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Abstract

We investigate the impact of aliasing on generalization
in Deep Convolutional Networks and show that data
augmentation schemes alone are unable to prevent it
due to structural limitations in widely used architectures.
Drawing insights from frequency analysis theory, we take
a closer look at ResNet and EfficientNet architectures
and review the trade-off between aliasing and information
loss in each of their major components. We show how
to mitigate aliasing by inserting non-trainable low-pass
filters at key locations, particularly where networks lack
the capacity to learn them. These simple architectural
changes lead to substantial improvements in general-
ization on i.id. and even more on out-of-distribution
conditions, such as image classification under natural
corruptions on ImageNet-C [11] and few-shot learning on
Meta-Dataset [26]. State-of-the art results are achieved
on both datasets without introducing additional trainable
parameters and using the default hyper-parameters of open
source codebases.

1. Introduction

Image analysis in the frequency domain has traditionally
played a vital role in computer vision and was even
part of the standard pipeline in the early days of deep
learning [16]. However, with the advent of large datasets,
many practitioners concluded that it was unnecessary to
hard-code such priors due to the belief that they can be
learned from the data itself.

Deep learning approaches thrive in problem settings
where labelled data is abundant and training times are
virtually unrestricted — allowing the algorithm to appar-
ently learn all necessary features and priors to achieve
impressive performance. Central to the success of deep
learning approaches on supervised learning problems is the
assumption that the training and test data are sampled from
the same distribution (i.i.d. conditions). However, many
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Figure 1: Input image (Left) and feature maps (Right) from
a ResNet-50 illustrating features before subsampling (top
row), aliasing distortions (middle row) and its prevention
using anti-aliasing filters (bottom row).

important problem settings involve out-of-distribution
(0.0.d.) data or may restrict the amount of labelled data typ-
ically required for training deep networks “from scratch”.
In these challenging scenarios, where implicit knowledge
cannot be fully obtained from the training datasets, the
search for stronger architectural priors as a mechanism to
impose explicit knowledge, once again, becomes a critical
line of investigation.

We investigate how aliasing impacts robust generaliza-
tion under shifts in datasets’ spectral distributions and pro-
pose simple architectural modifications to mitigate this im-
pact. Our contributions are summarised as follows: (i)
A detailed study aimed at more precisely isolating the ef-
fects of aliasing in convolutional neural networks (CNNs)
is presented. (i) We use frequency analysis theory to de-
rive the critical network locations where anti-aliasing fil-
ters must be added, particularly in the pathways that lack
the capacity to learn them. We propose simple architec-
tural modifications to ResNet and EfficientNet based mod-
els based on these first principles. (iii) We show that our
proposed architecture leads to improved performance on
i.i.d. and also on challenging 0.0.d. benchmarks, using open
source codebases, and their default hyper-parameters. (iv)
We show that this architectural improvement complements
other techniques for improving generalization, namely data-
augmentation and smooth activations. It surpasses the SoTA
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stand-alone method for ImageNet-C in 9 of 15 categories,
while producing the lowest clean error on ImageNet, and
achieves SOTA among approaches that learn on all training
sources on Meta-Dataset.

2. Spectral Aliasing in Convolutional Networks

Aliasing is a well known phenomenon that may occur
when subsampling any signal. It occurs when the sampling
rate is too low for the signal’s bandwidth and does not sat-
isfy the Nyquist rate [18]. Any subsampling that violates
this condition causes the high frequency components to ad-
ditively spill into the signal’s low frequency band. This type
of distortion can result in noticeable artifacts . In classical
image/signal processing, aliasing is prevented by applying a
low-pass filter before subsampling. Theoretical fundamen-
tals are presented in Appendix A, where Figure 7 illustrates
the frequency leakage caused by aliasing.

In CNNSs, any operation that spatially subsamples its
input can potentially cause aliasing, if sampling at a rate
lower than twice the highest frequency contained in the in-
put (Nyquist rate). Figure 1 illustrates aliasing distortions
in CNN’s activation maps. It shows the pre-activations and
resulting features from a ResNet-50’s second subsampling
layer, with and without anti-aliasing.

We now detail the questions addressed in this work.

o Are anti-aliasing filters necessary, or do convolutional
networks implicitly learn to prevent aliasing?

