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Abstract

We present a simple yet powerful neural network that im-
plicitly represents and renders 3D objects and scenes only
from 2D observations. The network models 3D geometries
as a general radiance field, which takes a set of 2D images
with camera poses and intrinsics as input, constructs an in-
ternal representation for each point of the 3D space, and
then renders the corresponding appearance and geometry
of that point viewed from an arbitrary position. The key to
our approach is to learn local features for each pixel in 2D
images and to then project these features to 3D points, thus
yielding general and rich point representations. We addi-
tionally integrate an attention mechanism to aggregate pixel
features from multiple 2D views, such that visual occlusions
are implicitly taken into account. Extensive experiments
demonstrate that our method can generate high- quality and
realistic novel views for novel objects, unseen categories
and challenging real- world scenes.

1. Introduction
Understanding the precise 3D structure of a real- world

environment and realistically re- rendering it from free view-
points is a key enabler for many critical tasks, ranging
from robotic manipulation to augmented reality. Classic
approaches to recover the 3D geometry mainly include the
structure from motion (SfM) [34] and simultaneous local-
ization and mapping (SLAM) [3] pipelines. However, they
can only reconstruct sparse and discrete 3D point clouds
which are unable to contain geometric details.

The recent advances in deep neural networks have
yielded rapid progress in 3D modeling. Most of them fo-
cus on the explicit 3D shape representations such as voxel
grids [7], point clouds [10], and triangle meshes [50]. How-
ever, these representations are discrete and sparse, limiting
the recovered 3D structures to extremely low spatial resolu-
tion. In addition, these networks usually require large- scale
3D shapes for supervision, resulting in the trained models
over- fitting particular datasets and lacking generalization to
novel geometries.

Seen
Categories

Unseen
Categories

GRF

Novel View Rendering

Figure 1: A single model of our GRF infers high- quality
novel views for new objects of seen and unseen categories,
demonstrating its strong capability for 3D representation
and rendering.

Encoding geometries into multilayer perceptrons
(MLPs) [27, 35] recently emerges as a promising direction
in 3D reconstruction from 2D images. Its key advantage is
the ability to model 3D structures continuously instead of
discretely, achieving unlimited spatial resolution in theory.
However, many of these methods require 3D geometry
for supervision to learn the 3D shapes from images. By
introducing a recurrent neural network based renderer,
SRNs [45] is among the early work to learn implicit
surface representations only from 2D images, but it renders
over- smoothed images without details. Alternatively, by
leveraging the volume rendering to synthesize new views
with 2D supervision, the very recent NeRF [29] directly
encodes the 3D structure into a radiance field via MLPs,
achieving an unprecedented level of fidelity.

Nevertheless, NeRF has two major limitations: 1) since
3D content is encoded into the weights of an MLP, the
trained network (i.e., a learned radiance field) can only rep-
resent a single structure, and is unable to generalize across
novel geometries; and 2) because the shape and appearance
of each spatial 3D location along a light ray is only opti-
mized by individual pixel RGBs, the learned representa-
tions of that location do not have rich geometric patterns,
resulting in less photo- realistic rendered images.

In this paper, we propose a general radiance field (GRF),
a simple yet powerful neural network that builds upon NeRF
[29], overcoming these two limitations. Our GRF takes a
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set of 2D images with camera poses and intrinsics, a 3D
query point, and its query viewpoint (i.e., the camera loca-
tion xyz) as input, and predicts the RGB value and volumet-
ric density at that query point. Our network learns to repre-
sent 3D content from sparse 2D observations, and to infer
shape and appearance from previously unobserved viewing
angles. Note that the inferred shape and appearance of any
particular 3D query point explicitly takes into account its
local geometry from the available 2D observations. In par-
ticular, our proposed GRF consists of four components:
• Extracting general 2D visual features for every light ray

from the input 2D observations;
• Reprojecting the corresponding 2D features back to the

query 3D point using multi-view geometry;
• Aggregating all reprojected features of the query point

with attention, where visual occlusions are implicitly con-
sidered;

