques. Row 1 shows orig-
inal frames of an egocentric video, whereas 3rd rows shows the
frames after proposed transformation. Note that the transforma-
tions are imperceptible. We show in our experiments that they also
do not affect the performance of other video analysis tasks. On the
other hand, naively adding random rotations (row 2) causes vi-
sual distortion (note the red portions near the borders due to large
rotations), but does not lead to significant deterioration in wearer
recognition ability as shown in our experiments.

The potential utility of such cameras in applications like
law-enforcement, geriatric care, and life-logging has also
spawned serious research in egocentric videos. The com-
puter vision community has responded with a variety of
large scale publicly available egocentric video datasets viz.
FPSI [8], EGTEA [22], and EPIC-Kitchens [5]. Some
notable tasks in egocentric vision taken-up so-far include
egocentric video summarization, temporal segmentation, as
well as object, action, and activity recognition from first-
person viewpoint [16, 45, 20, 33, 28, 19, 9, 46, 15, 44, 24].

While the wearable, hands-free, and always-on nature of
egocentric cameras have been one of the reasons for their
popularity, they have also brought in unique privacy con-
cerns. Hence, both general users, as well as researchers,
have been careful in not collecting the videos in private
places such as bedrooms or toilets. However, outdoor ego-
centric videos, and especially the scenarios when no other
person is seen in the videos are generally considered safe
and shared freely. This has been due to the popular per-
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ception that since wearer’s face is not visible in the ego-
centric videos, hence there is no privacy risk in public shar-
ing of such videos. Hoshen and Peleg [15] have shattered
this false belief, and showed that one could train a classi-
fier over optical flow to identify the camera wearer of an
egocentric video. Recently, Thapar et al. [41] have further
extended the privacy breach to an open-set scenario. Their
result is also more alarming, since they show the capability
to cross-recognize the wearer gait captured from egocentric
videos against a gait captured from a third-person surveil-
lance video. This allows them to even know the face behind
an egocentric video! In an extension of their work, the au-
thors have shown a similar capability using hand gestures
as seen in egocentric videos [42].

It is important to note that the problem does not exist in
videos captured from hand-held, or third-person cameras.
Firstly, these cameras do not capture the photographer’s gait
or any other biometric profile. Secondly, when the face of
a person is visible in such a video, it is easy to mask it out
by blurring or a similar technique. In the case of egocen-
tric videos, the privacy breach is happening through fine-
grained frame-to-frame optical flow, and it is not clear what
can be masked out to prevent the leak.

Such a serious and well-exposed privacy breach de-
mands an immediate solution. Once the community heeds
to this warning seriously, sharing egocentric video data at a
large scale would become impossible. This can be a huge
potential threat for ongoing egocentric research as most of
the recent results in the field have been obtained through
data-intensive deep neural network architectures.

The focus of this work is to generate a perturbation to
transform any given egocentric video (vi), corresponding
to some camera wearer (i) into an anonymized egocen-
tric video (ṽi), which blocks wearer recognition techniques
from extracting gait signatures of the wearer i from ṽi. To
preserve the utility of these videos, such a transformation
must not significantly modify the video such that, (a) al-
teration should be imperceptible, and (b) the transformed
video (ṽi) should remain usable for other egocentric video
analysis tasks viz. object, or activity recognition. Such an
anonymizing transformation for egocentric videos is possi-
ble because most analysis tasks, e.g., activity or attribute
recognition performed over egocentric videos, typically do
not need subject-specific features/cues. To the contrary, the
techniques for these tasks should be identity agnostic (ir-
respective of the identity of the camera wearer) to avoid
dataset over-fitting. Hence identity features can be safely
suppressed or perturbed without affecting the performance
of other egocentric video analysis tasks of interest.

A candidate solution for anonymizing transformation is
the addition of noise to the egocentric videos. Here, we note
that most state-of-the-art (SOTA) egocentric video analy-
sis techniques are based on deep neural networks (DNNs),

and are trained on original and augmented data (with noise).
Hence, they are already resistant to some amount of noise
in the data. The addition of a large amount of noise may
block wearer identity recognition. However, it may also
cause significant collateral damage by degrading the over-
all video quality, and adversely affecting the performance
of other egocentric video analysis tasks as well.