It is plausible that anti-aliasing filters can be learned by ex-
isting, trainable filters of convolutional networks if provided
with sufficient spatial support. In Section 4, we review the
relation between the bandwidth of well known low-pass fil-
ters and their spatial support size, and establish a relation
between CNN filter sizes and their intrinsic capacity to learn
low-pass filters directly from data. In Section 4.2 we use
these principles to identify “aliasing critical paths” in two
modern architectures (ResNet [8, 9] and EfficientNet [25])
and identify their architectural components which are par-
ticularly prone to cause aliasing. We point to key represen-
tation bottlenecks that lack the minimum filter size to repre-
sent low-pass filters that prevent these models from learning
to prevent aliasing in an end-to-end fashion. We introduce
architectural modifications at these bottlenecks which are
able to reduce aliasing through low-pass filtering. To prove
the contrapositive, we show that introducing these architec-
tural changes where they are not required in theory actually
reduces performance in practice. Finally, we experimen-
tally validate the performance improvement of these archi-
tectures via ablation studies.

o Can we separate anti-aliasing from other confounding
effects?

Introducing anti-aliasing filters can affect both prediction
and training. Confounding effects with direct influence on
performance include: interaction of the anti-aliasing filter
with backpropagation dynamics; potential increase in re-
ceptive field size and indirect smoothing of non-linearities.
In Section 4.1 we formulate a criterion for optimal place-
ment of low-pass filters and a set of anti-aliasing compo-
sitions to isolate the effect of anti-aliasing from these other
confounding effects. We perform a number of ablation stud-
ies that confirm their differences across a variety of experi-
mental settings.

e Can standard architectures learn anti-aliasing filters
via data-augmentation?

Although rich data augmentation can provide an incentive
to learn anti-aliasing filters, we show that the performance
improvements occur mainly in the low-frequency bands.
In contrast, the improvements obtained by our anti-aliased
model are shown to benefit features across all spectral
bands. We also show that when combined, our model boosts
the benefits of data-augmentation to be sustained across the
spectrum. Those results confirm our hypotheses that data-
augmentation alone cannot prevent anti-aliasing without ad-
ditional architectural modifications. Finally, we show that
combining our model with data augmentation consistently
leads to the best results in all of our experiments. In Section
5.2 we show that this combination extends the invariances
induced by data-augmentation across the entire spectrum.

e Does frequency aliasing impact the generalization per-
formance of convolutional networks?

Although input and/or feature map aliasing may occur in
deep networks, it is not clear a priori if this phenomenon
affects their performance on highly abstract, semantic
tasks. Arguably, models can learn to ignore aliased features
if in practice they do not correlate with training labels.
Contradicting this argument, however, we investigate the
impact of aliasing on generalization under two hypotheses.
First, we claim that a model whose features are susceptible
to aliasing may learn brittle correlations that rely on the
presence (or absence) of aliasing artifacts in order to
generalize. Under this assumption, aliasing impacts out
of distribution generalization in settings where test images
have different spectral properties, for example, images of
varying spatial resolution, compression format, or those
affected by natural corruptions. The second, equally impor-
tant hypothesis, is that aliasing may prevent models from
learning useful correlations between features that were cor-
rupted during subsampling. Under this second assumption,
we claim that because aliasing can leak frequencies across
the entire spectrum, an anti-aliased model has the potential
to improve the network’s ability to learn useful features

10530



that use the entire spectrum. In Section 5.2 we analyse the
performance gains across different spectral bands, when
our anti-aliased model is compared to a baseline, and
show that it boosts data-augmentation results, as claimed
by our second hypothesis. Finally, our ablation studies
(Section 5) evaluate the impact of our proposed model
across a large number of datasets (ImageNet, ImageNet-C,
ImageNet-R, ImageNet-Vid, ImageNet-V2, ObjectNet,
Stylized-ImageNet and another 13 datasets on few-shot-
learning) to demonstrate the impact on generalization
across a diverse and extremely challenging set of tasks.

