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Abstract

Convolutional layers in CNNs implement linear filters
which decompose the input into different frequency bands.
However, most modern architectures neglect standard prin-
ciples of filter design when optimizing their model choices
regarding the size and shape of the convolutional kernel. In
this work, we consider the well-known problem of spectral
leakage caused by windowing artifacts in filtering opera-
tions in the context of CNNs. We show that the small size
of CNN kernels make them susceptible to spectral leakage,
which may induce performance-degrading artifacts. To ad-
dress this issue, we propose the use of larger kernel sizes
along with the Hamming window function to alleviate leak-
age in CNN architectures. We demonstrate improved clas-
sification accuracy on multiple benchmark datasets includ-
ing Fashion-MNIST, CIFAR-10, CIFAR-100 and ImageNet
with the simple use of a standard window function in con-
volutional layers. Finally, we show that CNNs employing
the Hamming window display increased robustness against
various adversarial attacks. Our code is available online1.

1. Introduction
A fundamental component in deep image recognition

networks is the ability to non-linearly stack learned, share-
able, linear mappings. The canonical example is the lin-
ear convolution operator in CNNs [15, 24, 47], while in re-
cent visual Transformer models the query, key and values
are token-shared linear mappings acting on pixel embed-
dings [6, 8]. These linear mappings, which in the visual
domain typically take the form of filters, allow image fea-
ture learning. Such learnable, hierarchical, shareable, fea-
ture detectors are fundamental to the great success of deep
learning [1, 5, 26], and a better understanding of these filters
may broadly impact the whole field.

Image filters, such as local, oriented edge detectors,
provide a highly reusable decomposition of the input im-
age [7, 34, 46] and are accurate models of early biological
vision [20]. From a deep, hierarchical feature learning per-

1https://github.com/ntomen/Windowed-Convolutions-for-CNNs

Example Gabor filter Learned CNN filter

  S
pa

ce
 

 D
om

ai
n

  Severe 
 Truncation

  Negligible 
 Truncation

  Learned Filter 
 (standard)

  Windowed Filter 
 (ours)

  F
re

qu
en

cy
 

 D
om

ai
n

  Leakage 
 (sinc artifacts)

  Negligible 
 Leakage

  With 
 Artifacts

  Negligible 
 Artifacts

  S
pa

ce
 

 D
om

ai
n

  Severe 
 Truncation

  Negligible 
 Truncation

  Learned Filter 
 (standard)

  Windowed Filter 
 (ours)

  F
re

qu
en

cy
 

 D
om

ai
n

  Leakage 
 (sinc artifacts)

  Negligible 
 Leakage

  With 
 Artifacts

  Negligible 
 Artifacts

Figure 1. Windowing artifacts cause spectral leakage in the fre-
quency domain, when a filter is not tapered off at the boundaries
in the space domain. The top row shows example filters in space
domain, while the bottom row are their corresponding frequency
domains. Left: Example Gabor (bandpass) filter with severe trun-
cation (kernel size 7× 7) leads to spectral leakage in its frequency
response due to sinc artifacts. The same filter with negligible trun-
cation (kernel size 49×49) is a good quality bandpass filter. Right:
A standard 7x7 CNN kernel trained on CIFAR-10 struggles to
learn good quality bandpass filters, as the use of small kernel sizes
typically lead to severe truncation. We propose using the standard
Hamming window to taper off the kernels in space domain, which
enables good quality bandpass frequency responses.

spective, it is interesting to ask how specialized reusable fil-
ters should be, and explore their response selectivity. In par-
ticular, here we investigate the role of frequency-selectivity
of learned filters in deep networks.

To investigate frequency-selectivity, we consider spec-
tral leakage—which is a well-known [13, 35, 39] artifact in
generic filtering operations—in the context of CNNs. The
building block of CNNs, the convolution operator, can be
thought of as a linear filter, which, due to the small kernel
sizes employed in modern CNNs, is susceptible to spectral
leakage. Although a well-studied concept in digital sig-
nal [35] and image processing [11, 19], we observe that a
broader understanding of spectral leakage in deep networks
has largely been neglected.

