
Going deeper with Image Transformers

Hugo Touvron Matthieu Cord Alexandre Sablayrolles Gabriel Synnaeve Hervé Jégou

Abstract

Transformers have been recently adapted for large scale

image classification, achieving high scores shaking up the

long supremacy of convolutional neural networks. However

the optimization of vision transformers has been little stud-

ied so far. In this work, we build and optimize deeper trans-

former networks for image classification. In particular, we

investigate the interplay of architecture and optimization

of such dedicated transformers. We make two architec-

ture changes that significantly improve the accuracy of deep

transformers. This leads us to produce models whose per-

formance does not saturate early with more depth, for in-

stance we obtain 86.5% top-1 accuracy on Imagenet when

training with no external data, we thus attain the current

sate of the art with less floating-point operations and pa-

rameters. Our best model establishes the new state of the

art on Imagenet with Reassessed labels and Imagenet-V2 /

match frequency, in the setting with no additional training

data. We share our code and models1.

1. Introduction

Residual architectures are prominent in computer vision

since the advent of ResNet [27]. They are defined as a se-

quence of functions of the form

xl+1 = gl(xl) +Rl(xl), (1)

where the function gl and Rl define how the network up-

dates the input xl at layer l. The function gl is typ-

ically identity, while Rl is the main building block of

the network: many variants in the literature essentially

differ on how this residual branch Rl is constructed or

parametrized [51, 63, 73]. Residual architectures highlight

the strong interplay between optimization and architecture

design. As pointed out by He et al. [27], residual networks

do not offer a better representational power. They achieve

better performance because they are easier to train: shortly

after their seminal work, He et al. discussed [28] the im-

portance of having a clear path both forward and backward,

and advocate setting gl to the identity function.

1https://github.com/facebookresearch/deit

The vision transformers [19] instantiate a particular form

of residual architecture: after casting the input image into a

set x0 of vectors, the network alternates self-attention layers

(SA) with feed-forward networks (FFN), as

x′

l = xl + SA(η(xl))

xl+1 = x′

l + FFN(η(x′

l)) (2)

where η is the LayerNorm operator [1]. This definition fol-

lows the original architecture of Vaswani et al. [67], ex-

cept the LayerNorm is applied before the block (pre-norm)

in the residual branch, as advocated by He et al. [28].

Child et al. [13] adopt this choice with LayerNorm for train-

ing deeper transformers for various media, including for im-

age generation where they train transformers with 48 layers.

How to normalize, weigh, or initialize the residual

blocks of a residual architecture has received significant at-

tention both for convolutional neural networks [7, 8, 28, 76]

and for transformers applied to NLP or speech tasks [2, 34,

76]. In Section 2, we revisit this topic for transformer archi-

tectures solving image classification problems. Examples

of approaches closely related to ours include Fixup [76], T-

Fixup [34], ReZero [2] and SkipInit [16].

Following our analysis of the interplay between different

initialization, optimization and architectural design, we pro-

pose an approach that is effective to improve the training of

deeper architecture compared to current methods for image

transformers. Formally, we add a learnable diagonal matrix

on the output of each residual block, initialized close to (but

not at) 0. Adding this simple layer after each residual block

improves the training dynamic, allowing us to train deeper

high-capacity image transformers that benefit from depth.

We refer to this approach as LayerScale.

Section 3 introduces our second contribution, namely

class-attention layers, that we present in Figure 2. It is akin

to an encoder/decoder architecture, in which we explicitly

separate the transformer layers involving self-attention be-

tween patches, from class-attention layers that are devoted

to extract the content of the processed patches into a single

vector so that it can be fed to a linear classifier. This explicit

separation avoids the contradictory objective of guiding the

attention process while processing the class embedding. We

refer to this new architecture as CaiT (Class-Attention in

Image Transformers).

32



In the experimental Section 4, we empirically show the

effectiveness and complementary of our approaches:

• LayerScale significantly facilitates the convergence

and improves the accuracy of image transformers at

larger depths. It adds a few thousands of parameters to

the network at training time (negligible with respect to

the total number of weights).

• Our architecture with specific class-attention offers a

more effective processing of the class embedding.

• Our best CaiT models establish the new state of the

art on Imagenet-Real [6] and Imagenet V2 matched

frequency [53] with no additional training data. On

ImageNet1k-val [55], our model is on par with the

state of the art (86.5%) while requiring less FLOPs

(329B vs 377B) and having less parameters than the

best competing model (356M vs 438M).

• We also achieve competitive results on Transfer Learn-

ing, see Section C in supplemental material.

We discuss related works along this paper and in the ded-

icated Section 5, before we conclude in Section 6.

2. Deeper image transformers with LayerScale

Our goal is to increase the stability of the optimization

when training transformers for image classification derived

from the original architecture by Vaswani et al. [67], and

especially when we increase their depth. We consider more

specifically the vision transformer (ViT) architecture pro-

posed by Dosovitskiy et al. [19] as the reference architec-

ture and adopt the data-efficient image transformer (DeiT)

optimization procedure of Touvron et al. [64]. In both

works, there is no evidence that depth can bring any benefit

when training on Imagenet only: the deeper ViT architec-

tures have a lower performance, while DeiT only considers

transformers with 12 blocks of layers. Section 4 will con-

firm that DeiT does not train deeper models effectively.

Figure 1 depicts the main variants we compare to facil-

itate the optimization. They cover recent choices from the

literature: as discussed in the introduction, the architecture

(a) of ViT and DeiT is a pre-norm architecture [19, 64], in

which the layer-normalisation η occurs at the beginning of

the residual branch. Note that the original architecture of

Vaswani et al. [67] applies the normalization after the block,

but in our experiments the DeiT training does not converge

with post-normalization.