3. Related Work

Most relevant to our work is the reformulation of a sub-
sampling layer proposed by Zhang [30]. They suggest the
use of a low-pass filter after a strided-layer’s non-linearity,
that is a strided-convolution followed by ReL.U activation
is redefined as non-strided convolution followed by ReLU
activation, followed by a strided low-pass filter (Figure 2).
We point out that this formulation does not fully isolate
the aliasing problem from the non-linearity smoothing side-
effects, as the filtering operation also smooths the output
of the non-linearity. In contrast, our formulation intro-
duces the filters at the location predicted by aliasing theory.
Our model delays the removal of high frequencies emerg-
ing from non-linear operations until the subsequent sub-
sampling operation. Consequently, our formulation main-
tains high-frequencies throughout the trainable filters that
may exist in between the non-linearity and the next sub-
sampling, but filters them only at the exact point where they
may cause aliasing distortion. Zhang’s formulation also ig-
nores the network’s existing capacity to learn anti-aliasing
filters, and because of that, makes use of low-pass filters in
layers with sufficient spatial support for learning such fil-
ters implicitly end-to-end. A direct comparison to Zhang’s
formulation (Appendix E) shows that our model surpasses
their results in both i.i.d. and o0.0.d. conditions using fewer,
and smaller low pass-filters.

Zou et al. [31] propose the use of trainable low-pass
filtering layers that operate on feature channel groups and
adapt to spatial locations. Their anti-aliasing module aug-
ments the model with new trainable and non-linear compo-
nents, increasing the capacity of the network, thus making
it unsuitable for isolating the effects of aliasing from other
confounding effects, by the addition of extra convolutional,
batch norm, and softmax layers.

Azulay and Weiss [2] show that CNNs are not as robust
to small image transformations as commonly assumed. The
paper points out that CNN-based models typically ignore
the sampling theorem and show large changes in a predic-
tion under small, mostly imperceptible, perturbations of the
input. They observe that the improvement in generaliza-
tion obtained by data augmentation is limited to images that

are similar to those seen during training. Complementary
to their findings, we measure the impact of data augmenta-
tion in different spectral bands and show that improvements
in robustness are concentrated in the low frequencies, but
at the cost of reducing the model’s robustness to changes in
mid and high frequency bands. We also show that our model
is able to boost the gain associated with data-augmentation
to extend its beneficial effects across the entire spectrum.

Sophisticated augmentation strategies are currently the
state-of-the-art approach to o0.0.d. classification under nat-
ural corruptions [4, 11, 12, 23]. Rusak et al. [23] currently
lead the “standalone leaderboard” on ImageNet-C with a
two pass approach. First, they train a generative model to
produce additive noise. Next, the classifier and the gen-
erative network are jointly trained in an adversarial fash-
ion. Recently, [29] pointed out that their improvements are
mainly on corruptions that affect high frequencies, while re-
ducing robustness to corruptions that affect low frequencies
and also in detriment of “clean” (uncorrupted) test accuracy.

While [29] pointed out that robustness gains are typi-
cally non-uniform across corruption types and that increas-
ing performance in the presence of random noise is of-
ten met with reduced performance in corruptions concen-
trated in different bands, our method overcomes this trade-
off (subsection 5.3). Note that severe aliasing corrupts the
entire spectrum, and not only high frequencies.

Our results, obtained by combining architectural modifi-
cations with off-the-shelf data augmentation (Ekin et al. [5])
show improvements in all of the 15 corruption categories
and outperforms [23] in 9 of them (including fog and con-
trast, that are concentrated in low frequencies according
to [29]) while obtaining the highest clean accuracy of the
benchmark: 78.8% for ImageNet versus 76.1% for [23]. At
time of writing, we are not aware of better performing stan-
dalone methods on ImageNet-C using a ResNet-50 trained
on 224 x224 ITmageNet examples only.

In contrast to the above methods that settle for a trade-
off between clean and corrupted accuracy, our method im-
proves both i.i.d. and o.0.d. accuracy simultaneously.

4. Methods

This section briefly reviews relevant frequency analysis
theory, and outlines its implications on CNN architectures.
Additional details can be found in Appendix A.

An ideal low-pass filter completely eliminates all fre-
quencies above the cutoff frequency, while allowing those
below it to pass without attenuation. It is represented as
a rectangular function in the frequency domain and corre-
sponds to the “sinc” function in the discrete spatial-domain
with support size equal to the number of elements on the in-
put itself. The spatial support size is defined by the interval
with minimum length containing all nonzero filter weights.
Learning a good approximation of the ideal low-pass filter
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requires much larger filters than those typically found in the
individual layers of modern CNNs.

A non-ideal low-pass filter has transition regions, defined
as intervals between its passband and stopband responses
in the frequency domain. Although they may have much
smaller spatial support size, the existence of transition re-
gions imposes a trade-off between preserving information
and reducing aliasing.