• Rendering the aggregated features of the query 3D point
along a particular query viewpoint, and producing the cor-
responding RGB and volumetric density via NeRF [29].
These four components enable our GRF to distinguish it-

self from existing approaches: 1) Compared with the classic
SfM/SLAM systems, our GRF can represent the 3D con-
tent with continuous surfaces; 2) Compared with most ap-
proaches based on voxel grids, point clouds and meshes,
our GRF learns 3D representations without requiring 3D
data for training; and 3) Compared with the existing im-
plicit representation methods such as SDF [35], SRNs [45]
and NeRF [29], our GRF can represent diverse 3D contents
from 2D views with strong generalization to novel geome-
tries. In addition, the learned 3D representations carefully
consider the general geometric patterns for every 3D spatial
location, allowing the rendered views to be exceptionally re-
alistic with fine-grained details. Figure 1 shows qualitative
results of our GRF which infers high-quality novel views
for new objects of both seen and unseen categories. Our
key contributions are:
• We propose a general radiance field to represent 3D struc-

tures and appearances from 2D images. It has strong gen-
eralization to novel geometries in a single forward pass.

• We integrate multi-view geometry and an attention mech-
anism to learn general geometric local patterns for each
3D query point along every query light ray. This allows
the synthesized 2D views to be superior.

• We demonstrate significant improvement over baselines
on large-scale datasets and provide intuition behind our
design choices through extensive ablation studies.
We note that some concurrent works such as pixelNeRF

[57], IBRNet [51], SRF [5] and ShaRF [38] share the
similar idea with GRF. The key difference is that we use
geometry-aware attention module to combine the general
2D local features from multi-views, so that visual occlu-
sions can be effectively addressed for better generalization.

2. Related Work
Classic Multi-view Geometry. Classic approaches to

reconstruct 3D geometry from images mainly include SfM
and SLAM systems such as Colmap [43] and ORB-SLAM
[30], which firstly extract and match hand-crafted geomet-
ric local features and then apply bundle adjustment for
both shape and camera motion estimation [15]. Although
they can recover visually satisfactory 3D models, the re-
constructed shapes are usually sparse, discrete point clouds.
In contrast, our GRF learns to represent the continuous 3D
structures from images.

Geometric Deep Learning. Impressive progress in re-
covering explicit 3D shapes from either single or multi-
ple images has come from recent advances in deep neu-
ral nets such as voxel grid [7, 46, 48, 55], octree [41, 8],
point cloud [10, 36] and triangle mesh [50, 14, 12, 31] ap-
proaches. Although these methods can predict realistic 3D
structures, they have two limitations. First, most of them
require ground truth 3D labels to supervise the networks,
resulting in the inability of the learned representations to
generalize to novel real-world scenarios. Second, since the
recovered 3D shapes are discrete, they are unable to pre-
serve high-resolution geometric details. In contrast, our
GRF learns continuous 3D shape representations only from
a set of 2D images with camera poses and intrinsics, which
can be cheaply acquired, and also allow better generaliza-
tion across new scenarios.

Neural Implicit 3D Representations. The implicit rep-
resentation of 3D shapes recently emerges as a promising
direction to recover 3D geometries. It is initially formulated
as level sets by optimizing neural nets which map xyz loca-
tions to an occupancy field [27, 42] or a distance function
[35]. The subsequent works [32, 45, 23, 1, 2] introduce dif-
ferentiable rendering functions, allowing 2D images or raw
3D point clouds to supervise the networks. Using neural ra-
diance fields instead, the latest NeRF [29] and the succeed-
ing NSVF [21], NeRF-wild [26], GRAF [44] demonstrate
impressive results to represent complex 3D environments.
However, they do not take into account the local geometric
patterns for spatial locations, thereby yielding less realistic
rendered 2D images. Additionally, both NeRF and NeRF-
wild can only represent a single scene, and are unable to
generalize to novel scenarios. Uniquely, our GRF maps any
set of images to the corresponding 3D structure with geo-
metric details.