Fixup [76], ReZero [2] and SkipInit [16] introduce learn-

able scalar weighting αl on the output of residual blocks,

while removing the pre-normalization and the warmup, see

Figure 1(b). This amounts to modifying Eqn. 2 as

x′

l = xl + αl SA(xl)

xl+1 = x′

l + α′

l FFN(x′

l). (3)

FFN or SA

(a) (d)

FFN or SA

(b)

FFN or SA FFN or SA

(c)
Figure 1. Normalization strategies for transformer blocks. (a)

The ViT image classifier adopts pre-normalization like Child et

al. [13]. (b) ReZero/Skipinit and Fixup remove the η normal-

ization and the warmup (i.e., a reduced learning rate in the early

training stage) and add a learnable scalar initialized to α= 0 and

α= 1, respectively. Fixup additionally introduces biases and mod-

ifies the initialization of the linear layers. Since these methods do

not converge with deep vision transformers, (c) we adapt them by

re-introducing the pre-norm η and the warmup. Our main pro-

posal (d) introduces a per-channel weighting (i.e, multiplication

with a diagonal matrix diag(λ1, . . . , λd), where we initialize each

weight with a small value as λi = ε.

ReZero simply initializes this parameter to α = 0. Fixup

initializes this parameter α = 1 and makes other modifica-

tions: it adopts different policies for the initialization of the

block weights, and adds several weights to the parametriza-

tion. In our experiments, these approaches do not converge

even with some adjustment of the hyper-parameters.

Our empirical observation is that removing the warmup

and the layer-normalization is what makes training unstable

in Fixup and T-Fixup. Therefore we re-introduce these two

ingredients so that Fixup and T-Fixup converge with DeiT

models, see Figure 1(c). As we see in the experimental sec-

tion, these amended variants of Fixup and T-Fixup help with

convergence. The main contributing factor is the learnable

αl, which when initialized at a small value do help the con-

vergence when we increase the depth.

Our proposal LayerScale is a per-channel multiplication

of the vector produced by each residual block, as opposed

to a single scalar, see Figure 1(d). Our objective is to group

the updates of the weights associated with the same output

channel. Formally, LayerScale is a multiplication by a diag-

onal matrix on output of each residual block. In other terms,

we modify Eqn. 2 as

x′

l = xl + diag(λl,1, . . . , λl,d)× SA(η(xl))

xl+1 = x′

l + diag(λ′

l,1, . . . , λ
′

l,d)× FFN(η(x′

l)), (4)

where the parameters λl,i and λ′

l,i are learnable weights.

The diagonal values are all initialized to a fixed small value

ε: we set it to ε = 0.1 until depth 18, ε = 10−5 for 24

and ε = 10−6 for deeper networks. This formula is akin to

other normalization strategies ActNorm [37] or LayerNorm

but executed on output of the residual block. Yet we seek a

33



different effect: ActNorm is a data-dependent initialization

that calibrates activations so that they have zero-mean and

unit variance, like batchnorm [35]. In contrast, we initialize

the diagonal with small values so that the initial contribution

of the residual branches to the function implemented by the

transformer is small. In that respect our motivation is there-

fore closer to that of ReZero [2], SkipNorm [16], Fixup [76]

and TFixup [34]: we start to train closer to the identity func-

tion and let the network integrate the additional parameters

progressively during the training. However, LayerScale of-

fers more diversity in the optimization than just adjusting

the whole layer by a single learnable scalar as in ReZe-

ro/SkipNorm, Fixup and T-Fixup. As we will show empiri-

cally, offering the freedom to do so per channel is a decisive

advantage of LayerScale over existing approaches.

Formally, adding these weights does not change the ex-

pressive power of the architecture since they can be inte-

grated into the previous matrix of the SA and FFN layers.

3. Specializing layers for class attention

In this section, we introduce the CaiT architecture, de-

picted in Figure 2 (right). This design aims at circumvent-

ing one of the problems of the ViT architecture: the learned

weights are asked to optimize two contradictory objectives:

(1) guiding the self-attention between patches while (2)

summarizing the information useful to the linear classifier.

Our proposal is to explicitly separate the two stages.

Later class token. As an intermediate step towards our

proposal, we insert the so-called class token, denoted by

CLS, later in the transformer. This choice eliminates the

discrepancy on the first layers of the transformer, which

are therefore fully employed for performing self-attention

between patches only. As a baseline that does not suffer

from the contradictory objectives, we also consider average

pooling of all the patches on output of the transformers, as

typically employed in convolutional architectures.

Architecture. Our CaiT network consists of two distinct

processing stages visible in Figure 2:

1. The self-attention stage is identical to the ViT trans-

former, but with no class embedding (CLS).

2. The class-attention stage is a set of layers that com-

piles the set of patch embeddings into a class embed-

ding CLS that is subsequently fed to a linear classifier.

This class-attention alternates in turn a layer that we re-

fer to as a multi-head class-attention (CA), and a FFN layer.

In this stage, only the class embedding is updated. Similar

to the one fed in ViT and DeiT on input of the transformer,

it is a learnable vector. The main difference is that, in our

architecture, we do no copy information from the class em-

bedding to the patch embeddings during the forward pass.

SA

FFN

SA

FFN

SA

FFN

SA

FFN

class

SA

FFN

SA

FFN

SA

FFN

SA

FFN

class

CLS

CLS

SA

FFN

SA

FFN

CA

FFN

CA

FFN

class

CLS

class-attention
self-attention

Figure 2. In the ViT transformer (left), the class embedding (CLS)

is inserted along with the patch embeddings. This choice is detri-

mental, as the same weights are used for two different purposes:

helping the attention process, and preparing the vector to be fed

to the classifier. We put this problem in evidence by showing that

inserting CLS later improves performance (middle). In the CaiT

architecture (right), we further propose to freeze the patch embed-

dings when inserting CLS to save compute, so that the last part of

the network (typically 2 layers) is fully devoted to summarizing

the information to be fed to the linear classifier.

Only the class embedding is updated by residual in the CA

and FFN processing of the summarize stage.

Multi-heads class attention. The role of the CA layer

is to extract the information from the set of processed

patches.It is identical to a SA layer, except that it relies on

the attention between (i) the class embedding xclass (initial-

ized at CLS in the first CA) and (ii) itself plus the set of

frozen patch embeddings xpatches.

Considering a network with h heads and p patches,

and denoting by d the embedding size, we parametrize

the multi-head class-attention with several projection ma-

trices, Wq,Wk,Wv,Wo ∈ R
d×d, and the corresponding

biases bq, bk, bv, bo ∈ R
d. With this notation, the compu-

tation of the CA residual block proceeds as follows. We

first augment the patch embeddings (in matrix form) as

z = [xclass, xpatches], which makes the CA closer to a SA

layer in that we guarantee that there is at least a key cor-

responding to the query. We then perform the projections:

Q = Wq xclass + bq, (5)

K = Wk z + bk, (6)

V = Wv z + bv. (7)

The class-attention weights are given by

A = Softmax(Q.KT /
√

d/h) (8)

34



where Q.KT ∈ R
h×1×p. This attention is involved in the

weighted sum A × V to produce the residual output vector

outCA = Wo AV + bo, (9)

which is in turn added to xclass for subsequent processing.