Contributions: The specific contributions of this paper
are: (1) We propose a novel video transformation technique
to prevent privacy leak in egocentric videos by blocking
wearer recognition, but without affecting performance of
other video analysis tasks. This plugs an immediate and ur-
gent security hole exposed by recent works and restores the
safe sharing of egocentric datasets. (2) We show that the
proposed transformation degrades the wearer recognition
performance of [42] on benchmark EPIC-Kitchens dataset
from 66.3% to 13.4%, whereas recognition performance of
[41] degrades from 85.5% to 15.8% on FPSI dataset [8].
On the other hand, despite such degradation in recognition
performance, the activity recognition accuracy of the SOTA
[10] on perturbed videos merely changes from 92% to 91%.
(3) To further consolidate our work, we propose a novel
wearer recognition technique utilizing self-attention and ar-
c-softmax loss. The technique is more generalizable, and
achieves SOTA performance of 59.67% in comparison to
55.06% by [42]. However, the proposed perturbation causes
our recognition technique to also fail causing drop in accu-
racy to 12%.

2. Related Work
Egocentric Video Analysis: Some notable works in gen-
eral egocentric video analysis include camera wearer’s ac-
tivity and action recognition [28, 19, 44, 2, 35, 36, 30, 31],
wearer gaze estimation [16], temporal segmentation [24],
video summarization [45, 32]. We note that traditional
video stabilization techniques could have also introduced
small random perturbations in the input videos helping to
block wearer recognition. However, [13] has noted that
these techniques do not work for egocentric videos, and
have instead proposed sub-sampling based joint stabiliza-
tion and fast-forwarding. We note that the temporal sub-
sampling is not suitable for anonymizing as it will affect the
performance of other video analysis tasks as well.

Attribute Extraction from Egocentric Videos: Finoc-
chiaro et al. [9] estimated camera height from egocentric
videos by extending [31]. In [7, 1] authors suggest com-
bining first and third-person camera views, to identify the
camera wearer in the third person view: sharing fields-of-
view [7], and common scene observation [1]. Researchers
have also suggested to estimate the wearer’s location di-
rectly [14, 23] or indirectly (using gaze, social interactions,
etc.) [26, 37]. In [29, 47], wearer identity is revealed using
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head motion obtained from optical flow. Wearer’s pose has
been estimated in [17] using 3D joint regression.

Wearer Recognition from Egocentric Videos: Hoshen
and Peleg [15] has shown that to identify the camera wearer
one can train a classifier from the optical flow in egocen-
tric videos. Thapar et al. [41] extended this privacy breach
to an open-set scenario where they can reveal an unseen
wearer’s identity captured in an egocentric video by cross-
domain gait matching in third-person surveillance videos.
Building over their earlier work, the same authors [42] have
also shown that one could identify a camera wearer from the
hand gestures as seen in the egocentric video. Importantly
the hand gestures could be identified while performing the
same or even an activity unseen at the train time. Taken
together, the three works above indicate significant privacy
breach by sharing one’s egocentric videos.

Adversarial Perturbations in Neural Networks: The ge-
ometrical perturbations proposed in our method to scuttle
wearer identify recognition can also be seen as introducing
adversarial perturbations in a video. We introduce a spe-
cific kind of perturbation which only affects one particular
task and do not affect others. Szegedy et al. [40] were the
first ones to reveal the sensitivity of modern deep neural
networks to artificial perturbations using gradient-based al-
gorithms. Goodfellow et al. [12] improved the efficiency of
detecting adversarial perturbations using Fast Gradient Sign
Method (FGSM), which were then used to train the neu-
ral networks improving its robustness. Kurakin et al. [21]
and Sharif et al. [34] showed that adversarial examples can
be extended to real-world scenarios. Chen et al. [4] show
that physical world adversarial examples can be created for
object detection networks such as Faster R-CNN. Su et al.
[39] and Narodytska and Kasiviswanathan [25] showed that
modifying one pixel using Differential Evolution (DE) is
sufficient to fool classifiers. Brown et al. [3] and Karmon
et al. [18] introduced adversarial patches as a more practi-
cal adversarial attack. We are not aware of any technique
which insert adversarial perturbation at the video level, or
specifically in optical flow.