Spectral leakage, in the broad sense of the term, is when
an operation on a signal introduces unwanted frequency
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components to the result of that operation. In practice, the
term leakage is typically used when a filter lets through fre-
quency components of a signal outside of its intended pass-
band due to windowing artifacts. For linear filters imple-
mented via discrete convolution or cross-correlation opera-
tors, a kernel with finite size can be interpreted as a trun-
cated version of an infinite, ideal filter. The finite size of
the discrete kernel, within which the filter assumes non-zero
values, represents a multiplication of an infinite kernel and a
rectangular function in space domain, which translates as a
convolution with a sinc function in frequency domain [39].
When a two-dimensional bandpass filter, such as a Gabor, is
severely truncated, the rectangular function introduces win-
dowing artifacts to the frequency response in the form of
‘ripples’ of the sinc function (Fig. 1, left).

Here we explore the effect of leakage artifacts in image
classification performance in CNNs. We show that due to
the typical choice of small kernel sizes, CNNs have little
freedom to avoid rectangular truncation functions, which
make them susceptible to spectral leakage (Fig. 1, right).
We investigate the impact of leakage artifacts on benchmark
classification tasks and demonstrate that the simple use of a
standard window function which reduces leakage can im-
prove classification accuracy. Furthermore, we show that
windowed CNNs are more robust against certain types of
adversarial examples.

Our contributions can be summarized as:

• We investigate the impact of spectral leakage in CNNs.
Although spectral leakage is a fundamental concept in
classical signal processing, its impact on CNN perfor-
mance has not been explicitly explored before.

• We employ principles of good filter design, which are
largely ignored in CNN models, to propose the use
of larger kernels with the standard Hamming window
function, which is tapered off at the kernel boundaries
to alleviate spectral leakage.

• We demonstrate improvements to classification accu-
racy in benchmark datasets including Fashion-MNIST,
CIFAR-10, CIFAR-100 and ImageNet with the simple
use of a standard window function.

• We show that windowed CNNs display increased ro-
bustness against certain adversarial attacks including
DeepFool and spatial transformation attacks.

2. Related work
2.1. Spectral leakage in signal processing

A signal observed within a finite window with aperiodic
boundary conditions may be seen as a longer signal, trun-
cated by multiplication with a rectangular window. This
truncation introduces sidelobes, or ‘ripples’, to the spectral
density of the signal and may, for example, decrease the

signal-to-noise ratio in transmissions [35]. Often referred
to as spectral leakage, such windowing artifacts are closely
related to the Gibbs phenomenon [13] or ringing artifacts
in digital image processing [11]. To combat the undesir-
able effects of leakage, window functions are commonly
employed in many applications including spectral analysis
via short-time Fourier transforms [39].

The use of 2-dimensional window functions is also com-
monplace for spectral decomposition in digital [19] and
biomedical [41] image processing. Window functions are
also an integral part of filter design, both in temporal [39]
and image domains [3]. In this work, we consider the funda-
mental lack of window functions in CNN architectures and
investigate whether leakage artifacts may lead to adverse ef-
fects. We propose the use of a Hamming window based on
its reasonable attenuation of sidelobes while maintaining a
relatively narrow main lobe.

2.2. Signal processing benefits for CNNs

Incorporating signal processing knowledge brought
great benefits to deep learning. Marrying convolution to
deep learning yields the CNN [25], the importance of which
is difficult to overstate. The convolution theorem allows ef-
ficient CNN training [30]. The scattering transform [4] and
its variants [36, 37, 45] allow encoding domain knowledge.
Structuring filters based on scale-space theory [18, 43]
brings data efficiency. Anti-aliasing in CNNs [57] in-
creases robustness and accuracy. Reducing border effects in
CNNs [21] improves translation equivariance and data effi-
ciency. In this paper, we build on these successes and for
the first time investigate spectral leakage in CNNs, where
reducing spectral leakage increases classification accuracy
and improves robustness.

2.3. Kernel size and shape in CNNs

In standard convolutional layers, using small kernel sizes
reduces computational complexity and, empirically, im-
proves accuracy, therefore increasingly small kernel sizes
have been adopted over time in CNNs [15, 24, 47, 49, 50,
56]. One potential problem with larger kernel sizes may be
over-parametrization, and our windowing method functions
as a form of regularization which effectively constrains the
parameter space. Unlike common regularization methods
in deep learning, such as weight decay [14], dropout [48],
early stopping [32] and data augmentation [44], our adopted
Hamming window represents a spatially well-structured
form of regularization which encourages a center-bias in the
kernel shape. In fact, we show that our method is not a sub-
stitute for other types of regularization and synergizes well
with weight decay and data augmentation.

Similarly, enforcing a center-bias in CNN filters is in line
with the idea that images present hierarchically local prob-
lems [7, 34, 46], best tackled by local [28], deep, hierarchi-
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cal learning [1, 5, 26]. However, unlike previous work, we
suggest that the use of small kernels may not be sufficient
without explicit regularization of kernel boundaries.