Any convolutional layer that represents a low-pass filter
must have a filter of size of at least 2. A discrete filter with
size 1 can only represent an impulse function. Its Fourier
transform is constant across the spectruni, which scales all
frequencies equally, thus it cannot act as a low pass filter.
Convolutional layers with filter size larger than 1 are able to
represent low-pass filters, up to varying degrees of approxi-
mation error for different bandwidths. However, the uncer-
tainty principle implies that a signal’s spatial support size is
inversely proportional to its spectral support size [19]. For
this reason, the larger the filter size of a convolutional filter,
the better it can approximate a narrow low-pass filter.

Another important property pertains to a stack of con-
volutional layers which may learn to prevent aliasing in a
distributed fashion. More formally, a filter is said to be sep-
arable if it can be expressed as the composition of two or
more filters. A stack of convolutional layers with small fil-
ter sizes (but larger than 1) may learn to represent a larger,
separable, low-pass filter.

4.1. Optimal Placement and Confounding effects

The design principle of our anti-aliasing models trade-
off between two opposing requirements: band-limiting the
spectrum of subsampled feature maps in order to prevent
aliasing in layers that subsample, while simultaneously pre-
serving the information encoded in high frequencies as
much as possible throughout the other layers.

One naive extreme of this balance is to pre-process the
input image with a low-pass filter that has very low cut-
off frequency. This solution is sub-optimal for two rea-
sons: (i) it induces early loss of information that may be
crucial for solving the task (e.g. classification); (ii) non-
linearities may introduce high-frequencies in the internal
feature maps, causing them to be susceptible to aliasing in
subsequent subsampling layers.

We claim that the solution proposed in [30] is sub-
optimal. It suggests the use of a low-pass filter just after
a subsampling layer non-linearity. We observe that the high
frequencies created by this non-linearity are harmless up to
the next subsampling operator, and thus this solution prema-
turely discards high frequency information. To satisfy the
two requirements mentioned above, an optimal anti-aliased
model should be able to preserve high-frequencies up to the
subsequent subsampling operation. To allow the network’s
features to make use of high frequency information while

avoiding aliasing, it is ideal to apply low-pass filtering im-
mediately before subsampling.

Optimizing these criteria does not uniquely specify an
anti-aliasing architecture. All four variations in Figure 2
satisfy the stated optimality criteria. Nevertheless, each
variation introduces its own side-effects on training, both in
the forward and backward pass. Although convolutions per
se are commutative (see [14] for a detailed proof), note that
this property no longer holds when back-propagating gradi-
ents or when the layers include subsampling/non-linearities.
That is, a change in the order of the fixed and trainable filters
induces different priors. For example, the backward pass in
the post-filter variant induces the trainable convolution filter
to be influenced by a larger neighborhood of gradients than
the pre-filter variant. Similarly, the decision of where to in-
clude subsampling affects the resolution of the feature maps
and also the gradients that influence the trainable layer. In
our variant named enlarged receptive field (e.r.f.), we ex-
plore the case where subsampling is part of the low-pass
filter that precedes the trainable convolution, which poten-
tially increases the receptive field size of the trainable filter
as a side effect.

Among the four variations, the post-filter (outlined in red
in Figure 2) has the benefit of smoothing gradients with the
low-pass filter in the backward pass, in a way that better
aligns the low-pass filter with the positions where gradients
are up-sampled. This potentially explains why this variant
produces superior empirical results, as confirmed in Table 1.

Our variations
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Figure 2: Low-pass filters can be added at various locations
with potentially different side-effects. BlurPooling [30]
suggest their addition after the ReLU non-linearity, whereas
our variants apply low-pass filtering before the original sub-
sampling and preserve any high frequencies produced by
the non-linearity. The optimal “post-filter” variation is out-
lined in red.