The CA layers extract the useful information from the

patches embedding to the class embedding. In preliminary

experiments, we empirically observed that the first CA and

FFN give the main boost, and a set of 2 blocks of layers

(2 CA and 2 FFN) is sufficient to cap the performance.

In the experimental section, we denote by 12+2 a trans-

former when it consists of 12 blocks of SA+FFN layers and

2 blocks of CA+FFN layers.

Complexity. The layers contain the same number of pa-

rameters in the class-attention and self-attention stages: CA

is identical to SA in that respect, and we use the same

parametrization for the FFNs. However the processing of

these layers is much faster: the FFN only processes matrix-

vector multiplications.

The CA function is also less expensive than SA in term

of memory and computation because it computes the at-

tention between the class vector and the set of patch em-

beddings: Q ∈ R
d means that Q.KT ∈ R

h×1×p. In

contrast, in the “regular self-attention” layers SA, we have

Q ∈ R
p×d and therefore Q.KT ∈ R

h×p×p. In other

words, the initially quadratic complexity in the number of

patches becomes linear in our extra CaiT layers.

4. Experiments

In this section, we report our experimental results related

to LayerScale and CaiT. Note that we provide complemen-

tary results in supplemental material: in Appendix A we

provide some experiments that have guided our architecture

design and hyper-parameter optimization. Experiment in

Transfer learning are reported in Appendix C and we show

additional visualizations in Appendix D.

Experimental setting. Our implementation is based on

the Timm library [69]. Unless specified otherwise, for

this analysis we make minimal changes to hyper-parameters

compared to the DeiT training scheme [64], except for mi-

nor adjustments of the learning rate in case we do not ob-

serve convergence. All our experiments are carried out

on ImageNet [55], and also evaluated on two variations

of it: ImageNet-Real [6] that corrects and give a more

detailed annotation, and ImageNet-V2 [53] (matched fre-

quency) that provides a separate test set.

4.1. Preliminary analysis with deeper architectures

We first carry out an empirical study of the normalization

methods discussed in Section 2. At this stage we consider a

Table 1. Improving convergence at depth on ImageNet-1k. The

baseline is DeiT-S. Several methods include a fix scalar learnable

weight α per layer as in Figure 1(c). We have adapted Rezero,

Fixup, T-Fixup, since the original methods do not converge: we

have re-introduced the Layer-normalization η and warmup. We

have adapted the drop rate dr for all the methods, including the

baseline (otherwise it does not converge). The column α = ε

reports the performance when initializing the scalar with the same

value as for LayerScale.

depth
baseline scalar α weighting

LayerScale
[dr] Rezero T-Fixup Fixup α = ε

12 79.9 [0.05] 78.3 79.4 80.7 80.4 80.5

18 80.7 [0.10] 80.1 81.7 82.0 81.6 81.7

24 81.0 [0.20] 80.8 81.5 82.3 81.1 82.4

36 81.9 [0.25] 81.6 82.1 82.4 81.6 82.9

Deit-Small model during 300 epochs to allow a direct com-

parison with the results reports by Touvron et al. [64]. For

all the variants we adjust the drop-rate of stochastic depth

to the depth of the network, see Appendix A for a more de-

tailed discussion. This is required to achieve convergence

when increasing the depth to 36 layers. We measure the per-

formance on the Imagenet1k [17, 55] classification dataset

as a function of the depth.

4.1.1 Comparison of normalization strategies

As discussed in Section 2, Rezero, Fixup and T-Fixup do

not converge when training DeiT off-the-shelf. However,

if we re-introduce LayerNorm2 and warmup, Fixup and T-

Fixup achieve congervence and even improve training com-

pared to the baseline DeiT. We report the results for these

“adaptations” of Fixup and T-Fixup in Table 1.

The modified methods are able to converge with more

layers without saturating too early. ReZero converges, we

show (column α = ε) that it is better to initialize α to a

small value instead of 0, as in LayerScale. Fixup and t-

Fixup are competitive with LayerScale in the regime of a

relatively low number of blocks (12–18). However, they are

more complex than LayerScale: they employ different ini-

tialization rules depending of the type of layers, and they re-

quire more changes of the transformer architecture. There-

fore we only use LayerScale in subsequent experiments,

which is much simpler as it only makes a single change and

is parametrized by a single hyper-parameter ε.

Note, all the methods have a beneficial effect on con-

vergence and they tend to reduce the need for stochas-

tic depth, therefore we adjust these drop rate accord-

ingly per method. Figure 3 provides the performances

as the function of the drop rate dr for LayerScale.

We empirically use the following formula to set up the

2Bachlechner et al. report that batchnorm is complementary to ReZero,

while removing LayerNorm in the case of transformers.

35



0.0 0.1 0.2 0.3 0.4
stochastic depth coefficient

78

80

82

to
p
-1

 a
cc

u
ra

cy
 (

%
)

12 blocks
18 blocks
24 blocks
36 blocks
48 blocks

Figure 3. We measure the impact of stochastic depth on ImageNet

with a DeiT-S with LayerScale for different depths. The drop rate

of stochastic depth needs to be adapted to the network depth.

drop-rate for the CaiT-S models derived from on Deit-

S: dr =min
(

0.1× depth
12

− 1, 0
)

.This formulaic choice

avoids cross-validating this parameter and overfitting. We

further increase (resp. decrease) it by a constant for larger

(resp. smaller) working dimensionality d.

4.1.2 Analysis of Layerscale

Statistics of branch weighting. We evaluate the impact

of Layerscale for a 36-layer transformer by measuring the

ratio between the norm of the residual activations and the

norm of the activations of the main branch ∥gl(x)∥2/∥x∥2.

The results are shown in Figure 4. We can see that train-

ing a model with Layerscale makes this ratio more uniform

across layers, and seems to prevent some layers from having

a disproportionate impact on the activations. While trans-

lating this empirical observation to a provable conclusion,

similar to prior works [2, 76] we hypothetize that the ben-

efit is mostly the impact on optimization, which we try to

support by the control experiment below.