Finally, other work has addressed structured kernel
shapes in CNNs, using filter banks based on wavelets [4],
Gabor filters [29], Gaussian derivatives [18] and circular
harmonics [54]. Here, we focus explicitly on the trunca-
tion properties of the window function while learning the
pixel weights in the conventional manner. This is similar
to the approach of blurring the CNN filters [43], in our ap-
proach, however, we are not blurring the filters, or the fea-
ture maps [57]. Instead, we are performing a simple multi-
plication in space domain, unlike previous work.

2.4. Adversarial attacks

The features learned by deep models may not be robust
which has implications for AI safety [2, 12]. An impor-
tant observation in CNNs is that adversarial images with
perturbations tiny in magnitude or imperceptible by hu-
mans [31, 51, 10, 42] can lead to misclassification with high
confidence. Attacks can be generated based on information
about the activations and gradients of the targeted network
(white-box attacks) [12]. However, many adversarial exam-
ples are highly transferable between models [27] and with-
out access to model parameters (black-box attacks), substi-
tute models [38] or even simple spatial transformations [9]
can be employed to generate adversarial images.

Adversarial examples can be traced back to brittle fea-
tures which are inherent in the data distribution and are
highly class-specific [16]. This means, that the reliance of
classification models on very small magnitude features may
boost performance, leading to a robustness-accuracy trade-
off [52]. Similarly, leakage artifacts are typically small in
magnitude, but may be present in every feature map in a
standard CNN with non-tapered filters. Here, we investi-
gate whether simply using a tapered kernel may diminish
filtering artifacts and provide both accuracy and robustness
benefits over baseline models.

3. Convolution with the Hamming window
The discrete 2-dimensional convolution operation in

CNNs can be described by

(f ∗ g)[xn, ym] =

k∑
i=1

k∑
j=1

g[xi, yj ] · f [xn−i, ym−j ] (1)

where f [xi, yj ] is the (padded) input image or feature map
and g[xi, yj ] is a k × k kernel. From a discrete signal pro-
cessing perspective, a linear filter can be implemented via
a convolution. The aperiodic discrete convolution [35] be-
tween a signal f and an infinite kernel g′ is given by

(f ∗g′)[xn, ym] :=

∞∑
i=−∞

∞∑
j=−∞

g′[xi, yj ] f [xn−i, ym−j ] (2)

Input
channel i *

Windowing the convolution kernel

Convolution kernels
for input channel i

Weight tensor for input 
channel i (k × k × hout)

k

k

hout

×

Hamming
window

k

k

Figure 2. Tapering the convolution kernels with the Hamming
window. The typical weight tensor in a 2-D convolutional layer
has size (k × k × hin × hout). Here we show a single input
channel i, which is convolved with hout distinct k × k kernels,
which are generated by multiplying each k× k slice of the weight
tensor with the k × k Hamming window.

Input image
(H × W × hin)

7×7 conv,
stride = 2,
hout = h1

BatchNorm
+

ReLU

k b × k b conv,
stride = 1,
hout = h2

BatchNorm
+

ReLU

Block repeated M-1 times
Average 
Pooling 

+
fc

CIFAR-10 Architecture

Figure 3. Simple architecture used for CIFAR-10, CIFAR-100,
Fashion-MNIST and MNIST experiments. We vary the depth
(number of convolutional layers M ) of the network by repeating
a convolution block (blue). The first layer downsamples the input
via a strided convolution with a 7 × 7 kernel, similar to ResNet
architectures, while the kernel size is kb for all other convolu-
tional layers. We also impose a channel bottleneck with the first
layer having h1 output channels whereas subsequent layers em-
ploy h2 > h1 output channels.

and this formulation can be used to describe an ideal, infi-
nite impulse response (IIR) filter. In practice, to obtain ker-
nels of finite size, in other words for finite impulse response
(FIR) filter design [39], it is necessary to pick an appropri-
ate window function U [xi, yj ] with i, j ∈ Z which limits
the interval where the sum in Eq. 2 is non-zero. For CNNs,
this window function is a rectangle function, equivalent to
simple truncation. Formally, the rectangle window function

U [xi, yj ] =

{
1, if 1 ≤ i, j ≤ k

0, else
(3)

multiplied with the ideal, infinite kernel g′ in Eq. 2 as

(f∗g)[xn, ym]=
∞∑

i=−∞

∞∑
j=−∞

g′[xi, yj ]U [xi, yj ] f [xn−i, ym−j ]
(4)

reduces to the CNN formulation in Eq. 1. Via the convo-
lution theorem, multiplying g′ with the rectangular function
U in space domain corresponds to convolving the frequency
response of g′ with a sinc function in frequency domain.
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Thus, windowing via simple truncation introduces poten-
tially unwanted frequency components into the frequency
response of the finite kernel g[x, y], as shown in Fig. 1.