Novel View Synthesis and Neural Rendering. Novel
view synthesis involves generating unseen views from mul-
tiple images. Existing methods usually learn a global em-
bedding and then estimate a new image given a viewing
angle, including GAN based methods [13, 37], variational
auto-encoders [20], autoregressive models [33], and other
generative frameworks [9]. Although photo-realistic single
images can be generated, these methods tend to learn the
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Figure 2: Our GRF projects each 3D point, p, to each of the M input images, gathering per- pixel features from each view.
These features are aggregated and fed to an MLP to infer p with its color and volumetric density.

manifold of 2D images, instead of exploiting the underly-
ing 3D geometry for consistent multi- view synthesis.

Neural rendering techniques [11, 18] have recently been
investigated and integrated into 3D reconstruction pipelines,
where there are no ground truth 3D data available but only
2D images for supervision. To render discrete voxel grids
[54, 40, 49], point clouds [16], meshes [19, 4, 22], and im-
plicit surfaces [23, 39], most of these techniques are de-
signed with differentiable and approximate functions, but
sacrifice the sharpness of synthesized images. By con-
trast, our GRF leverages the successful volume rendering
of NeRF [29] which is naturally differentiable and can ac-
curately render the RGB per light ray.

3. GRF
3.1. Overview

Our GRF models the 3D geometry and appearance
as a neural network fW where W represent learn-
able parameters. This network takes a set of M
images together with their camera poses and intrin-
sics {(I1, ξ1,K1) · · · (Im, ξm,Km) · · · (IM , ξM ,KM )},
a query 3D point p = {xp, yp, zp}, and its query view-
point Vp = {xv

p, y
v
p , z

v
p} as input, and then predicts the

RGB value {rp, gp, bp} and the volumetric density dp of
that point p observed from the viewpoint Vp. Formally, it
is defined as below:

(rp, gp, bp, dp) =fW

({
(I1, ξ1,K1), · · · (IM , ξM ,KM )

}
,

{
xp, yp, zp

}
,
{
xv
p, y

v
p , z

v
p

})
(1)

The network is a general radiance field (GRF) which pa-
rameterizes arbitrary 3D contents observed by the input M
images, returning both the appearance and geometry, when
being queried at any location p from any viewpoint V in 3D
space.

As illustrated in Figure 2, the proposed GRF firstly ex-
tracts general features for each light ray through every pixel
shown by the red and green square patches, and then re-
projects those features back to the query 3D point p. After
that, the corresponding RGB value and volumetric density
(rp, gp, bp, dp) are inferred from those features via MLPs,
as shown by the purple dot. By using volume rendering,
multiple points on the same light ray are integrated, obtain-
ing the rendered pixel RGB.

Our network consists of four components: 1) A feature
extractor for every 2D pixel; 2) A reprojector to transform
2D features to 3D space; 3) An aggregator to obtain general
features for 3D points; and 4) The neural renderer NeRF
[29] to infer the appearance and geometry for 3D points.

3.2. Extracting General Features for 2D Pixels

Since each pixel of 2D images describes specific 3D
points in space, this module is designed to extract the gen-
eral features of each pixel, in order to learn the regional
description and geometric patterns for each light ray. A
naive approach is to directly use the raw rgb values as the
pixel features. However, this is sub- optimal because the
raw rgb values are sensitive to lighting conditions, envi-
ronmental noise, etc. In order to learn more general and
robust patterns for each pixel, we turn to use a more pow-
erful encoder- decoder based convolutional neural network
(CNN). As shown in Figure 3, our CNN module is designed
with the following two features:

• Instead of directly feeding raw RGB images into the CNN
module, we stack (duplicate) the corresponding view-
point, i.e., the xyz location of the camera, to each pixel
of the image. This allows the learned pixel features to be
explicitly aware of its relative position in the 3D space.
Note that, we empirically find that stacking the additional
camera rotation and intrinsics to each pixel does not no-
ticeably improve the performance.
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• We use skip connections between the encoder and de-
coder to preserve high frequency local features for each
pixel, while optionally integrating a couple of fully con-
nected (fc) layers in the middle of the CNN module to
learn global features. The mixture of hierarchical features
tends to to be more general and representative, effectively
aiding the network in practice.

fc

skip connections

Input Images 
with Poses

H x W x (3 + 3)
Pixel Features
H x W x 128

Figure 3: Our CNN module
extracts robust per- pixel features
from each input view using skip
connections.