Re-training. LayerScale makes it possible to get in-

creased performance by training deeper models. At the end

of training we obtain a specific set of scaling factors for each

layer. Inspired by the lottery ticket hypothesis [23], one

question that arises is whether what matters is to have the

right scaling factors, or to include these learnable weights in

the optimization procedure. In other terms, what happens if

we re-train the network with the scaling factors obtained by

a previous training?

The table below empirically answers that question.

Depth → 12 18 24 36

LayerScale 80.5 81.7 82.4 82.9

Re-trained with fixed weights 80.6 81.5 81.2 81.6

In this experiment, we compare the performance (top-

1 validation accuracy, %) on ImageNet-1k with DeiT-S ar-

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

0 10 20 300.0

0.1

0.2

0.3

0.4

0.5

Figure 4. Analysis of the contribution of the residual branches

(Top: Self-attention ; Bottom: FFN) for a network comprising 36

layers, without (red) or with (blue) Layerscale. The ratio between

the norm of the residual and the norm of the main branch is shown

for each layer of the transformer and for various epochs (darker

shades correspond to the last epochs). For the model trained with

layerscale, the norm of the residual branch is on average 20% of

the norm of the main branch. We observe that the contribution of

the residual blocks fluctuates more for the model trained without

layerscale and in particular is lower for some of the deeper layers.

chitectures of differents depths. Everything being identical

otherwise, in the first experiment we use LayerScale, i.e. we

have learnable weights initialized at a small value ε. In the

control experiment we use fixed scaling factors initialised at

values obtained by the LayerScale training.

We can see that the control training with fixed weights

also converges without suffering from instabilities with the

deepest architectures. Nevertheless, the results are lower

than those obtained with the learnable weighting factors.

This suggests that the evolution of the parameters during

training has a beneficial effect on the deepest models.

4.2. Class­attention layers

In Table 2 we study the impact on performance of the de-

sign choices related to class embedding. We depict some of

them in Figure 2. As a baseline, average pooling of patches

embeddings with a vanilla DeiT-Small achieves a better per-

formance than using a class token. This choice, which

does not employ any class embedding, is typical in con-

volutional networks, but possibly weaker with transformers

when transferring to other tasks [20].

Late insertion. The performance increases when we in-

sert the class embedding later in the transformer. It is max-

imized two layers before the output. Our interpretation is

that the attention process is less perturbed in the 10 first lay-

36



Table 2. Variations on CLS with Deit-Small (no LayerScale): we

change the layer at which the class embedding is inserted. In ViT

and DeiT, it is inserted at layer 0 jointly with the projected patches.

We evaluate a late insertion of the class embedding, as well as our

design choice to introduce specific class-attention layers.

depth: SA+CA insertion layer top-1 acc. #params FLOPs

Baselines: DeiT-S and average pooling

12: 12 + 0 0 79.9 22M 4.6B

12: 12 + 0 n/a 80.3 22M 4.6B

Late insertion of class embedding

12: 12 + 0 2 80.0 22M 4.6B

12: 12 + 0 4 80.0 22M 4.6B

12: 12 + 0 8 80.0 22M 4.6B

12: 12 + 0 10 80.5 22M 4.6B

12: 12 + 0 11 80.3 22M 4.6B

DeiT-S with class-attention stage (SA+FFN)

12: 9 + 3 9 79.6 22M 3.6B

12: 10 + 2 10 80.3 22M 4.0B

12: 11 + 1 11 80.6 22M 4.3B

13: 12 + 1 12 80.8 24M 4.7B

14: 12 + 2 12 80.8 26M 4.7B

15: 12 + 3 12 80.6 27M 4.8B

ers, yet it is best to keep 2 layers for compiling the patches

embedding into the class embedding via the class-attention,

otherwise the processing gets closer to a weighted average.

Our class-attention layers are designed on the assump-

tion that there is no benefit in copying information from the

class embedding back to the patch embeddings in the for-

ward pass. Table 2 supports that hypothesis: if we compare

the performance for a total number of layers fixed to 12,

the performance of CaiT with 10 SA and 2 CA layers is

identical to average pooling and better than the DeiT-Small

baseline with a lower number of FLOPs. If we set 12 layers

in the self-attention stage, which dominates the complex-

ity, we increase the performance significantly by adding two

blocks of CA+FFN.

Visualization of class-attention maps. In Figure 5 we

show the attention map related to our first class-attention

layer. In CaiT, the first class-attention layer conveniently

concentrates all the spatial-class relationship. The second

class-attention layer seems to focus more on the context,

see Appendix D for complementary visualizations.

4.3. Our CaiT models

Our CaiT models are built upon ViT: the only difference

is that we incorporate LayerScale in each residual block

(see Section 2) and the two-stages architecture with class-

attention layers described in Section 3. Table 3 describes

our different models. The design parameters governing the

capacity are the depth and the working dimensionality d. In

Figure 5. Visualization of the class-attention (first CA layer) ob-

tained with a CaiT XXS-12 model. We show the attention map

for each head in appendix. top: original image; middle: attention

between all patches and class token; bottom: thresholded map.

our case is related to the number of heads h as d = 48× h,

since we fix the number of components per head to 48.

This choice is a bit smaller than the value used in DeiT.

We also adopt the crop-ratio of 1.0 optimized for DeiT by

Wightman [69]. Table A.4 and A.5 in Appendix support

these choices.

We incorporate talking-heads attention [56] into our

model. It increases the performance on Imagenet of DeiT-

Small from 79.9% to 80.3%.

The hyper-parameters are identical to those provided in

DeiT [64], except mentioned otherwise. The main param-

eters are as follows: we use a batch size of 1024 sam-

ples and train during 400 epochs with repeated augmenta-

tion [5, 29]. The learning rate of the AdamW optimizer [44]

is set to 0.001 and associated with a cosine training sched-

ule, 5 epochs of warmup and a weight decay of 0.05.

We report in Table 3 the two hyper-parameters that we

modify depending on the model complexity, namely the

drop rate dr associated with uniform stochastic depth, and

the initialization value ε associated with LayerScale.

Fine-tuning at higher resolution (↑) and distillation (Υ).