As an alternative to simple truncation, we propose to re-
duce unwanted frequency components through the standard
Hamming window [13] in the convolution operations in a
CNN. The one-dimensional Hamming window is a special
case of the generalized cosine window, and is defined as

U [n] = α− (1− α) · cos
(
2πn

N

)
, 0 ≤ n ≤ N (5)

with α = 25/46 [13, 39] and a window size of N dis-
crete samples. We define the 2-D Hamming window as the
outer product of two 1-D Hamming windows. The Ham-
ming window can be implemented in standard architectures
simply by multiplying each two-dimensional k × k kernel
in a convolutional layer with the k×k Hamming window
function (Fig. 2).

The Hamming window can be interpreted as a form of
regularization. Multiplication with the window function re-
duces the gradient flow, or the effective learning rate, to the
kernel boundaries which keeps the boundary weights close
to zero and effectively shrinks the parameter space.

4. Experiments
4.1. Do CNN filters suffer from spectral leakage?

We devise a simple, fully controlled experiment to test
whether the kernels in a single convolutional layer trained
in a supervised setting display spectral leakage. To address
this question, we force the network to learn good-quality
bandpass filters in a regression task to predict the FFT mag-
nitude of the input image. We create a synthetic dataset
where the input images S(x, y) are generated randomly via
the superimposition of 2-D sine waves. Each input image

S(x, y) =

3∑
i=1

sin(2π x′
i ωi + ϕi), (6)

with x′
i = x cos(θi) + y sin(θi) (7)

is the sum of three 2-D sine waves with spatial frequency
ωi sampled uniformly from [0, 0.5ωs), where 0.5ωs is the
Nyquist frequency. The orientation θi and phase ϕi of each
sine wave are also sampled uniformly in the intervals [0, π)
and [0, 2π) respectively. Each target (ground truth) vector
is the flattened 2-D FFT magnitude of the corresponding in-
put image. Input images are 32 × 32 pixels in size, hence
the target values are vectors of length 1,024. Including the
negative frequencies, the networks need to predict large val-
ues at 6 distinct frequency locations for each input image,
as illustrated in Fig. 4.

We evaluate if a CNN can learn bandpass filters to ap-
proximate the discrete Fourier transform and use a single
convolutional layer with 1,024 output channels, followed by

Input Image Standard Model Windowed Model Target

In
pu

t 1
In

pu
t 2

Prediction

Figure 4. Learning to predict the FFT magnitude of an input image
with a single convolutional layer. Network predictions for two
example synthetic input images, randomly generated as the sum of
three 2-D sine waves. The target vectors are the FFT magnitudes
of the input images, including negative frequencies. We find that
the model using Hamming windows alleviates leakage artifacts.
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Figure 5. The windowed model achieves better regression perfor-
mance on an independent validation set of 1000 images. The re-
sults are averaged over 5 runs with random model initializations
(standard deviation error bars are too small to see).

ReLU and global average pooling. We test two CNN vari-
ants: one network with a Hamming window and one net-
work without a Hamming window (baseline). To keep the
central lobe size of the frequency responses similar between
the two networks, we use a convolutional kernel size of k=7
for the baseline network and k=11 for the network with
the Hamming window (see Supplement for a scan of ker-
nel sizes). We train both networks using the mean squared
error (MSE) and ADAM [22] optimizer on 10,000 training
images and report the performance on an independent vali-
dation set of 1,000 images during training.

Results in Fig. 5 show that longer training allows the
windowed network to obtain a lower regression error on the
validation set. This is partly due to the increased frequency
resolution of the windowed network by using a larger ker-
nel size, and partly due to artifact reduction. By visualizing
the predictions of the trained networks in Fig. 4, we see
that the bandpass filters learned by the baseline network,
with standard convolutions, indeed suffers from leakage ar-
tifacts. In comparison, the windowed model is able to sup-
press responses which are adequately far from the target in-
put frequencies.