Details of the CNN
module are presented in
appendix and all input
images share the same
CNN module. Note
that there are many ways
to extract pixel features,
but identifying an optimal
CNN module is not in the
scope of this paper.

3.3. Reprojecting 2D Features to 3D Space
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!
Reprojected
2D Features

"
#F

$
#F

! !

Figure 4: Reprojecting pixel fea-
tures back to a 3D point p.

Considering that the
extracted pixel features
are a compact description
of the light ray emitted
from the camera center up
to the 3D surface, we nat-
urally reproject the pixel
features back to the 3D
space along the light ray.
Since there are no depth
scans paired with RGB
images, it is impossible to determine which particular 3D
surface point the pixel features belong to. In this module,
we preliminarily regard the pixel features as the represen-
tation of every location along the light ray in 3D space.
With this simple formulation, every 3D point can theoret-
ically have a copy of its corresponding 2D pixel features
from each 2D image. Formally, given a 3D point p, an ob-
served 2D view Im together with the camera pose ξm and
the intrinsics Km, the corresponding 2D pixel features Fm

p

are retrieved by the reprojection operation below:

Fm
p = P

(
{Ik, ξm,Km}, {xp, yp, zp}, Im

)
(2)

where the function P() follows the principle of multi- view
geometry [15] and Im represents the image features ex-
tracted by the CNN module in Section 3.2. This reprojec-
tion is illustrated in Figure 4. However, since the pixels of
2D images are discrete and bounded within a certain spatial
size, while the 3D points are continuous in the space, after
the 3D point p is projected to the plane of image Im, we
apply two approximations to deal with the following issues.

• If the point lies inside of the image, we simply select the
nearest pixel and duplicate its features to the 3D point.

Note that, more advanced techniques may be applied to
address the discretization issue, such as bilinear interpo-
lation or designing a kernel function.

• If the point lies outside of the image, we assign a zero
vector to the 3D point, which means there is no informa-
tion observed. In fact, we empirically find that the nearest
interpretation can also achieve good performance, but it is
only applicable for relatively small- scale structures.

Overall, the above simple reprojection operation explic-
itly retains the extracted 2D pixel features back to 3D space
via the principle of geometry.

3.4. Obtaining General Features for 3D Points

For each query 3D point p, our GRF retrieves a feature
vector from each input image. However, given a set of input
images, it is challenging to obtain a final feature vector for
the point p, because:

• The total number of input images for each 3D scenario is
variable and there is no order for images. Consequently,
the retrieved feature vectors are also unordered with arbi-
trary size.

• Since there are no depth scans paired with the input
RGBs, it is unable to decide which features are the true
descriptions of the query point due to visual occlusions.
Ideally, these features can be aware of the relative dis-
tance to the query point and then selected automatically.

To tackle these critical issues, we formulate this prob-
lem as an attention aggregation process. In particular,
as shown in Figure 5, given the query 3D point p, its
query viewpoint Vp, and the set of retrieved pixel features
{F1

p · · ·Fm
p · · ·FM

p }:

• For each retrieved feature vector Fm
p , we firstly use

shared MLPs to integrate the information of query point
p, generating a new feature vector F̂m

p which is aware of
the relative distance to the query point p. Formally, it is
defined as:

F̂m
p = MLPs(Fm

p ⊕ [xp, yp, zp]), (⊕ is concatenation)

• After obtaining the new set of position- aware features
{F̂1

p · · · F̂m
p · · · F̂M

p }, we use the existing attention aggre-
gation methods such as AttSets [56] and Slot Attention
[24] to compute a unique feature vector F̄p for the query
3D point p. Basically, the attention mechanism learns a
unique weight for all input features and then aggregates
them together. According to the theoretical analysis in
[56] and [24], the selected attention mechanisms are per-
mutation invariant with regard to the input set of feature
vectors and can process an arbitrary number of elements.
Formally, it is defined as:

F̄p = A
(
F̂1

p · · · F̂m
p · · · F̂M

p

)
, (A is an attention function)
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Figure 5: Pixel features are aggregared over all input views
for each 3D point.