3. Proposed Methodology
Our Strategy: We seek to anonymize a target egocen-
tric video by perturbing it with an adversarial geometric
transformation which makes wearer recognition impossible.
Since a general 3D transformation may require knowing the
depth in the scene, we restrict our attention to Homography,
which does not need any depth information, and correspond
to causing adversarial 3D rotations in an egocentric camera.
The first part of our strategy is to generate a classifier which
can recognize a wearer based upon the 3D rotations ob-
served in the egocentric camera. The motivation is that if we
can do it successfully, then we can pick an arbitrary egocen-

tric video from the gallery, recognize a wearer from it, and
then back-propagate through this network to compute pre-
cise subset/component of the input which caused a particu-
lar wearer classification. This is akin to finding a wearer’s
signature in the input space comprising of 3D rotation ma-
trices. We hypothesize that if we take this arbitrary camera
wearer’s signatures and overlay it on the target video, then
the target video will have an arbitrary mix of two identities
(original and the one derived from arbitrary gallery video).
This will cause enough perturbation leading to failure of the
target wearer identification techniques [15, 42, 41]. If we
take an analogy from face recognition, this is akin to taking
an arbitrary face and blending it with features from another
arbitrary face, with the hope that mix of two arbitrary faces
will make a face recognition system unable to identify any-
one. As we show in our experiments, the strategy indeed
causes failure of the target techniques [15, 42, 41].

Visual Distortions: Note that in terms of visual distortions,
we end up causing a small Homography based transforma-
tion to each frame. Similar to image space adversarial per-
turbations, the proposed perturbation is too small to be per-
ceived by humans, and, as we show in our experiments, does
not cause any deterioration in perforance of other video
analysis task, for which this simply means a little more
noise in wearer head motion, which they are anyways ro-
bust against. Below we describe our implementation of the
above mentioned strategy in detail.

Design of Transformation Module: The proposed trans-
formation module has been divided into following key
stages: (i) Compute camera rotation matrices from an ego-
centric video using any third party tool. (ii) Train a novel
module named EgoIdNet on a train dataset, and learn to
identify a camera wearer based upon the recovered rota-
tion matrices from a video. (iii) Take an arbitrary video
from the train set or otherwise, called gallery video, and use
EgoIdNet to recover the wearer identity from it. Back-prop-
agate through EgoIdNet to reveal salient features in the in-
put space (15 rotation matrices) for the video. (iv) Compute
corresponding Homographies from the 3D rotation matri-
ces computed using back-propagation with a gallery video
as input. Take a video which needs to be anonymized. Warp
each frame using the homographies computed from previ-
ous step. Below we describe each step in detail.

Step 1 – Compute Rotation Matrices: For a given in-
put video, we extract the camera rotation matrices using a
SLAM (simultaneous localization and mapping) algorithm.
In our implementation, we use the one proposed by Patra et
al. [27] due to its demonstrated robustness for egocentric
videos1. We use 3D Euler angle representation for a rota-
tion matrix: R = (rx, ry, rz). Here, the direction of vector

1We thank the authors of [27] for providing their code
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Figure 2: The proposed framework for anonymization first person videos. FC stands for Fully connected network. MHA stands for Multi
Head attention netwerk. The first FC is applied to each temporal feature separately.

represents axis of rotation, and its magnitude is the rotation
angle (in degrees). This specific input format ensures that
signal received by back-propagation through the network at
a later stage always corresponds to a valid rotation matrix.
We normalize R vectors element-wise to a Gaussian distri-
bution with zero mean, and unit variance.