This indicates that standard CNNs are susceptible to
spectral leakage and will not readily learn filters which are
tapered off at the boundaries in the absence of explicit reg-
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Figure 6. (a) CIFAR-10 validation accuracy as a function of varying network depth (M = 2 . . . 6 convolutional layers), in models using
the Hamming window (red) and baselines with standard convolutional layers (blue). Line plots depict the average of 5 runs with error
bars denoting standard deviation. We find that for all architecture variants we tried (Hamming window only on the first layer, Hamming
window on all layers, different channel width, different methods of downsampling and regularization), models using the Hamming window
consistently outperform the baseline models in networks deeper than 2 layers. (b) Example kernels after training in the network variant
with kb = 7 where the Hamming window is applied to all layers. (c) For ResNet18 models trained on ImageNet, we find that the deviation
of each convolutional layer from a row orthogonal convolution [53] is lowest for the Hamming model compared to baselines.

ularization, even when leakage artifacts directly contribute
to the loss. We find that a standard Hamming window can
be employed to regularize the kernel weights and combat
leakage artifacts. However, it is not clear from this toy ex-
periment whether deeper networks with a large number of
non-linearities can learn to suppress performance-degrading
artifacts. Therefore, we investigate the effects of window-
ing in deeper networks next.

4.2. When does spectral leakage hurt classification?

We extensively evaluate on CIFAR-10 and CIFAR-100
with model variations based on Fig. 3.

CIFAR-10. For all experiments, we train for 50 epochs
using cross-entropy loss and SGD with a mini-batch size of
32 and momentum 0.9. The initial learning rate is 0.01 and
decays by a factor of 0.1 at epochs 25 and 40. We vary net-
work width and depth where we evaluate from 2 layers deep
up to 6 layers deep. Unless stated otherwise, the number of
output channels in the convolutional layers are h1 = 32
and h2 = 128 for the original networks and h1 = 64 and
h2 = 256 for ‘wide’ networks. The windowed and baseline
networks are trained identically and repeated 5 times with
different random seeds.

First layer. The earlier layers may provide sufficiently
powerful and shareable features for deeper layers. Thus, we
evaluate a Hamming window in only the first convolutional
layer. We test networks where the deeper layers have a ker-

nel size of 3×3 (kb=3) and 7×7 (kb=7) and find that the ac-
curacy of windowed models is consistently higher than the
baseline. This is true both for the original and wide models
(Fig. 6a, top row). Note that the performance increase is
relatively small, it is caused by a Hamming window only in
the first convolutional layer, while the rest of the architec-
ture and hyperparameters are identical.

All layers. Next, we test whether alleviating spectral
leakage in deeper layers. As windowing very small kernels
is not meaningful, and we would like to keep the number
of parameters in the baseline and windowed networks the
same, we use a kernel size of 7×7 (kb=7) in all layers. No-
tably, we find that using the Hamming window in all con-
volutional layers provides a significant boost to CIFAR-10
validation accuracy, especially in deeper networks (Fig. 6a,
top row, right). To illustrate the learned weights, some ex-
ample kernels from trained networks are shown in Fig. 6b.

Feature sharing. We hypothesise that artifact-free band-
pass filters offers better shareable representations. Thus, the
channel-wise network bottlenecks, which forces stronger
feature sharing, may effect performance. To test this, we
vary the bottleneck size in the original network (h1 = 32)
by changing the number of output channels in the deeper
layers to h2 = 64 and h2 = 256, while using a Hamming
window only in the first layer. Interestingly, we find that
using a larger or smaller bottleneck size does not seem to
affect the accuracy increase provided by the windowed con-
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Figure 7. (a) Left: CIFAR-10 validation accuracy decreases monotonically with increasing kernel size for the baseline model, while a larger
9 × 9 kernel size maximizes performance for the model with the Hamming window. Middle and Right: ‘Hamming’ models with 7 × 7
kernels (red) outperform baseline networks with both 7 × 7 (blue) and 3 × 3 kernels (cyan) on the CIFAR-100 dataset. The performance
boost is more pronounced when the networks are regularized by weight decay. (See Supplement C for weight decay sweeps.) (b) Left
and middle: Fashion-MNIST and MNIST validation accuracy as a function of varying network depth. Right: We find that the benefits of
windowing are more pronounced when the magnitude of high frequency components is increased by subsampling the input images. (c)
Left: ImageNet validation accuracy is higher for ResNet architectures with the Hamming window than baseline ResNet models throughout
training. Right: The difference in ImageNet validation accuracy between the Hamming and baseline ResNet models during training. (Also
see Supplement D for training and validation loss.)