4.2. Aliasing critical paths

In this section we characterize a network’s capacity to
learn anti-aliasing filters end-to-end. Although low-pass fil-
tering can occur in any of the trainable convolution layers,
in order for low-pass filters to prevent aliasing they must



conv 7x7 i i conv 3x3 i i con_v7x7 E conv 3x3 |
(stide 2) | | (siride2) | . {stride 2) 'L_Slfide” Gomv 1x1

RN S — stride 1)

Figure 3: ResNets components that include subsampling.
Strided-skip connections filters (1 x 1) lack the minimum
size necessary to represent a low pass filter. Left: Original
composition. Right: Our anti-aliased model based on ap-
plying the post-filter composition only at key places. Non-
linearities are omitted for clarity. Dashed lines denote layers
with subsampling.

be located between the operation that produces high fre-
quencies and the subsampling operation. For this reason,
we define the aliasing critical path as the set of operations
preceding subsampling that maintain or reduce the range of
frequencies contained in the signal and lack the capacity to
produce new high frequency content. The burden of pre-
venting aliasing, in accordance with the sampling theorem,
falls on the operations found in the critical path. Given a
sequence of layers, the aliasing critical path for a certain
subsampling operation traces back to the last non-linearity
that precedes it (or the input image itself if none exist). Non-
linearities may produce high-frequencies (see appendix B),
but these are harmless up until the next down-sampling op-
eration. Skip connections are defined as the summation of
a feature map with a downstream feature map. They can
act as pathways for replicating frequencies through the net-
work, bypassing any low-pass filters that may have been
learned in the main path '.

In summary, we define the critical path for learning low-
pass filters as the sequence of operations between a sub-
sampling operation and either the skip connection or a non-
linearity preceding it, whichever is closest to the subsam-
pling operation. Note that our definition of critical path
for learning anti-aliasing does not preclude trainable lay-
ers further upstream (i.e. preceding the skip-connection
or non-linearity) from serving as anti-aliasing filters by ag-
gressively low-pass filtering their input. Rather, we define a
critical set of layers that must act as “last chance” low-pass
filters, whenever the incoming signal does not satisfy the
Nyquist rate.

4.3. ResNets and EfficientNets

ResNet’s aliasing critical paths can be differentiated ac-
cording to their composition into the following: (1) the ini-

UIn theory, the summation at the skip connection can act as a low-pass
filter through phase cancellation. Phase cancellation occurs when two (or
more) signals of the same frequency but with inverted phases (a phase
difference of 7) cancel each other when summed together.
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Figure 4: EfficientNet layers that include subsampling.
Left: Original composition. Right: Our anti-aliased model
which uses the post-filter variation at key locations. Non-
linearities are omitted for clarity. Dashed lines indicate lay-
ers with subsampling.

tial strided-convolutional layer; (2) the initial strided-max-
pooling (absent in some implementations such as [6]); (3)
the sequence of convolutions within a strided-residual block
main path up to its subsampling operation; and (4) the se-
quence of convolutions within a strided-skip-connection up
to its spatial subsampling. Figure 3 illustrates the com-
ponents in these critical paths and their filter sizes which
impact their capacity to prevent aliasing. The right-hand
side of the figure illustrates our proposed model, respecting
the optimal placement criteria (Section 4.1). Note that the
7 x 7 trainable convolution has sufficient capacity to act as
an anti-aliasing filter, therefore our model does not include
an additional anti-aliasing filter in this critical path.

EfficientNet is currently the best-performing architecture
in several resource constrained settings [25]. Its baseline ar-
chitecture was found via neural architecture search, which
optimizes both accuracy and efficiency (FLOPS), while bal-
ancing the network’s depth, width, and input and feature
map resolution as hyper-parameters. It is interesting to anal-
yse the EfficientNet architecture from the perspective of
aliasing because the hyper-parameters that were optimized
are directly related to the aliasing problem.

EfficientNets’s aliasing critical paths can be differenti-
ated according to their composition into the following (Fig-
ure 4): (1) initial strided-convolutional layer; (2) strided-
blocks with a sequence of 1x1 and 3x3 convolutions. Lay-
ers that perform subsampling do not contain a parallel path
with skip connections, while other blocks do. EfficientNets
use the Swish activation function [20] instead of ReLU.
Smooth functions have rapidly decaying Fourier transforms
[15, 3]. This property reduces the likelihood, assuming ran-
dom inputs, of introducing high frequency content as com-
pared to non-smooth activation functions (see Appendix B).