Step 2(a) – Preparing Input: The previous step gives
the camera pose corresponding to each frame (relative to
a chosen reference frame, usually the first one) as a 3-
dimensional R vector. For training EgoIdNet, we di-
vide each input video (Vc) into clips of 16 frames each
(C1, . . . , Cn). For each clip Ci, we first compute the pair-
wise rotation between a frame t and (t + 1). This gives
us 15 vectors per clip. We concatenate these vectors into a
15 × 3 matrix, and denote it by Iic (indicating features cor-
responding to ith clip of unknown arbitrary camera wearer
c).

Step 2(b) – Feature Scaling: EgoIdNet extracts temporal
features from Iic, to obtain wearer-specific identity features
(see Fig. 2). The first stage of the model consists of a fully
connected layer comprising of 64 neurons. The layer has
its weight tied for each 3D rotation vector, but is applied
to each vector separately. Note that this is equivalent to
performing non-linear, learnable feature scaling which con-
verts a 3 dimensional vector to a 64 dimensional one, and
facilitates highly accurate wearer recognition.

Step 2(c) – Multi-head attention module: To learn the
temporal relationship between the frames of a clip, in the
second stage of EgoIdNet, we use a multi-head attention
layer having eight narrow heads of self-attention [43]. The
output features are averaged out to obtain an aggregated

wearer identity feature F . Finally, the classification layer
is applied over F to perform wearer recognition. The ba-
sic building block of multi-head attention [43] is the scaled
dot product mechanism. The mechanism is a sequence to
sequence operation, which given a sequence of n input vec-
tors v1, . . . , vn (called value vectors), learns to output se-
quence of vectors y1, . . . , yn, based on a sequence of query:
q1, . . . , qn, and key vectors: k1, . . . , kn. Here, n = 15, and
each vector in the sequence is of dimension 64 in our case.
The module performs following steps:
1. Learns weight matrices, each of size 64 × 64, to trans-

form each of the three (value, query and key) sequences:
q̃i =Wqqi, k̃i =Wkki, ṽi =Wvvi.

2. Compute yi as a weighted average of the transformed
value vector ṽj : yi =

∑
j wij ṽj . Here j, iterates over the

whole sequence, and wij is computed as the dot product
between query and key sequences: wij = softmax(w′ij),

where w′ij =
q̃Ti k̃j√
d

. Note that, in order to obtain the
weights (wij) to compute a particular output yi, the cor-
responding query vector q̃i is compared (via. scaled
dot product) with all key vectors, k̃1, . . . k̃n. This dot
product is interpreted as attention for each value vector
ṽ1, . . . , ṽn, and the scaled dot product attention mecha-
nism is utilized multiple times in a multi-head attention.

3. We stack n, 64 dimensional vectors: value, query, and
key, into a matrix of size n × 64. Each matrix is sub-
divided into 8 sub-matrices of size n × 64

8 . Each sub-
matrix is processed through a separate attention head,
having independent weight matrices of 64

8 ×
64
8 . The

attention heads jointly produce 8 output matrices of size
n × 8. We concatenate all sub-matrices to get the final
output of size n× 64.
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Step 2(d) – Loss Function: We train EgoIDNet with arc-
softmax loss [6], due to its better class compactness prop-
erty under open-set scenarios. The loss is defined as:

L = − 1

n

i=n∑
i=1

log
ecos(θyi+m)

ecos(θyi+m) +
∑n
j=1,j 6=yi e

cos θj
.

Here n is the number of classes, m is the angular margin
enforced between features of different classes. Further, θyi
is the angle formed between the wearer’s aggregated iden-
tity feature and the weight vector of ith neuron in the final
fully connected layer (see [6] for details).

Step 3 – Computing Perturbation: We compute the de-
sired perturbation which can scuttle a wearer recognition
technique by back-propagating in EgoIdNet. For this, we
take arbitrary video from a train set or otherwise, compute
rotations, and crop a 16 frame clip from it, as described
earlier. We then perform inference for wearer recognition
from the input features. However, in this case we are not
interested in the recognition but in finding the salient parts
of the input feature which led to the decision. For this, we
de-convolve through the model using guided back-prop [38]
(see Fig. 2). We compute the partial derivative of the out-
put of wearer aggregated identity features (F ) with respect
to the input (Iic), (denoted by F ic = ∂F/∂Iic). The guided
back-prop computes the derivative of nth layer outputXn+1

with respect to the input Xn as follows:
• For a convolutional layer represented by Xn+1 = Xn ∗
Kn, whereKn is the convolutional kernel, the gradient of
feature map F with respect toXn is: ∂F

∂Xn
= ∂F

∂Xn+1
∗Kt

n

where Kt
n is the flipped version of kernel Kn.