volution (Fig. 6a, bottom row, left).
Aliasing. Downsampling layers in CNNs are known

to introduce performance-degrading aliasing artifacts [57].
We investigate whether the Hamming window may also
be indirectly suppressing task-irrelevant, aliased frequency
components. Thus, we train networks with no downsam-
pling layers, and replace the strided convolution with a
standard convolution (stride=1) while windowing only the
first layer. As another control experiment, we also train
networks which perform downsampling via a max-pooling
layer with a 2×2 window instead of a strided convolution.
We find that in both cases using a Hamming window still
improves CIFAR-10 validation accuracy (Fig. 6a, bottom
row, middle), which indicates that the performance increase
provided by windowed convolutions is independent of alias-
ing and the choice of downsampling method.

Regularization. Our windowing regularizes the kernel
weights close to the boundaries (Fig. 6b). We compare this
regularization with other common methods, namely weight
decay and data augmentation. We train networks with a
weight decay value of 0.001, and independently, we train
networks with random translation and horizontal flip aug-
mentations. We find that, in explicitly regularized networks,
not only do the benefits of our windowing not disappear,
but the accuracy boost is in fact larger, especially for deeper
networks (Fig. 6a, bottom row, right).

Optimal kernel size. Standard convolutional layers typ-
ically employ very small (3×3) kernel sizes. Although we
only used a kernel size of 7×7 so far for our proposed
method, it is not clear a priori what kernel size would be
optimal for the Hamming window. To test this empirically,
we vary the kernel size in all layers of a M=6 layer net-
work, with or without the Hamming window. We find that
while classification performance decreases monotonically
with increasing kernel size beyond 3×3 for the baseline net-
work, there is a larger, optimal kernel size which maximizes
performance for the network using the Hamming window
(Fig. 7a, left). In fact, we find that windowed networks with
both kernel sizes k=7 and k=9 provide a significant accu-
racy improvement (outside of the standard deviation) over
the best baseline model with k=3. We have also run exper-
iments with Hann and Blackman windows (not shown) and
found no difference to Hamming window.

CIFAR-100. For CIFAR-100 [23] experiments we em-
ploy wider models with h1=128 and h2=256, deeper mod-
els with up to 12 layers, and for the ‘Hamming’ models
we use windowed convolutions in all layers. We train all
models for 150 epochs, with initial learning rate 0.01 de-
caying by a factor of 0.1 at epochs 75 and 120. We also
employ standard data augmentation (horizontal flip and ran-
dom translations). Otherwise, the hyperparameters are the
same as in the CIFAR-10 experiments. As an additional
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control, we run baselines with 7×7 kernel size (same num-
ber of parameters as the ‘Hamming’ model) and 3×3 kernel
size (best baseline performance) in all layers. We find that
windowed networks perform consistently better than both
baselines (Fig. 7a, middle). The accuracy enhancement pro-
vided by the Hamming window is more pronounced with a
weight decay of 0.001 (Fig. 7a, right).

4.3. Datasets with limited frequencies
Natural images may contain class-specific information

in all frequency bands, which means spectral leakage be-
tween different frequency components may hinder discrim-
ination of class-specific responses. We hypothesize that for
less natural images, where not all frequency components
are well-represented in the training set, the effects of win-
dowing would be less prominent. To test this, we evalu-
ate classification performance on Fashion-MNIST [55] and
MNIST [25] datasets. Training parameters in this section
are identical to the CIFAR-10 experiments. We train two
types of models: one with convolutions with the Hamming
window only in the first layer and kb = 3 and one with
Hamming window in all layers with kb = 7.

For the Fashion-MNIST dataset, we find that the use
of a Hamming window persistently improves classification
performance (Fig. 7b, left), however the increase in vali-
dation accuracy is smaller than it is with more natural im-
ages found in CIFAR-10 and CIFAR-100 datasets. For the
MNIST dataset, we don’t observe a performance increase in
‘Hamming’ models for most networks, and only a modest
one for deeper networks (Fig. 7b, middle).

We attribute the lack of benefits from windowed convo-
lutions in the MNIST dataset, to some degree, to the lack
of high frequency components, whereby leakage in lowpass
and bandpass filters cannot contaminate high frequency in-
formation. To test this, we subsample the 28× 28 input im-
ages in the MNIST dataset, via bilinear interpolation, down
to 14×14 images. Subsampling has the effect of increasing
the relative magnitude of high frequency components, and
we find that the Hamming window provides significant ac-
curacy improvements in the subsampled MNIST (Fig. 7b,
right). In particular, we find that both ‘Hamming’ models
(windowing only the first layer or all layers) perform better
than both baselines (including when kb = 3).