5. Experimental Results

Our experiments investigate different aspects of the im-
pact of aliasing on performance. We begin by evaluating
the i.i.d. generalization performance of our proposed mod-



Pre-filter (filter size k)

Post-filter (filter size k)

Pre-post-filter (filter size k)

Enlarge receptive field (filer size k)

Location k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=7 k=3 k=5 k=17
all layers 74.20 71.06 68.74 73.91 70.71 68.00 70.92 65.80 61.52 73.06 71.09 68.67
convl 76.18 75.81 75.45 76.10 75.72 75.47 75.76 75.07 74.63 75.27 75.12 75.03
max pool 76.00 75.75 75.40 76.56 76.43 76.35 76.03 75.54 75.24 74.88 74.87 74.60
block-conv 76.87 76.74 76.83 76.88 76.83 76.74 76.87 76.73 76.63 76.64 76.71 76.61
strided-skip 77.05 77.14 77.07 77.15 77.12 76.83 77.02 76.90 76.62 - - -

Table 1: Imagenet results: rows demonstrate the impact of anti-aliasing the model’s components from Figure 3 individu-
ally while columns show blur variations from Figure 2. Results show a significant accuracy increase when anti-aliasing the
strided-skip connections of a Resnet-50 and the negative impact of information loss when blur is applied to all layers indis-
tinctly and also to the first convolutional layer that contain large trainable kernels, capable of learning anti-aliasing filters.
Note that baseline accuracy is 76.49%. The values correspond to the mean accuracy over 3 runs with different seeds.

els on the ImageNet benchmark in Sections 5.1-5.2. The
experiments in subsection 5.1 are designed to validate the
hypotheses presented in section 4 such as the optimal place-
ment of low-pass filters. These experiments are also de-
signed to disambiguate the improvements obtained by anti-
aliasing from other confounding effects.

Next, the experiments in subsection 5.2 show that anti-
aliasing improves the results obtained by data-augmentation
by extending its effects across a larger range of frequencies.

Finally, we evaluate our models on challenging o.0.d.
benchmarks and show that our proposed modifications lead
to even more striking performance improvement — achiev-
ing state-of-the art performance without any additional
hyper-parameter sweeps. The detailed description of these
datasets is presented in the appendices (see Appendix D
for ImageNet-C, Appendix F for Meta-Dataset, and Ap-
pendix E for extra results on other datasets used in robust-
ness analysis). Our experiments use TensorFlow’s official
ResNet-50 and EfficientNet-BO models’. The o.o.d. ex-
periments on the Meta-Dataset benchmark use the publicly
available SUR codebase [6] — a recent few-shot classifica-
tion model. On the following tables, results on bold implies
“better”” with statistical significance.

5.1. ImageNet

To investigate the effects of aliasing in the ResNet fam-
ily of architectures we initially evaluate their performance
on ImageNet [24]. Our results show that ResNets are most
severely impacted by aliasing in their strided skip connec-
tions (which are preceded by 1 x 1 convolutions).

We used the official TensorFlow [ 1] public code for train-
ing a ResNet-50 architecture, yielding a top-1 accuracy of
76.49%. The codebase reproduces the training pipeline and
hyper-parameters from [7], in which models are trained for
90 epochs. Table 1 shows the effect on top-1 accuracy of
adding anti-aliasing filters before (pre), after (post), and
before-and-after (pre-post), various operations in the net-

thtps ://github. com/tensorflow/models/tree /master/
official/vision/image_classification/resnet

work. Recall that adding these fixed filters may also affect
the back-propagation of gradients, as well as increase the
receptive field size. Our ablation studies are designed to
disambiguate these effects from anti-aliasing. Table 1 re-
ports accuracies as a result of adding a pre-filter (77.14%)
or post-filter (77.15%) to the skip connections that include
subsampling, and are immediately preceded by a trainable
1x1 convolutional layer. Note that inserting low-pass filters
into all convolutional layers (“all” row) degrades the perfor-
mance to as low as 61.00% accuracy. The second row shows
that anti-aliasing the “conv1” layer degrades performance
because it already has the capacity to learn a low-pass filter
in its 7 x 7 kernel. The last column, ERF (enlarged receptive
field), is aimed to disambiguate whether the improved per-
formance is truly due to anti-aliasing or merely the enlarged
receptive field caused as a side-effect.

Finally, by combining anti-aliasing with post-filter vari-
ants at all strided layers except the first strided-convolution
which has large filter size (Figure 3), we are able to re-
port a top-1 accuracy of (77.47%). These results support
our hypothesis that anti-aliasing in networks must trade-off
between mitigating the effects of aliasing while preserving
high-frequency information as much as possible. This is
achieved by adding anti-aliasing filters only to those critical
paths that lack the capacity to learn them.

Finally we note that analogous improvements were also
obtained with EfficientNets using the same design princi-
ples. These results can be found in Appendix C.