Above all, for every query 3D point p, its final features
F̄p explicitly preserve the general geometric patterns re-
trieved from the input 2D observations and are also made
aware of the query point location in 3D space. This allows
the 3D point features F̄p to be general and representative
for its own geometry and appearance.

3.5. Rendering 3D Features via NeRF

For any query 3D point p, we feed its features F̄p and
query viewpoint Vp, i.e.(xv

p, y
v
p , z

v
p), into MLPs, and then

predict its RGB values {rp, gp, bp} and volumetric density
dp. In fact, these MLPs forms a general radiance field. As
illustrated in Figure 6, we exactly follow the MLPs designed
in NeRF [29]. Note that, the only difference is that our GRF
uses the point features F̄p as input, while the original NeRF
uses the point position xyz.

!"#$

!"#
3D Point Features

Viewpoint
V!

!!! " #! " $! " %!"

Figure 6: The aggregated point features and viewing direc-
tion are concatenated as input to an MLP to predict color
and density for every point.

An image pixel RGB can be rendered from the radiance
field by casting a ray from the camera center towards the 3D
space using volume rendering equations [17] below:

rgb =

+∞∫

0

T (t)c(t)σ(t)dt, T (t) = exp(−
t∫

0

σ(s)ds)

where c(t) and σ(t) are the color and volume density at
point t on the ray. The above integrals are estimated with
numerical quadrature as in NeRF [29] with a hierarchical
sampling strategy. We strictly follow this method to esti-
mate the color for each ray. Thus, our GRF can directly
synthesize novel 2D images by querying points along light
rays. This allows the entire network to be trainable only
with a set of 2D images, without requiring 3D data.

3.6. Implementation

The above four modules are connected and trained end-
to- end. Details of the CNN module and the attention mod-

Table 1: Comparison of the average PSNR (in dB) and
SSIM of reconstructed images in the ShapeNetv2 dataset.
The higher the scores, the better the synthesized novel
views. Note that, our GRF solves a harder problem than
SRNs, because GRF infers the novel object representa-
tion in a single forward pass, while SRNs cannot.

2 Images (Group 1) 1 Image (Group 2)

Chairs Cars Chairs Cars

TCO [47] 21.33 / 0.88 18.41 / 0.80 21.27 / 0.88 18.15 / 0.79
WRL [52] 22.28 / 0.90 17.20 / 0.78 22.11 / 0.90 16.89 / 0.77
dGQN [9] 22.36 / 0.89 18.79 / 0.79 21.59 / 0.87 18.19 / 0.78
SRNs [45] 24.48 / 0.92 22.94 / 0.88 22.89 / 0.91 20.72 / 0.85

GRF(Ours) 22.65 / 0.88 22.34 / 0.86 21.25 / 0.86 20.33 / 0.82

ule for different experiments are presented in appendix. All
the designs of neural rendering strictly follow NeRF [29]. In
our network, all 3D locations and RGB values are processed
by the positional encoding proposed by NeRF. The L2 loss
between rendered RGBs and the ground truth is used to op-
timize the whole network.

4. Experiments
4.1. Generalization to Unseen Objects

Following the experimental settings of SRNs [45], we
firstly evaluate the novel view synthesis of our GRF on the
chair and car classes of ShapeNetv2. Particularly, the chair
has 4612 objects for training, 662 for validation and 1317
for testing, while the car has 2151 objects for training, 352
for validation and 704 for testing. Each training object has
randomly sampled 50 images with a resolution of 128×128.
We train two separate models on chairs and cars and then
conduct the following two groups of experiments.

• Group 1: Novel- view synthesis of unseen objects in the
testing split of the same category. The trained two models
are tested on novel objects of the same category. During
testing, the model is fed with 2 novel views of each novel
object, inferring 251 novel views for evaluation.