We train all our models at resolution 224, and optionally

fine-tune them at a higher resolution to trade performance

against accuracy [19, 64, 65]: we denote the model by ↑384

models fine-tuned at resolution 384×384. We also train

models with distillation (Υ) as suggested by Touvron et

37



Table 3. CaiT models: The design parameters are depth and d. The mem columns correspond to the memory usage. The speed is the

throughput at inference time for a batch of 128 images with FP16 precision on one GPU V100 32GB (PyTorch 1.8 [48], CUDA 11). The

only parameters that we adjust per model are the drop rate dr of stochastic depth and the LayerScale initialization ε. All models are initially

trained at resolution 224 during 400 epochs, the complexity measures (FLOPs, speed and mem) are reported for this resolution. We also

fine-tune these models at resolution 384 (identified by ↑384) or train them with distillation (Υ).

CAIT depth d #params FLOPs (×109) speed (im/s) mem. (MB) hparams Top-1 acc. (%) on Imagenet1k-val

model ↓ (SA+CA) (×106) @224 @384 @224 @384 @224 @384 dr ε @224 ↑384 @224Υ ↑384Υ

XXS-24 24 + 2 192 12.0 2.5 9.6 1012.8 182.3 403 2126 0.1 10−5 77.6 80.4 78.4 80.9

XXS-36 36 + 2 192 17.3 3.7 14.3 680.9 122.0 434 2156 0.1 10−6 79.1 81.8 79.7 82.2

XS-24 24 + 2 288 26.6 5.4 19.3 737.6 134.8 614 3130 0.1 10−5 81.8 83.8 82.0 84.1

XS-36 36 + 2 288 38.6 8.1 28.8 496.7 90.2 682 3198 0.2 10−6 82.6 84.3 82.9 84.8

S-24 24 + 2 384 46.9 9.4 32.2 573.6 104.1 860 4165 0.1 10−5 82.7 84.3 83.5 85.1

S-36 36 + 2 384 68.2 13.9 48.0 386.6 69.8 983 4287 0.2 10−6 83.3 85.0 84.0 85.4

S-48 48 + 2 384 89.5 18.6 63.8 291.5 52.5 1106 4410 0.3 10−6 83.5 85.1 83.9 85.3

M-24 24 + 2 768 185.9 36.0 116.1 262.9 38.3 2165 8634 0.2 10−5 83.4 84.5 84.7 85.8

M-36 36 + 2 768 270.9 53.7 173.3 176.8 25.6 2661 9128 0.3 10−6 83.8 84.9 85.1 86.1

Table 4. Ablation: we present the ablation path from DeiT-S to our

CaiT models. We highlight the complementarity of our approaches

and optimized hyper-parameters †: training failed.

Improvement top-1 acc. #params FLOPs

DeiT-S [d=384,300 epochs] 79.9 22M 4.6B

+ More heads [8] 80.0 22M 4.6B

+ Talking-heads 80.5 22M 4.6B

+ Depth [36 blocks] 69.9† 64M 13.8B

+ Layer-scale [init ε = 10−6] 80.5 64M 13.8B

+ Stochastic depth adaptation [dr=0.2] 83.0 64M 13.8B

+ CA [CaiT ] 83.2 68M 13.9B

+ Longer training [400 epochs] 83.4 68M 13.9B

+ Inference at higher resolution [256] 83.8 68M 18.6B

+ Fine-tuning at higher resolution [384] 84.8 68M 48.0B

+ Hard distillation [teacher: RegNetY-16GF] 85.2 68M 48.0B

+ Adjust crop ratio [0.875 → 1.0] 85.4 68M 48.0B

al. [64]. We use a RegNet-16GF [51] as teacher and adopt

the simple “hard distillation” [64] for its simplicity.

4.4. Results

Table 3 provides different complexity measures for our

models. As a general observation, we observe a subtle in-

terplay between the width and the depth, both contribute to

the performance as reported by Dosovitskiy et al. [19] with

longer training schedules. But if one parameter is too small

the gain brought by increasing the other is not worth the

additional complexity.

Fine-tuning to size 384 (↑) systematically offers a large

boost in performance without changing the number of pa-

rameters. It also comes with a higher computational cost.

In contrast, leveraging a pre-trained convnet teacher with

hard distillation as suggested by Touvron et al. [64] pro-

vides a boost in accuracy without affecting the number of

parameters nor the speed.

Comparison with the state of the art. In Table 5 we

compare some of our models with the state of the art on

Imagenet classification without external data. We focus on

the models CaiT-S36 and CaiT-M36, at different resolu-

tions and with or without distillation.

On Imagenet-val, we achieve 86.5% of top-1 accuracy,

which is a significant improvement over DeiT (85.2%). It

is the state of the art except for a very recent concurrent

work [8] that also reports a top-1 accuracy of 86.5%. Our

CaiT-M36↑384Υ model obtains 85.9% top-1 accuracy on

Imagenet-1k-val: this network is more efficient that the best

performing NFNet convnets w.r.t. FLOPs and even more

in terms of throughput (images processed per second on a

V100 GPU), thanks to the lower memory usage.

Our approach is on par with the state of the art on

Imagenet with reassessed labels, and outperforms it on

Imagenet-V2, which has a distinct validation set which

makes it harder to overfit.

Ablation. In Table 4 we present how to gradually trans-

form the Deit-S [64] architecture to CaiT-36, and measure

at each step the performance/complexity changes. One can

see that CaiT is complementary with LayerScale and of-

fers an improvement without significantly increasing the

FLOPs. As already reported in the literature, the resolution

is another important step for improving the performance

and fine-tuning instead of training the model from scratch

saves a lot of computation at training time. Last but not

least, our models benefit from longer training schedules.