• For a fully connected layer represented byXn+1 = Xn×
Wn, where Wn is the weight matrix, the gradient of fea-
ture map F with respect to Xn is: ∂F

∂Xn
= ∂F

∂Xn+1
×W t

n

where W t
n is the flipped version of kernel Wn.

• For RELU activation defined as Xn+1 = max(Xn, 0),
sub-gradient takes the form: ∂F

∂Xn
= ∂F

∂Xn+1
× I(Xn > 0)

where I is element-wise indicator function.
• For sigmoid and tanh activations defined as Xn+1 =
σ(Xn) and Xn+1 = tanh(Xn), sub-gradient takes the
form: ∂F

∂Xn
= ∂F

∂Xn+1
×σ(Xn)×(1−σ(Xn)), and ∂F

∂Xn
=

∂F
∂Xn+1

× (1− tanh2(Xn))

Post guided back-prop operation, F ic contains the identity
signatures corresponding to the wearer of the particular
video. We use F ic as the perturbation that will be added for
anonymizing a new video. As mentioned earlier, we note
that which video to use for computing perturbation is not
crucial in our technique. Addition of said perturbation in
a new video results in overlap of the features correspond-
ing to two different identities in that video. This overlap is
the primary reason for failure of a wearer recognition tech-

nique, and not which identity has been used for computing
the perturbation.

Step 4 – Creating Anonymized Videos: Note that the per-
turbation computed in the previous step is in the input space.
i.e. 15 rotation vectors. For adding the perturbation to a new
video, we convert each recovered vector R = (rx, ry, rz),
to a rotation matrix Rmat. We then convert the rotation ma-
trix Rmat to a homography H = KRmatK

−1, where K is
camera intrinsic matrix of the target video. We then divide
the target video to anonymise into clips of 16 frames, and
warp frame 2–16 of the clip using the computed Homog-
raphy. To further minimize the the impact of perturbation
we reduce the magnitude of recovered rotation vectors by a
factor α before computing Homography.

4. Dataset and Evaluation Methodology

Datasets: We validate the performance of our anonymiz-
ing strategy on the same benchmark egocentric datasets
as used by the attack techniques [15, 41, 42]: EPIC-
Kitchens [5]: dataset consists of 55 hours of egocentric
videos from 32 subjects, and contains 125 labeled activities
performed by the subjects. As Thapar et al. [42] has val-
idated the person recognition system on the five activities,
we have also chosen the same five activities viz cut, mix,
put, take, and wash. FPSI [8]: dataset consists of videos
captured by 6 people wearing cameras mounted on their hat,
and spending their day at Disney World Resort in Orlando,
Florida. IITMD-WFP: dataset [41] consists of 3.1 hours
of videos captured from 31 different subjects. The dataset
has been captured under two different scenarios: indoor and
outdoor, which are referred to as DB-01 (indoor), and DB-
02 (outdoor). The combined dataset is referred as DB-03.
This is inline with the original nomenclature [41].

Compared Techniques: The primary objective of this
work is to anonymize egocentric videos without degrad-
ing the performance of other analysis tasks. To validate
the performance degradation of person recognition on FPSI
dataset, we have used 2 publicly available SOTA models:
Hoshen and Peleg [15] and Thapar et al. [41] and refer to
them as “Hoshen”, and “Th fpsi” respectively. For EPIC-
Kitchens dataset, there is only one attack technique, avail-
able from Thapar et al. [42] (hereinafter “Th epic”). To
validate the performance of activity recognition on FPSI
dataset we have used Poleg et al. [31] (referred to as “Po-
leg”), and for EPIC-Kitchens, we have used [44], [11],
and [10] and refer to them as “Verma”, “Ghadiyaram”, and
“Furnari” respectively. We got the code of [44] by request-
ing the authors. The code for others is publicly available.