• Group 2: Similar to Group 1, but only 1 novel view is fed
into the model for novel view synthesis.

Table 1 compares the quantitative results of our GRF and
four baselines. Note that, the recent NeRF and NSVF are
not scalable to learn large number of scenes simultaneously
because each scene is encoded into the network parameters.

Analysis. Our GRF achieves comparable performance
with SRNs on the car category for novel view synthesis in
both Group 1&2. Note that, our GRF solves a much harder
problem than SRNs. In particular, our network directly in-
fers the unseen object representation in a single forward
pass, while SRNs needs to be retrained on all new objects

15186



!"#$ %&'()*+( ,-(,.'/'/01 2"3 %4+,$1 2,*+/5 6,+()
Figure 7: Qualitative results of SRNs (without retraining) and our GRF for novel view synthesis of unseen cars. SRNs fails
to recover faithful shapes for unseen cars without retraining.

to optimize the latent code. As a result, the experiments of
Group 1&2 are significantly in favour of SRNs.

To demonstrate the advantage of GRF over SRNs, we di-
rectly evaluate the trained SRNs model on unseen objects
(of the same category) without retraining. For compari-
son, we also directly evaluate the trained GRF model on
the same novel objects. Figure 7 shows the qualitative re-
sults. It can be seen that if not retrained, SRNs completely
fails to reconstruct unseen car instances, but randomly gen-
erates similar cars from learned prior knowledge, primarily
because its latent code has not been updated from the un-
seen objects. In contrast, by learning pixel local patterns,
our GRF generalizes well to novel objects directly.

4.2. Generalization to Unseen Categories

We further evaluate the generalization capability of our
GRF across unseen object categories on the ShapeNet
dataset rendered by DISN [53]. In particular, we train a sin-
gle model of our network on 6 categories {chair, bench, car,
airplane, table, speaker}, and then directly test it on the re-
maining 7 unseen categories {cabinet, display, lamp, phone,
rifle, sofa, watercraft}. For each training category, 1000 ob-
jects are randomly selected, while for each testing category,
200 objects are randomly selected. All objects have 36 ren-
dered images with 224×224 pixels. For comparison, we
also train a single model for SRNs on 6 categories. Dur-
ing testing, we carefully retrain SRNs on all objects of the
7 categories. The following two groups of experiments for
view synthesis are conducted.

• Group 1: Both our GRF model and the retrained SRNs
model are fed with 2 views of each object from unseen
categories, inferring the total 36 views for evaluation.

• Group 2: Similar to Group 1, but 6 views are fed into the
two models for novel view synthesis.

Table 2 shows the quantitative results of GRF and SRNs.
We also include the scores for novel objects of trained cat-
egories for comparison. It can be seen that our GRF main-
tains the similar performance when evaluated on unseen cat-
egories, demonstrating the strong generalization capability.
Notably, thanks to our attentive aggregation module, given
more input images (6 vs 2), the overall performance and
generalization of GRF increases significantly, while SRNs

Table 2: Comparison of the average PSNR and SSIM of re-
constructed images by our GRF and SRNs [45]. The higher
the scores, the better the synthesized novel views. Note
that, the SRNs is retrained on the new 7 classes.

Unseen 7 Classes Seen 6 Classes (New Objects)

Group 1 Group 2 Group 1 Group 2
(2 Images) (6 Images) (2 Images) (6 Images)

SRNs 24.16 / 0.90 25.76 / 0.91 25.74 / 0.91 26.79 / 0.92
Ours 24.68 / 0.90 29.37 / 0.95 25.63 / 0.90 29.57 / 0.95

improves marginally even though it is retrained. Figure 1
shows qualitative results. More results are in appendix.

4.3. Generalization to Unseen Scenes

We further evaluate the generalization of GRF on a more
complex dataset Synthetic- NeRF [29]. It consists of path-
traced images of 8 synthetic scenes with complicated geom-
etry and realistic materials. Each scene has 100 views for
training and 200 novel views for testing. Each image has
800 × 800 pixels. We train a single model on randomly se-
lected 4 scenes, i.e., Chair, Mic, Ship, and Hotdog, and then
conduct the following two groups of experiments.