5. Related work

Since AlexNet [40], convolutional neural networks

(CNN) are the standard in image classification [27, 63, 65],

and more generally in computer vision. While a deep CNN

can theoretically model long range interaction between pix-

els across many layers, there has been research in increas-

38



Table 5. Complexity vs accuracy on Imagenet [55], Imagenet

Real [6] and Imagenet V2 matched frequency [53] for models

trained without external data. We compare CaiT with DeiT [64],

Vit-B [19], TNT [26], T2T [75] and to several state-of-the-art con-

vnets: Regnet [51] improved by Touvron et al. [64], Efficient-

Net [14, 63, 72], Fix-EfficientNet [66] and NFNets [8]. Most re-

ported results are from corresponding papers, and therefore the

training procedure differs for the different models. For Imagenet

V2 matched frequency and Imagenet Real we report the results

provided by the authors. When not available (like NFNet), we re-

port the results measured by Wigthman [69] with converted mod-

els, which may be suboptimal. The RegNetY-16GF is the teacher

model that we trained for distillation. We report the best result in

bold and the second best result(s) underlined.

nb of nb of image size ImNet Real V2

Network param. FLOPs train test top-1 top-1 top-1

RegNetY-16GF 84M 16B 224 224 82.9 88.1 72.4

EfficientNet-B5 30M 10B 456 456 83.6 88.3 73.6

EfficientNet-B7 66M 37B 600 600 84.3

EfficientNet-B5 RA 30M 10B 456 456 83.7

EfficientNet-B7 RA 66M 37B 600 600 84.7

Fix-EfficientNet-B8 87M 90B 672 800 85.7 90.0 75.9

NFNet-F0 72M 12B 192 256 83.6 88.1 72.6

NFNet-F1 133M 36B 224 320 84.7 88.9 74.4

NFNet-F2 194M 62B 256 352 85.1 88.9 74.3

NFNet-F3 255M 115B 320 416 85.7 89.4 75.2

NFNet-F4 316M 215B 384 512 85.9 89.4 75.2

NFNet-F5 377M 290B 416 544 86.0 89.2 74.6

NFNet-F6+SAM 438M 377B 448 576 86.5 89.9 75.8

Transformers

ViT-B/16 86M 55B 224 384 77.9 83.6

ViT-L/16 307M 191B 224 384 76.5 82.2

T2T-ViT t-14 21M 5B 224 224 80.7

TNT-S 24M 5B 224 224 81.3

TNT-S + SE 25M 5B 224 224 81.6

TNT-B 66M 14B 224 224 82.8

DeiT-S 22M 5B 224 224 79.8 85.7 68.5

DeiT-B 86M 18B 224 224 81.8 86.7 71.5

DeiT-B↑384 86M 55B 224 384 83.1 87.7 72.4

DeiT-B↑384Υ 87M 56B 224 384 85.2 89.3 75.2

Our deep transformers

CaiT-S36 68M 14B 224 224 83.3 88.0 72.5

CaiT-S36↑384 68M 48B 224 384 85.0 89.2 75.0

CaiT-S48↑384 89M 64B 224 384 85.1 89.5 75.5

CaiT-S36Υ 68M 14B 224 224 84.0 88.9 74.1

CaiT-S36↑384Υ 68M 48B 224 384 85.4 89.8 76.2

CaiT-M36↑384Υ 271M 173B 224 384 86.1 90.0 76.3

CaiT-M36↑448Υ 271M 248B 224 448 86.3 90.2 76.7

CaiT-M48↑448Υ 356M 330B 224 448 86.5 90.2 76.9

ing the range of interactions within a single layer. Some

approaches adapt the receptive field of convolutions dy-

namically [15, 42]. At another end of the spectrum, atten-

tion can be viewed as a general form of non-local means,

which was used in filtering (e.g. denoising [10]), and more

recently in conjunction with convolutions [68]. Various

other attention mechanism have been used successfully to

give a global view in conjunction with (local) convolutions

[4, 52, 12, 77, 79], most mimic squeeze-and-excitate [32]

for leveraging global features. Lastly, LambdaNetworks [3]

decomposes attention into an approximated content atten-

tion and a batch-amortized positional attention component.

Hybrid architectures combining CNNs and transformers

blocks have also been used on ImageNet [58, 70] and on

COCO [11]. Originally, transformers without convolutions

were applied on pixels directly [47], even scaling to hun-

dred of layers [13], but did not perform at CNNs levels.

More recently, a transformer architecture working directly

on small patches has obtained state of the art results on Im-

ageNet [19]. Nevertheless, the state of the art has since re-

turned to CNNs [8, 49]. While some small improvements

have been applied on the transformer architecture with en-

couraging results [75], their performance is below the one

of DeiT [64], which uses a vanilla ViT architecture.

Encoder/decoder architectures. Transformers were

originally introduced for machine translation [67] with

encoder-decoder models, and gained popularity as masked

language model encoders (BERT) [18, 43]. They yielded

impressive results as scaled up language models, e.g.

GPT-2 and 3 [50, 9]. They became a staple in speech

recognition too [45, 36], being it in encoder and sequence

criterion or encoder-decoder seq2seq [61] conformations,

and hold the state of the art to this day [74, 78] with models

36 blocks deep. Note, transforming only the class token

with frozen trunk embeddings in CaiT is reminiscent of

non-autoregressive encoder-decoders [25, 41], where a

whole sequence (we have only one prediction) is produced

at once by iterative refinements.

Deeper architectures usually lead to better performance

[27, 57, 62], however this complicates their training pro-

cess [59, 60]. One must adapt the architecture and the

optimization procedure to train them correctly. Some ap-

proaches focus on the initialization schemes [24, 27, 71],

others on multiple stages training [54, 57], multiple loss

at different depth [62], adding components in the architec-

ture [2, 76] or regularization [33]. As pointed in our paper,

in that respect our LayerScale approach is more related to

Rezero [2] and Skipinit [16], Fixup [76], and T-Fixup [34].

6. Conclusion

In this paper, we have shown how train deeper
transformer-based image classification neural networks
when training on Imagenet only. We have also introduced
the simple yet effective CaiT architecture designed in the
spirit of encoder/decoder architectures. Our work further
demonstrates that transformer models offer a competitive
alternative to the best convolutional neural networks when
considering trade-offs between accuracy and complexity.

39



References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] Thomas C. Bachlechner, Bodhisattwa Prasad Majumder,

H. H. Mao, G. Cottrell, and Julian McAuley. Rezero is all

you need: Fast convergence at large depth. arXiv preprint

arXiv:2003.04887, 2020.

[3] Irwan Bello. Lambdanetworks: Modeling long-range inter-

actions without attention. In International Conference on

Learning Representations, 2021.

[4] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens,

and Quoc V Le. Attention augmented convolutional net-

works. In Conference on Computer Vision and Pattern

Recognition, 2019.