Naive Noise Model: A naive solution to the anonymization
objective could be the addition of noise to the egocentric
videos. To implement this model, we introduce a varying
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amount of noise in the original videos by randomly gen-
erating a rotation vector with magnitude sampled from a
uniform distribution (ranging from 0–β radians). For the
axis direction, we sampled angle of rotation axis with x, y,
and z axis, uniformly between [−π,+π]. To add noise, we
compute the Homography matrix using this random rotation
vector and warp each frame with it.

Comparison Metrics: For evaluating the performance of
person verification, we have used the following perfor-
mance parameters: Equal Error Rate (EER), Correct Recog-
nition Rate (CRR), and Decidability Index (DI) as used in
[41]. For good performance, EER should be low, whereas
CRR and DI should be high. For evaluating the perfor-
mance of activity recognition, we have used Accuracy (%)
and F-score as the performance parameters.

Experiment Setup: We perform our experiments under
both open set and closed set scenarios. For gait based
recognition, we follow the protocol of [41] and test on the
FPSI dataset. For the open set scenario, we take the videos
of the first three subjects for training our EgoIdNet, other
wearer recognition models, as well as the activity recogni-
tion model. Whereas, the videos from the other three sub-
jects have been taken for testing the attack (wearer recogni-
tion), and anonymization model and check for any degrada-
tion in the activity recognition. For the hand gesture based
recognition, we use EPIC-Kitchens dataset and follow the
protocol of [42]. Here, for the open set testing, videos for
the first half of the subjects (16) are taken for training, and
second half of the subjects have been taken for testing.

5. Experimental and Results

Recognition performance of EgoIdNet: We have ana-
lyzed the recognition capability of EgoIdNet under both
closed-set (wearers are known and trained for during train-
ing) and open-set (wearers are unseen during training) sce-
narios. Table 1 compares the performance of EgoIdNet with
the current SOTA [41, 42]. We observe a significant per-
formance boost-up for open-set scenarios while marginally
better results for the closed-set. The better open-set per-
formance indicates improved generalization due to our re-
liance on camera rotation directly rather than optical flow.
Note that optical flow is easily corrupted in dynamic scenes
compared to camera ego-motion.

Performance Comparison with Naive Noise Model:
Fig. 3 shows the result of addition of varying amount of
random noise, and our perturbation to the videos of “cut”
activity from EPIC-Kitchens dataset. We compare the
anonymization performance to block open set wearer recog-
nition, where the bar corresponding to “Th epic” show the
wearer recognition by [42]. The other three bars show activ-
ity recognition performance of SOTA. We see that with in-
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Figure 3: Comparison of anonymization performance and degra-
dation in activity recognition on videos of “cut” activity in EPIC-
Kitchens dataset after fine-tuning each model with the respective
noise. The left plot corresponds to adding random noise with var-
ious level of β. The right plot is performance of proposed per-
turbation for various levels of α. See text for details of α and
β. “Th epic” show the wearer recognition by [42] (lower is bet-
ter), whereas the other three bars show activity recognition perfor-
mance of SOTA on the perturbed videos (higher values indicate
no degradation and is better). Noise level 0 indicates no noise is
added (i.e. original dataset).