• Group 1 (Without Finetuning): The trained model is di-
rectly tested on the remaining 4 novel scenes, i.e., Drums,
Lego, Materials, and Ficus. Basically, this experiment is
to evaluate whether the learned features can truly gen-
eralize to new scenarios. This is extremely challenging
because there are only 4 training scenes and the overall
shapes of the 4 novel scenes are dramatically different.

• Group 2 (With Finetuning): The trained model is further
finetuned on each of the four novel scenes with 100, 1k,
and 10k iterations separately. In total, we obtain (3 mod-
els/scene × 4 scenes = 12 new models). For comparison,
we also train NeRF on each of the four novel scenes with
100, 1k, 10k iterations from scratch. This group of exper-
iments evaluates how the initially- learned features of our
GRF can be transferred to novel scenes.

Analysis. Table 3 compares the quantitative results and
Figure 8 shows the qualitative results. We can see that: 1)
In Group 1, our GRF can indeed generalize to novel scenes
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Figure 8: Qualitative results of our GRF for novel scene generalization.

Table 3: The average scores of PSNR, SSIM and LPIPS for
GRF and NeRF on four novel scenes of Synthetic- NeRF.

PSNR↑ SSIM↑ LPIPS↓
GRF (Group 1) 13.62 0.763 0.246

NeRF (Group 2, 100 iters) 15.15 0.752 0.359
NeRF (Group 2, 1k iters) 19.81 0.809 0.228
NeRF (Group 2, 10k iters) 23.35 0.875 0.137

GRF (Group 2, 100 iters) 19.69 0.835 0.169
GRF (Group 2, 1k iters) 22.00 0.876 0.128
GRF (Group 2, 10k iters) 25.10 0.916 0.089

with complex geometries, demonstrating the effectiveness
of learning point local features in GRF. As shown in the
first image of Figure 8, the overall shape and appearance
of Lego can be satisfactorily recovered, though it has never
been seen before. 2) In Group 2, our GRF can quickly learn
high- quality scene representations given a small number of
training iterations, thanks to the initially learned general
features. Compared with the NeRF trained from scratch,
the learned GRF significantly speed up novel scene learn-
ing, achieving much better results given the same training
iterations of new scenes. Additionally, we conduct simi-
lar generalization experiments on the real- world dataset [6].
More results are in appendix.

4.4. Pushing the Boundaries of Single Scenes

In addition to the generalization of our GRF for unseen
objects and scenes, the learned pixel features are expected
to significantly improve the quality of rendered images for
single scenes. To validate this, we conduct experiments on
complex real- world scenes captured by cellphones. There
are 8 scenes, 5 from LLFF [28] and 3 from NeRF. Each
scene has 20 to 62 images, 1/8 of which for testing. All
images have 1008 × 756 pixels. In particular, we train a
single model for each real- world scene, following the same
experimental settings of NeRF. Table 4 compares the quan-
titative results. Note that, the recent NSVF [21] is unable to
process these forward- facing scenes because the predefined
voxels cannot represent the unbounded 3D space.

Analysis. Our method surpasses the state of the art

Table 4: The average scores of PSNR, SSIM and LPIPS in
the challenging real- world dataset for single- scene learning.

PSNR↑ SSIM↑ LPIPS↓
SRNs [45] 22.84 0.668 0.378
LLFF [28] 24.13 0.798 0.212
NeRF [29] 26.50 0.811 0.250

GRF(Ours) 26.64 0.837 0.178

NeRF [29] by large margins, especially over the SSIM and
LPIPS metrics. Compared with PSNR which only measures
the average per- pixel accuracy, the metrics SSIM and LPIPS
favor high quality of photorealism, highlighting the superi-
ority of our GRF to generate truly realistic images. Figure 9
shows the qualitative results. As highlighted by the red cir-
cles, our GRF can generate fine- grained geometries in pixel
level, while NeRF produces many artifacts. This demon-
strates our GRF indeed learns precise pixel features from
the 2D images for 3D representation and rendering.