5.2. Data-Augmentation

The ablation studies presented in this section are de-
signed to differentiate between performance gains obtained
by data-augmentation from those obtained from our anti-
aliased model. The four models evaluated in this sec-
tion and their respective accuracies on ImageNet are: (i)
“Baseline”-baseline model (77.36%), (ii) “Anti-Aliasing”-
our proposed model containing non-trainable anti-aliasing
filters (77.76%), (iii) “Rand Augmentation”- model trained
with random data augmentation [5] (77.32%), (iv) “Rand
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Figare 5: The impact on pre-trained models when tested on images that have 1/16 of their spectral band removed. Left:
Degradation Curve. All models are more robust to the lack of high-frequency than low frequency content. Right Difference
between the baseline performance and the remaining three models. Our anti-aliased model performance is higher than
baseline in all spectral bands, presenting positive differences across the spectrum. Data augmentation model performance
is higher when removing content from the lowest frequencies, but presents the worst performance of all models for the
remaining bins. The combined model (AA+DA) boosts their individual advantages.

Figure 6: Random subset of ImageNet wrongly classified
by both baseline and data-augmented models, but correctly
classified by our Anti-Aliased model. The images have dif-
ferent spectral characteristics, from those that include high
frequencies (fine structures and texture) to those with low
frequency content (regions of constant color).

Augmentation + Anti-Aliasing” combines (ii) and (iii)
(78.45%). These models were trained with the same num-
ber of epochs (180) on ImageNet only, as the public source
code from [5] (when data-augmentation is enabled).

Figure 6 illustrates images correctly classified by our
anti-aliased model, but not by the baseline nor the model
trained with data-augmentation. Note that these images
contain different spectral characteristics suggesting that
anti-aliased models benefit features across the entire spec-
trum. To further explore this observation we investigate the
reliance of trained networks on various frequency bands of
input images. This can be done by measuring the impact
of removing frequency intervals from the input images at
inference time only. To accomplish this, we divide the in-
put spectrum into 16 bands and apply a “notch filter”, ze-
roing out one frequency interval at a time. We then eval-
vate the performance of the same four models (trained on

unfiltered images) on the resulting filtered image test sets.
The results are presented in Figure 5. The left plot shows
that for all models, the performance impact is larger when
lower frequency bands are filtered out. The right plot shows
the change in accuracy from the baseline accuracy over the
same bin. Notice a striking characteristic pattern of de-
creased performance around the mid-band frequencies of
the “Rand Augmentation” model, if the mid-range band is
missing it performs significantly worse than the baseline.
This relative decrease in performance is in agreement with
the work of Hermann et al. [13], who noted that models
trained with data augmentation tend to rely on image tex-
tures — which occupy the mid-range frequency bands.

On the other hand, our anti-aliased model obtained a
consistent improvement over the baseline model in all of the
16 bins. This effect is further boosted when combined with
data augmentation. Similar results were also observed with
8 and 32 bins. Appendix B extends these experiments to our
models using smooth activation functions. We show that
their benefit is complementary and combining them with
anti-aliasing produces the best results.

5.3. ImageNet-C

Table 2 presents a comparison of our models on the
ImageNet-C leaderboard. It uses the corruption error (CE)
measurement proposed by [11] that is defined as CEf =

5 pf

for a corruption ¢ with severity s. The mean Corruption Er-
ror (mCE) is taken by averaging over all the 15 corruptions.
The ‘Clean err.” column shows the classifier’s top-1 error
on the original ImageNet, included in the table for contrast-
ing gains on clean and corrupted test sets.

Our anti-aliased model, described in subsection 5.1,
achieves mCE of 70.0% on ImageNet-C and 22.5% “Clean

err.” on ImageNet, which represent a significant improve-

where Eg . 1s the top-1 error of a classifier f
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Noise Blur Weather Digital mCE Clean err.