creasing level of random noise, the activity recognition per-
formance drops at a similar rate as the wearer recognition,
indicating significant interference of random noise in other
video analysis task as well. On the other hand, with increas-
ing amount of the proposed perturbation, wearer recogni-
tion falls while activity recognition falls marginally.
Anonymization Performance for Open Set Wearer
Recognition: The results of performance analysis on FPSI
dataset for each of the target subject in an open set scenario
is shown in Table 2. The table also shows similar results on
the EPIC kitchens dataset for the five activities. In the table,
original refers to the original performance of each model,
anonymized refers to the performance of the model on the
dataset transformed/anonymized using our technique, and
fine-tuned refers to the performance of the models after fine-
tuning on the anonymized dataset. Similar to the previous
results, the two tables show that as we add stronger per-
turbation using our technique, the performance of wearer
recognition significantly decreases, whereas performance
on the activity recognition is maintained on each of the sub-
ject, as well as activity.
Open Set Anonymization Performance: As noted by
other authors as well [41], open set wearer recognition is
a difficult but more practical setting for wearer recogni-
tion and in turn easier for a technique trying to anonymize
such videos by blocking wearer recognition. We have al-
ready successfully shown the ability of our proposed per-
turbations in causing wearer recognition techniques to fail
in this scenario. However, to estimate the capability of our
anonymization in a more difficult setting, we also test in
closed set scenario. Note that, in a closed-set situation, the
wearers are pre-known to a wearer recognition techniques
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Table 1: Comparative analysis of our system with [41] and [42] for wearer recognition in egocentric videos. CA, and EER denote the
classification accuracy, and Equal Error Rate respectively in percentage. Higher CA and lower EER is better.

Dataset
Closed Set Analysis Open Set Analysis

EgoIDNet [41] EgoIDNet [41]
CA↑ EER↓ CA↑ EER↓ EER↓ CRR↑ EER↓ CRR↑

FPSI 82.4 18.76 82.0 19.71 – – – –
DB-01 99.1 2.47 99.2 2.79 5.87 86.33 6.43 83.67
DB-02 97.6 3.54 97.3 3.81 7.67 84.28 8.23 82.77
DB-03 99.0 4.12 98.7 4.35 6.52 83.46 9.39 80.56

EgoIDNet [42] EgoIDNet [42]
EPIC 71.21 12.46 71.04 12.32 14.32 59.67 15.28 55.06

Table 2: Demonstration of proposed anonymization technique on FPSI, and EPIC-Kitchens dataset. “Original” indicates the performance
of a model on original dataset. “Anonymized” indicates the performance of a model after adding proposed perturbation. “Finetuned”
indicates that the model has been fine-tuned over the anonymized dataset. We observe that the performance of SOTA wearer recognition
techniques ([41], and [42]) degrades significantly, whereas the performance of the SOTA activity recognition techniques ([31], and [10]) is
maintained after addition of proposed perturbation in the videos.

Results on FPSI Dataset
Subject Person recognition: Th fpsi[41] Activity Recognition: Poleg[31]

Parameter Original Anonymized Finetuned Parameter Original Anonymized Fine-tuned

Subject-1 EER ↑ 16.5 55.2 51.6 ACC↑ 92.6 84.7 91.2
CRR ↓ 85.5 13.6 15.8 F-score↑ 0.9 0.8 0.9

Subject-2 EER ↑ 17.8 59.4 54.6 ACC↑ 90.5 81.6 89.2
CRR ↓ 82.1 12.9 14.6 F-score↑ 0.9 0.8 0.8

Subject-3 EER ↑ 25.4 67.6 63.8 ACC↑ 85.4 79.9 84.6
CRR ↓ 76.4 8.2 10.3 F-score↑ 0.8 0.8 0.8

Results on EPIC-Kitchens Dataset
Activity Wearer recogntition: Th epic[42] Activity Recognition: Furnari[10]

Parameter Original Anonymized Finetuned Parameter Original Anonymized Fine-tuned

Cut
EER↑ 19.2 48.7 44.3 ACC↑ 92.4 85.2 91.8
CRR↓ 59.9 15.4 17.8 F-score↑ 0.9 0.8 0.9

Mix
EER↑ 16.6 52.9 49.4 ACC↑ 89.6 81.8 87.4
CRR↓ 66.3 19.2 21.4 F-score↑ 0.8 0.8 0.8

Wash
EER↑ 20.8 64.5 61.2 ACC↑ 91.3 84.2 90.5
CRR↓ 57.2 8.4 11.6 F-score↑ 0.9 0.8 0.9

Put
EER↑ 21.2 62.8 59.3 ACC↑ 80.8 72.6 79.3
CRR↓ 58.1 10.2 14.9 F-score↑ 0.8 0.7 0.8