[5] Maxim Berman, Hervé Jégou, Andrea Vedaldi, Iasonas

Kokkinos, and Matthijs Douze. Multigrain: a unified im-

age embedding for classes and instances. arXiv preprint

arXiv:1902.05509, 2019.

[6] Lucas Beyer, Olivier J. Hénaff, Alexander Kolesnikov, Xi-

aohua Zhai, and Aaron van den Oord. Are we done with

imagenet? arXiv preprint arXiv:2006.07159, 2020.

[7] Andrew Brock, Soham De, and Samuel L Smith. Character-

izing signal propagation to close the performance gap in un-

normalized resnets. arXiv preprint arXiv:2101.08692, 2021.

[8] A. Brock, Soham De, S. L. Smith, and K. Simonyan. High-

performance large-scale image recognition without normal-

ization. arXiv preprint arXiv:2102.06171, 2021.

[9] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Sub-

biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-

tan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. arXiv preprint

arXiv:2005.14165, 2020.

[10] Antoni Buades, Bartomeu Coll, and J-M Morel. A non-local

algorithm for image denoising. In Conference on Computer

Vision and Pattern Recognition, 2005.

[11] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In European Confer-

ence on Computer Vision, 2020.

[12] Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong

Chen, Lu Yuan, and Zicheng Liu. Dynamic convolution:

Attention over convolution kernels. In Conference on Com-

puter Vision and Pattern Recognition, 2020.

[13] Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever.

Generating long sequences with sparse transformers. arXiv

preprint arXiv:1904.10509, 2019.

[14] Ekin D. Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V.

Le. Randaugment: Practical automated data augmen-

tation with a reduced search space. arXiv preprint

arXiv:1909.13719, 2019.

[15] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Conference on Computer Vision and Pattern

Recognition, 2017.

[16] Soham De and Samuel L Smith. Batch normalization bi-

ases residual blocks towards the identity function in deep

networks. arXiv e-prints, pages arXiv–2002, 2020.

[17] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In Conference on Computer Vision and Pattern

Recognition, pages 248–255, 2009.

[18] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[19] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. International Con-

ference on Learning Representations, 2021.

[20] Alaaeldin El-Nouby, Natalia Neverova, Ivan Laptev, and

Hervé Jégou. Training vision transformers for image re-

trieval. arXiv preprint arXiv:2102.05644, 2021.

[21] Angela Fan, Edouard Grave, and Armand Joulin. Reducing

transformer depth on demand with structured dropout. arXiv

preprint arXiv:1909.11556, 2019. ICLR 2020.

[22] Angela Fan, Pierre Stock, Benjamin Graham, Edouard

Grave, Rémi Gribonval, Hervé Jégou, and Armand Joulin.

Training with quantization noise for extreme model com-

pression. arXiv preprint arXiv:2004.07320, 2020.

[23] Jonathan Frankle and Michael Carbin. The lottery ticket hy-

pothesis: Finding sparse, trainable neural networks. arXiv

preprint arXiv:1803.03635, 2018.

[24] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In AIS-

TATS, 2010.

[25] Jiatao Gu, James Bradbury, Caiming Xiong, Victor OK Li,

and Richard Socher. Non-autoregressive neural machine

translation. arXiv preprint arXiv:1711.02281, 2017.

[26] Kai Han, An Xiao, Enhua Wu, Jianyuan Guo, Chunjing Xu,

and Yunhe Wang. Transformer in transformer. arXiv preprint

arXiv:2103.00112, 2021.

[27] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Conference

on Computer Vision and Pattern Recognition, June 2016.

[28] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Identity mappings in deep residual networks. arXiv preprint

arXiv:1603.05027, 2016.

[29] Elad Hoffer, Tal Ben-Nun, Itay Hubara, Niv Giladi, Torsten

Hoefler, and Daniel Soudry. Augment your batch: Improving

generalization through instance repetition. In Conference on

Computer Vision and Pattern Recognition, 2020.

[30] Grant Van Horn, Oisin Mac Aodha, Yang Song, Alexander

Shepard, Hartwig Adam, Pietro Perona, and Serge J. Be-

longie. The inaturalist challenge 2018 dataset. arXiv preprint

arXiv:1707.06642, 2018.

[31] Grant Van Horn, Oisin Mac Aodha, Yang Song, Alexander

Shepard, Hartwig Adam, Pietro Perona, and Serge J. Be-

longie. The inaturalist challenge 2019 dataset. arXiv preprint

arXiv:1707.06642, 2019.

40



[32] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. arXiv preprint arXiv:1709.01507, 2017.

[33] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-

ian Q. Weinberger. Deep networks with stochastic depth. In

European Conference on Computer Vision, 2016.

[34] Xiao Shi Huang, Felipe Perez, Jimmy Ba, and Maksims

Volkovs. Improving transformer optimization through bet-

ter initialization. In International Conference on Machine

Learning, pages 4475–4483. PMLR, 2020.

[35] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, 2015.

[36] Shigeki Karita, Nanxin Chen, Tomoki Hayashi, et al. A com-

parative study on transformer vs rnn in speech applications.

arXiv preprint arXiv:1909.06317, 2019.

[37] Diederik P Kingma and Prafulla Dhariwal. Glow: Gener-

ative flow with invertible 1x1 convolutions. arXiv preprint

arXiv:1807.03039, 2018.

[38] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei.

3d object representations for fine-grained categorization. In

4th International IEEE Workshop on 3D Representation and

Recognition (3dRR-13), 2013.

[39] Alex Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, CIFAR, 2009.

[40] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012.

[41] Jason Lee, Elman Mansimov, and Kyunghyun Cho. Deter-

ministic non-autoregressive neural sequence modeling by it-

erative refinement. arXiv preprint arXiv:1802.06901, 2018.

[42] Xiang Li, Wenhai Wang, Xiaolin Hu, and Jian Yang. Selec-

tive kernel networks. Conference on Computer Vision and

Pattern Recognition, 2019.

[43] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar

Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-

moyer, and Veselin Stoyanov. Roberta: A robustly optimized

bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[44] I. Loshchilov and F. Hutter. Fixing weight decay regulariza-

tion in adam. arXiv preprint arXiv:1711.05101, 2017.

[45] Christoph Lüscher, Eugen Beck, Kazuki Irie, et al. Rwth

asr systems for librispeech: Hybrid vs attention. Interspeech

2019, Sep 2019.