4.4. ImageNet
We train ResNet [15] and VGG [47] models on the Im-

ageNet [40] dataset for 90 epochs, with initial learning rate
of 0.1 decaying by 0.1 at epochs 30 and 60. Optimization is
performed using SGD with momentum 0.9 and weight de-
cay 10−4. Input images are randomly resized and cropped
to 224 × 224 pixels and horizontally flipped. Baseline net-
works are VGG architectures with batch normalization [17]
and kernel size k = 3 or k = 7, and the standard ResNet
architectures [15] with k = 7 in the first layer, and k = 3

or k = 7 in all deeper layers. For the windowed networks,
we replace all convolutions with Hamming-windowed con-
volutions with k = 7.

We find that when enforcing better frequency-selectivity,
ImageNet validation accuracy is higher than baselines
throughout training (Fig. 7c). This indicates that using
standard window functions as an inductive prior helps the
network settle early on to solutions which generalize bet-
ter. Overall, we find that replacing the convolutional lay-
ers with Hamming-windowed layers provides accuracy im-
provements on the ImageNet benchmark (Fig. 8, Table 1).

Orthogonality. Spectral leakage may render CNNs un-
able to learn filters with non-overlapping frequency re-
sponses, thus leading to redundant representations. Similar
to our windowed layers, redundancy reduction and perfor-
mance increase can also be achieved by orthogonal convo-
lutions [53]. Therefore, we analyse the effects of the Ham-
ming window on the orthogonality of the weights learned
by the ResNet18 model. A row orthogonal convolution
can be written as a matrix multiplication y = Kx of the
input x ∈ RCHW with the doubly block-Toeplitz matrix
K ∈ R(MH′W ′)×(CHW ) with the orthogonality condition

⟨Ki,·,Kj,·⟩ =

{
1, if i = j

0, else
(8)

where C and M denote the input and output channels, H
and W (H ′ and W ′) the spatial dimensions of input x (out-
put y), and i and j are row indices of K. For our ResNet18
models trained on ImageNet, we compute the pairwise dot
product in Eq. 8 between every row of K in each layer, and
present its mean deviation from the orthogonality condition
in Fig. 6c. We find that the convolution operators deviate
from orthogonality the least when using the Hamming win-
dow. We suggest that enforcing orthogonality may be one
explanation for the performance increase displayed by win-
dowed convolutions. (See Supplement for further analysis
on different models.)

4.5. Adversarial attacks
We test the robustness of baseline and Hamming mod-

els (with M = 6 layers) trained on the CIFAR-10 dataset
against DeepFool [31] (white-box) and spatial transforma-
tion [9] (black-box) attacks. DeepFool attacks are iterative
attacks designed to minimize the norm of the perturbation
while generating examples fast, which we believe is an ef-
fective method. Similarly, spatial transformations provide
a realistic black-box setting. We generate attacks using the
Adversarial Robustness Toolbox [33]. For the DeepFool at-
tacks we use 100 maximum iterations, and for the spatial
transformations we use different maximum translation and
rotation values as given in Table 2b.

We compare the validation accuracy of baseline and
Hamming models with equal number of parameters on the
adversarially perturbed CIFAR-10 validation set. For Deep-
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Figure 8. ImageNet validation accuracy for the baseline ResNet
and VGG models and their windowed counterparts, where all ker-
nels are replaced with 7× 7 Hamming windowed kernels.

Model Top-1 (%) Top-5 (%)

ResNet18 70.01 89.42
ResNet18 7× 7 70.30 89.53
ResNet18 + Hamming 7× 7 71.54 90.27

ResNet34 73.12 91.34
ResNet34 7× 7 72.20 90.43
ResNet34 + Hamming 7× 7 74.54 91.91

ResNet50 76.14 93.01
ResNet50 7× 7 75.77 92.58
ResNet50 + Hamming 7× 7 76.80 93.21

VGG-11 71.03 90.00
VGG-11 7× 7 70.75 89.76
VGG-11 + Hamming 7× 7 72.07 90.78

VGG-13 72.39 90.85
VGG-13 7× 7 72.56 90.92
VGG-13 + Hamming 7× 7 73.32 91.48

VGG-16 74.15 91.84
VGG-16 7× 7 73.47 91.39
VGG-16 + Hamming 7× 7 75.11 92.40

Table 1. ImageNet validation accuracies in Fig. 8.