Take
EER↑ 15.2 50.8 49.4 ACC↑ 82.6 77.7 82.1
CRR↓ 52.5 11.6 13.4 F-score↑ 0.8 0.7 0.8

which makes it easier to train a wearer recognition model
for such subjects. For this experiment we add proposed per-
turbation on unseen videos of the same subject and show
that wearer recognition technique [15] fails to recognize a
wearer now. Even after we fine-tune the model by training
with videos perturbed using our technique, it still fails to
recognize wearer in such videos. We conduct the experi-
ment on FPSI dataset, and follow the protocol of Hoshen
and Poleg [15]. The videos of each subject captured in the
morning have been taken for training and the videos cap-
tured in the afternoon have been taken for testing. The re-

sults of the close-set analysis on FPSI dataset are shown in
Table 3. From the table, it can be observed that even if we
train the wearer recognition model over particular subjects
that have to be anonymized, still our framework can fool
the Hoshen classifier. This strengthens the belief that our
proposed perturbation framework will be able to anonymize
any given egocentric video successfully.

5.1. Qualitative Analysis

Fig. 4 shows the visual output after adding proposed per-
turbation, or random noise in two videos to block wearer
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Figure 4: Visual comparison of the distortion caused by adding random rotation, and proposed transformation. 1st and 4th rows show the
frames from original videos from FPSI and EPIC kitchens dataset respectively. 2nd and 5th rows show the output after noise addition in
1st and 4th, respectively. 3rd and 6th rows show the corresponding outputs from our technique. Note the large distortion by adding rotation
as evident from black regions near the border.

recognition. The 1st and 4th rows show the frames from
original videos from FPSI and EPIC kitchens datasets re-
spectively. 2nd and 5th rows show the output after noise
addition in 1st and 4th, respectively. 3rd and 6th rows show
the corresponding outputs from our technique. There are al-
most no distortions visible in the output produced from our
technique highlighting the subtle nature of the distortion in-
troduced.

6. Conclusion

Recent works have shown a significant privacy breach by
demonstrating the wearer recognition capabilities through
one’s egocentric videos. In this paper, we have studied tech-
niques to plug the breach by fooling state of the art wearer
recognition models. We add a subtle but systematic 3D ro-
tations in the egocentric videos which are imperceptible to
humans but are significant enough to fool all known wearer
recognition techniques. We note that most state of the art
wearer recognition techniques work on optical flow. Hence,
as part of our efforts to test our anonymization with other
style of wearer recognition techniques, we propose a novel
wearer recognition method using camera egomotion, which
is more robust to compute in dynamic scenes. While our
proposed wearer recognition achieves state of the art perfor-
mance, it still fails on the videos with proposed anonymiz-
ing perturbations. Importantly, the proposed perturbation
does not affect other egocentric video analysis tasks such
as wearer’s activity recognition from egocentric videos. We

Table 3: We demonstrate the performance of proposed per-
turbation technique on FPSI dataset in a closed set scenario.
“Original” indicates the performance of a model on original
dataset. “Anonymized” indicates the performance of the model
after adding proposed perturbation. “Finetuned” indicates that the
model has been finetuned over the anonymized dataset.

Wearer Recognition

Model EER↑ CRR↓ DI↓

Hoshen[15] (Original) 20.34 76.0 0.25
Hoshen[15] (Anonymized) 70.22 08.7 0.02
Hoshen[15] (Fine-tuned) 68.75 10.4 0.02
Th fpsi[41] (Original) 19.71 82.0 0.27
Th fpsi[41] (Anonymized) 65.33 11.2 0.03
Th fpsi[41] (Fine-tuned) 62.10 15.5 0.03

Activity Recognition

Model ACC↑ F-Score↑
Poleg[31] (Original) 89 0.81
Poleg[31] (Anonymized) 82 0.76
Poleg[31] (Fine-tuned) 89 0.80

hope that our work will prove to be an important milestone
for the safe sharing of egocentric videos both for the con-
sumer as well as research applications. The code and pre-
trained models for the work will be released publicly post
acceptance.
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