[46] M-E. Nilsback and A. Zisserman. Automated flower classi-

fication over a large number of classes. In Proceedings of the

Indian Conference on Computer Vision, Graphics and Image

Processing, 2008.

[47] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz

Kaiser, Noam Shazeer, Alexander Ku, and Dustin Tran. Im-

age transformer. In International Conference on Machine

Learning, pages 4055–4064. PMLR, 2018.

[48] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An

imperative style, high-performance deep learning library. In

Advances in neural information processing systems, pages

8026–8037, 2019.

[49] H. Pham, Qizhe Xie, Zihang Dai, and Quoc V. Le. Meta

pseudo labels. arXiv preprint arXiv:2003.10580, 2020.

[50] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario

Amodei, and Ilya Sutskever. Language models are unsuper-

vised multitask learners.

[51] Ilija Radosavovic, Raj Prateek Kosaraju, Ross B. Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. Conference on Computer Vision and Pattern Recog-

nition, 2020.

[52] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, I. Bello,

Anselm Levskaya, and Jonathon Shlens. Stand-alone self-

attention in vision models. In Neurips, 2019.

[53] B. Recht, Rebecca Roelofs, L. Schmidt, and V. Shankar. Do

imagenet classifiers generalize to imagenet? arXiv preprint

arXiv:1902.10811, 2019.

[54] A. Romero, Nicolas Ballas, S. Kahou, Antoine Chassang, C.

Gatta, and Yoshua Bengio. Fitnets: Hints for thin deep nets.

arXiv preprint arXiv:1412.6550, 2015.

[55] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. Imagenet large scale visual recognition challenge.

International journal of Computer Vision, 2015.

[56] Noam Shazeer, Zhenzhong Lan, Youlong Cheng, N. Ding,

and L. Hou. Talking-heads attention. arXiv preprint

arXiv:2003.02436, 2020.

[57] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International

Conference on Learning Representations, 2015.

[58] A. Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon Shlens, P.

Abbeel, and Ashish Vaswani. Bottleneck transformers for

visual recognition. arXiv preprint arXiv:2101.11605, 2021.

[59] R. Srivastava, Klaus Greff, and J. Schmidhuber. Highway

networks. arXiv preprint arXiv:1505.00387, 2015.

[60] R. Srivastava, Klaus Greff, and J. Schmidhuber. Training

very deep networks. In NIPS, 2015.

[61] Gabriel Synnaeve, Qiantong Xu, Jacob Kahn, Tatiana

Likhomanenko, Edouard Grave, Vineel Pratap, Anuroop Sri-

ram, Vitaliy Liptchinsky, and Ronan Collobert. End-to-end

asr: from supervised to semi-supervised learning with mod-

ern architectures. arXiv preprint arXiv:1911.08460, 2019.

[62] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In Conference on Computer

Vision and Pattern Recognition, 2015.

[63] Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019.

[64] Hugo Touvron, M. Cord, M. Douze, F. Massa, Alexandre

Sablayrolles, and H. Jégou. Training data-efficient image

transformers & distillation through attention. arXiv preprint

arXiv:2012.12877, 2020.

[65] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve

Jegou. Fixing the train-test resolution discrepancy. Neurips,

2019.

[66] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Hervé

Jégou. Fixing the train-test resolution discrepancy: Fixeffi-

cientnet. arXiv preprint arXiv:2003.08237, 2020.

41



[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. arXiv preprint

arXiv:1706.03762, 2017.

[68] X. Wang, Ross B. Girshick, A. Gupta, and Kaiming He.

Non-local neural networks. Conference on Computer Vision

and Pattern Recognition, 2018.

[69] Ross Wightman. Pytorch image mod-

els. https://github.com/rwightman/

pytorch-image-models, 2019.

[70] Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan,

Peizhao Zhang, Masayoshi Tomizuka, Kurt Keutzer, and Pe-

ter Vajda. Visual transformers: Token-based image repre-

sentation and processing for computer vision. arXiv preprint

arXiv:2006.03677, 2020.

[71] L. Xiao, Y. Bahri, Jascha Sohl-Dickstein, S. Schoenholz, and

Jeffrey Pennington. Dynamical isometry and a mean field

theory of cnns: How to train 10, 000-layer vanilla convo-

lutional neural networks. arXiv preprint arXiv:1806.05393,

2018.

[72] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, A.

Yuille, and Quoc V. Le. Adversarial examples improve im-

age recognition. Conference on Computer Vision and Pattern

Recognition, 2020.

[73] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,

and Kaiming He. Aggregated residual transformations for

deep neural networks. Conference on Computer Vision and

Pattern Recognition, 2017.

[74] Qiantong Xu, Alexei Baevski, Tatiana Likhomanenko, Paden

Tomasello, Alexis Conneau, Ronan Collobert, Gabriel Syn-

naeve, and Michael Auli. Self-training and pre-training

are complementary for speech recognition. arXiv preprint

arXiv:2010.11430, 2020.

[75] L. Yuan, Y. Chen, Tao Wang, Weihao Yu, Yujun Shi, F. Tay,

Jiashi Feng, and S. Yan. Tokens-to-token vit: Training vi-

sion transformers from scratch on imagenet. arXiv preprint

arXiv:2101.11986, 2021.

[76] Hongyi Zhang, Yann Dauphin, and Tengyu Ma. Fixup ini-

tialization: Residual learning without normalization. arXiv

preprint arXiv:1901.09321, 2019.

[77] Hang Zhang, Chongruo Wu, Zhongyue Zhang, Yi Zhu, Zhi-

Li Zhang, Haibin Lin, Yu e Sun, Tong He, Jonas Mueller, R.

Manmatha, M. Li, and Alex Smola. Resnest: Split-attention

networks. arXiv preprint arXiv:2004.08955, 2020.

[78] Yu Zhang, James Qin, Daniel S Park, Wei Han, Chung-

Cheng Chiu, Ruoming Pang, Quoc V Le, and Yonghui Wu.

Pushing the limits of semi-supervised learning for automatic

speech recognition. arXiv preprint arXiv:2010.10504, 2020.

[79] Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. Explor-

ing self-attention for image recognition. In Conference on

Computer Vision and Pattern Recognition, 2020.

42