4.5. Ablation Study

To evaluate the effectiveness of the key components of
our GRF, we conduct 3 groups of ablation experiments on
the car category in ShapeNetv2 dataset. In particular, we
train on the entire training split then randomly select 500
objects from the training split for novel view synthesis. Dur-
ing testing, the model infers 50 novel views for each of these
500 objects for evaluation.

• Group 1: The viewpoints of the input images are removed
from the CNN module. The CNN module is not explicitly
aware of the relative position of the pixel features.

• Group 2: The decoder of the CNN module is removed and
each input image is encoded as a global feature vector.
For any 3D query point which is rightly projected into the
image boundary, that global feature vector is retrieved and
reprojected to the query point. Fundamentally, this mod-
ified CNN module can be regarded as a hyper- network
that learns a conditional embedding from input images
and then feed it into NeRF, but it sacrifices the precise
pixel local features.

• Group 3: The advanced attention module is replaced by
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Figure 9: Qualitative results on real- world scenes. Our GRF can generate more realistic images than NeRF.

Table 5: The average scores of PSNR and SSIM for ablated
GRF in the subset of car category.

PSNR↑ SSIM↑
(1) Remove Input Viewpoints 20.13 0.807
(2) Remove Pixel Local Features 20.23 0.818
(3) Replace Attention by Maxpool 24.88 0.914
(4) The Full Model 27.16 0.942

max- pooling to aggregate the pixel features, aiming to in-
vestigate how the visual occlusion can be better addressed
using soft attention.

• Group 4: The full model is trained and tested with the
same settings for comparison.

Analysis. Table 5 compares the performance of all ab-
lated models. We can see that: 1) The greatest impact is
caused by the removal of image viewpoints from the CNN
module and the lack of local pixel features to represent
3D points. It highlights that obtaining the position- aware
and precise pixel features is crucial for 3D representation
from 2D images, while learning a simple hyper- network for
NeRF cannot achieve comparable performance. 2) Using
max- pooling to select the reprojected pixel features is sub-
optimal to address the visual occlusions.

4.6. Analysis of Attention Mechanism

The attention mechanism in our GRF aims to automat-
ically select the correct pixel patch from multiple pixel
patches where the light rays intersect at the same query
3D point in space. In order to investigate how the atten-
tion mechanism learns to select the useful information, as
shown in Figure 10, we feed three images (#1,#2,#3) of an
unseen car into our GRF model which is well- trained on
ShapeNet car category, and then render a new image (i.e.,
the 5th image in Figure 10). For each pixel of the rendered
image, we retrieve the input image pixel that has the high-
est attention score, obtaining a Max Attention Map (the 4th
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Figure 10: The attention mechanism learns to select the use-
ful pixel information for inferring a novel view.

image in Figure 10). Specifically, the rendered pixels with
purple color correspond to the input image #1, the green
pixels correspond to the input image #2, while the blue pix-
els correspond to the input image #3. Experiment details
are in appendix.

It can be seen that, when inferring a new image, the at-
tention module of our GRF focuses on the most informative
pixel patch from the multiple input pixel patches. In addi-
tion, it is able to truly deal with the visual occlusion. For
example, when inferring the windshield of the car, the at-
tention module focuses on the input image #2 where the
windshield is visible, while ignoring the image #1 and #3
where the windshield is self- occluded.

5. Conclusion
Our proposed method models 3D geometries as a

general radiance field. We have demonstrated that our
GRF can learn general and robust 3D point features from
a set of sparse 2D observations by using the principle of
multi- view geometry to precisely map 2D pixel features
back to 3D space and by leveraging attention mechanisms
to implicitly address visual occlusions. In doing so, our
GRF can synthesize truly realistic novel views. However,
there are still limitations that may lead to future work: 1)
more advanced CNN modules can be designed to learn
better pixel features; and 2) depth scans can be integrated
into the network to explicitly address visual occlusions.
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