Fool attacks, we find that Hamming models with 7× 7 ker-
nel size provides the best robustness in terms of the decrease
in validation accuracy under perturbation (Table 2a). With
5×5 kernels, Hamming models perform worse under Deep-
Fool attacks than baselines, even though the base accuracy
on clean samples is higher for Hamming models. For larger
kernel sizes, however, the robustness of Hamming models is
significantly better. For spatial transform attacks, we find a
similar pattern. While validation accuracy decreases across
the board for increasing perturbation magnitude, Hamming
models with 7×7 and 9×9 kernels are always significantly
more robust than the baseline models (Table 2b).

5. Conclusion
We investigate the impact of spectral leakage in the con-

text of CNNs and show that convolutional layers employ-
ing small kernel sizes may be susceptible to performance-
degrading leakage artifact. As a solution, we propose
the use of a standard Hamming window on larger ker-

DeepFool - Validation Accuracy (%)

Model
Kernel Size

5× 5 7× 7 9× 9

baseline 24.85±0.34 20.06±0.13 18.24±0.44
Hamming 23.20±0.29 32.64±0.39 27.88±0.94

baseline-clean 84.93±0.13 83.36±0.16 81.30±0.32
Hamming-clean 85.77±0.16 86.38±0.12 86.59±0.19

(a)

Spatial Transformation - Validation Accuracy (%)

Model
Params Kernel Size

tr rot 7× 7 9× 9

baseline
12.5 22.5

44.59±3.12 38.74±1.37
Hamming 53.03±1.91 52.22±1.64

baseline
25.0 22.5

31.61±2.87 27.26±1.05
Hamming 41.44±2.87 38.67±1.46

baseline
25.0 45.0

19.47±0.67 18.13±1.21
Hamming 26.42±1.13 24.55±1.87

(b)

Table 2. Adversarial robustness in baseline and Hamming models.
All results are averaged over 5 runs. (a) Classification accuracy
on the CIFAR-10 validation set with and without (clean) perturba-
tions created by the DeepFool attack. (b) Classification accuracy
on the CIFAR-10 validation set with spatial transformation attacks
for different maximum translation (tr) and rotation (rot) values.
Accuracy for unperturbed images is the same as in (a).

nels, in line with well-known principles of filter design.
We demonstrate enhanced classification accuracy on bench-
mark datasets, in models with the Hamming window. Fi-
nally, we show improved robustness against DeepFool and
spatial transformation attacks in windowed CNNs.

This work is based on a simple and well-studied idea,
which provides practical benefits in deep networks, high-
lighting the importance of signal processing fundamentals.
We believe our work opens up new research questions re-
garding other principles of filter design.

Computational cost. Complexity of 2D convolu-
tion on a H×W image O(HWk2) scales quadratically
with kernel size k (or linearly for separable convolutions
O(2HWk) [50]). However, when comparing Hamming vs.
3×3 models, there is a trade-off of increasing kernel size
vs. increasing depth to obtain the same accuracy, where the
memory load will increase with depth. We show that the
use of larger kernels, which are computationally more ex-
pensive, but parallelizable compared to deeper networks, is
a viable option when the kernels are windowed properly.
We note that window functions may provide benefits in do-
mains outside of computer vision, such as audio processing,
where larger kernel sizes are common.
Acknowledgements This publication is part of the project “Pixel-
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[32] Nelson Morgan and Hervé Bourlard. Generalization and pa-
rameter estimation in feedforward nets: Some experiments.
In Advances in Neural Information Processing Systems 2,
[NeurIPS, pages 630–637, 1989. 2

[33] Maria-Irina Nicolae, Mathieu Sinn, Minh Ngoc Tran, Beat
Buesser, Ambrish Rawat, Martin Wistuba, Valentina Zant-
edeschi, Nathalie Baracaldo, Bryant Chen, Heiko Ludwig,
Ian Molloy, and Ben Edwards. Adversarial robustness tool-
box v1.2.0. CoRR, 1807.01069, 2018. 7

[34] Bruno A Olshausen and David J Field. Emergence of simple-
cell receptive field properties by learning a sparse code for
natural images. Nature, 381(6583):607–609, 1996. 1, 2

[35] A.V. Oppenheim, R.W. Schafer, J.R. Buck, and L. Lee.
Discrete-time Signal Processing. Prentice Hall international
editions. Prentice Hall, 1999. 1, 2, 3
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