Method Gauss. Shot Impulse Defocus Glass Motion Zoom  Snow Frost Fog Bright Contrast Elastic Pixel JPEG

ResNet-50 Published [11] 80 82 83 75 89 78 80 78 75 66 57 71 85 7T TT 76.7 23.9
BlurPool [30] 73 T4 76 74 86 78 7 77T 72 63 56 68 8 71 71 73.4 23.0
Ours (90 epochs) 68 70 70 72 85 82 75 72 62 50 52 66 81 81 66 70.0 22.5
AutoAugment**[4] 69 68 72 7 83 80 81 79 75 64 56 70 88 57 T1 727 228
Rand AutoAugm.**[12] 70 71 72 80 8 82 81 81 77 72 61 75 88 73 72 76.1 23.6
AUGMIX [12] 65 66 67 70 80 66 66 75 72 67 58 58 79 69 69 68.4 224
ANT (3x3) [23] 39 40 39 68 78 73 7 71 66 68 55 69 79 63 64 63.0 239
RandAugment** [5] 60 58 60 70 90 76 80 70 67 44 50 57 80 86 64 67.4 22.8
Ours + RandAugm.** 59 58 61 70 84 75 76 69 65 41 48 55 80 82 61 65.5 21.6
Swish 7172 T4 69 88 80 76 74 69 51 54 68 81 80 67 71.6 224
Swish + Rand Augm.** 61 61 62 69 88 73 78 69 67 42 49 55 81 87 63 66.9 21.9
Ours + Swish + Rand Augm. 60 59 61 69 85 71 75 68 64 41 47 55 78 81 61 64.9 212

Table 2: Corruption Error (CE), mCE, and Clean Error values when including our anti-aliasing variations on top of ResNet-
50. Adding anti-aliasing leads to a lower error (mCE) than all existing models with the exception of ANT. ANT uses
adversarial training and has an extra generative network, is significantly more expensive to train, has a higher clean error and

only performs better than ours in 6 of the 15 corruptions. Our model uses fewer and smaller filters than [

] but at precise

locations. Models with data augmentation were trained for longer. For all columns, lower is better.

Method Average rank
RelationNet [26] 9.80
k-NN [26] 8.95
MatchingNet [26] 8.60
fo-MAML [26] 8.15
Finetune [26] 7.10
ProtoNet [20] 6.70
fo-Proto-MAML [26] 4.80
CNAPs [22] 445
SUR [6] 3.40
URT [17] 2.40

SUR + Anti-aliased + GELU (ours) 1.65

Table 3: Average rank over all Meta-Dataset test sources
for approaches that learn on all Meta-Dataset training
sources. We recompute ranks after including our proposed
approach into Meta-Dataset’s public leaderboard.

ment over the results reported in [30]. Also note that our
model uses fewer and smaller filters than [30] but at key
positions discussed in section 4. Zhang’s best model uses
7x7 filters at every sub-sampling operation. Appendix E
presents a direct comparison to [30].

Next we show that performance can be further improved
by the use of data-augmentation and smooth activation
functions (Swish [20]). These models were trained for
longer (180 epochs) in order to replicate training conditions
of the remaining references mentioned in the table. Sim-
ilar to [12], our data-augmented models do not use aug-
mentations such as contrast, color, brightness, sharpness,
as they overlap with the ImageNet-C test set corruptions.
We achieve a “Clean” top-1 error of 21.2% and an mCE of
64.9%. Note that unlike [23] we demonstrate that mCE can
be improved without sacrificing clean error.

5.4. Meta-Dataset with SUR

Meta-Dataset is a challenging few-shot image classifi-
cation benchmark which samples heterogeneous learning
episodes from a diverse collection of datasets, two of which
(Traffic Signs, MSCOCO) are used exclusively for evalu-
ation and are therefore considered out-of-domain. We ap-
ply anti-aliasing and smooth-activation (GELU) to SUR [6],
which is a competitive few-shot classification approach
that trains one feature extractor per training domain and
combines their representations during inference. We ob-
tain SoTA average rank across all test datasets among ap-
proaches which learn from all available training classes (Ta-
ble 3). Additional experimental details and accuracy break-
downs are presented in Appendix F.

6. Conclusion

Drawing from the classical sampling theorem from sig-
nal processing, we proposed simple architectural improve-
ments to convolutional architectures to counter aliasing oc-
curring at various stages. These changes lead to substan-
tial performance gains on both i.i.d. and o0.0.d. generaliza-
tion, and were shown to boost the impact of data augmen-
tation and smooth activation functions by extending their
effect across the spectrum. Compared to other performance
enhancement techniques, anti-aliasing is simple to imple-
ment, computationally inexpensive, and does not require
additional trainable parameters. In all our experiments, we
could not find a setting where it degraded the performance
which leads us to recommend their use as a standard com-
ponent of convolutional architectures.
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