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Training Image Pair Manipulate the Primitive Output
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Figure 1: Image manipulation learned from a single training pair. Given a single real image (b) and a corresponding
primitive representation (a), our model learns to map between the primitive (a) to the target image (b). At inference, the
original primitive (c) is manipulated by the user, the changes are highlighted in red (d). Then, the manipulated primitive is
passed through the network which outputs a corresponding manipulated image (e) in the real image domain. On the right, we
can see that the manipulation was performed successfully, while preserving the internal statistics of the source image.

Abstract

In this paper, we present DeepSIM, a generative model
for conditional image manipulation based on a single im-
age. We find that extensive augmentation is key for enabling
single image training, and incorporate the use of thin-plate-
spline (TPS) as an effective augmentation. Our network
learns to map between a primitive representation of the im-
age to the image itself. The choice of a primitive represen-
tation has an impact on the ease and expressiveness of the
manipulations and can be automatic (e.g. edges), manual
(e.g. segmentation) or hybrid such as edges on top of seg-
mentations. At manipulation time, our generator allows for
making complex image changes by modifying the primitive
input representation and mapping it through the network.
Our method is shown to achieve remarkable performance
on image manipulation tasks.

1. Introduction
Deep neural networks have significantly boosted perfor-

mance on image manipulation tasks for which large train-

*Equal contribution

ing datasets can be obtained, such as, mapping facial land-
marks to facial images. In practice, however, there are many
settings in which the image to be manipulated is unique,
and a training set consisting of many similar input-output
samples is unavailable. Moreover, in some cases using a
large dataset might even lead to unwelcome outputs that do
not preserve the specific characteristics of the desired im-
age. Training generative models on just a single image, is
an exciting recent research direction, which may hold the
potential to extend the scope of neural-network-based im-
age manipulation methods to unique images. In this paper,
we introduce - DeepSIM, a simple-to-implement yet highly
effective method for training deep conditional generative
models from a single image pair. Our method is capable
of solving various image manipulation tasks including: (i)
shape warping (Fig. 2) (ii) object rearrangement (Fig. 5) (iii)
object removal (Fig. 5) (iv) object addition (Fig. 2) (v) cre-
ation of painted and photorealistic animated clips (Fig. 8
and videos on our project page).

Given a single target image, first, a primitive represen-
tation is created for the training image. This can either be
unsupervised (i.e. edge map, unsupervised segmentation),
supervised (i.e. segmentation map, sketch, drawing), or a
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Figure 2: Results produced by our model. The model was trained on a single training pair, shown to the left of each sample.
First row ”face” output- (left) flipping eyebrows, (right) lifting nose. Second row ”dog” output- changing shape of dog’s hat,
removing ribbon, and making face longer. Second row ”car” output- (top) adding wheel, (bottom) conversion to sports car.

combination of both. We use a standard conditional image
mapping network to learn to map between the primitive rep-
resentation and the image. Once training is complete, a user
can explicitly design and choose the changes they want to
apply to the target image by manipulating the simple primi-
tive (serving as a simpler manipulation domain). The modi-
fied primitive is fed to the network, which transforms it into
the real image domain with the desired manipulation. This
process is illustrated in Fig. 1.

Several papers have explored the topic of what and how
much can be learned from a single image. Two recent semi-
nal works SinGAN [28] and InGAN [29] propose to extend
this beyond the scope of texture synthesis [6, 16, 21, 38].
SinGAN tackles the problem of single image manipulation
in an unconditional manner allowing unsupervised gener-
ation tasks. InGAN, on the other hand, proposes a con-
ditional model for applying various geometric transforma-
tions to the image. Our paper extends this body of work
by exploring the case of supervised image-to-image trans-
lation allowing the modification of specific image details
such as the shape or location of image parts. We find that
the augmentation strategy is key for making DeepSIM work
effectively. Breaking from the standard practice in the im-
age translation community of using a simple crop-and-flip
augmentation, we found that using a thin-plate-spline (TPS)
[11] augmentation method is essential for training condi-
tional generative models based on a single image-pair input.
The success of TPS is due to its exploration of possible im-
age manipulations, extending the training distribution to in-

clude the manipulated input. Our model successfully learns
the internal statistics of the target image, allowing both pro-
fessional and amateur designers to explore their ideas while
preserving the semantic and geometric attributes of the tar-
get image and producing high fidelity results.

Our contributions in this paper:

• A general purpose approach for training conditional
generators supervised by merely a single image-pair.

• Recognizing that image augmentation is key for this
task, and the remarkable performance of thin-plate-
spline (TPS) augmentation which was not previously
used for single image manipulation.

• Achieving outstanding visual performance on a range
of image manipulation applications.

2. Related Work
Classical image manipulation methods: Image manip-

ulation has attracted research for decades from the image
processing, computational photography and graphics com-
munities. It would not be possible to survey the scope of this
corpus of work in this paper. We refer the reader to the book
by [31] for an extensive survey, and to the Photoshop soft-
ware for a practical collection of image processing meth-
ods. A few notable image manipulation techniques include:
Poisson Image Editing [26], Seam Carving [3], PatchMatch
[4], ShiftMap [27], and Image Analogies [14]. Spline based
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Figure 3: Fashion design examples. On the left is the training image pair, in the middle are the manipulated primitives and
on the right are the manipulated outputs- left to right: dress length, strapless, wrap around the neck.

Primitive Training Image Manipulated

Figure 4: Natural looking manipulations. Left: Image
primitives, the top is the training primitive while the bottom
is the manipulated one. Middle: training images. Right:
manipulated outputs - changing the the orientation of the
bird’s wing, changing the posture of the squirrel.

methods include: Field Morphing [5] and Image Warping
by RDBF [1]. Learning a high-resolution parametric func-
tion between a primitive image representation and a photo-
realistic image was very challenging for pre-deep learning
methods.

Deep conditional generative models: Image-to-image
translation maps images from a source domain to a target
domain, while preserving the semantic and geometric con-
tent of the input images. Most image-to-image translation
methods use Generative Adversarial Networks (GANs) [12]
that are used in two main scenarios: i) unsupervised image
translation between domains [40, 19, 23, 8] ii) serving as
a perceptual image loss function [15, 35, 25, 41]. Exist-
ing methods for image-to-image translation require many

labeled image pairs. Several methods [7, 10, 39] are care-
fully designed for image manipulation, however they re-
quire large datasets which are mainly available for faces or
interiors and cannot be applied to the long-tail of images.

Non-standard augmentations: Conditional generation
models typically use crop and flip augmentations. Classi-
fication models also use chromatic and noise augmentation.
Recently, methods have been devised for learning augmen-
tation for classification tasks e.g. AutoAugment [9]. [24]
learned warping fields for augmenting classification net-
works. Thin-plate-spline transformation have been used in
the medical domain e.g. [32], but they are used for training
on large datasets rather than a single sample. [37] learned
augmentations for training segmentation networks from a
single annotated 3D medical scan (using a technique simi-
lar to [18]) however they require a large unlabeled dataset of
similar scans which is not available in our setting. TPS has
also been used as a way of parametrizing warps for learning
dense correspondences between images e.g. [13] and [20].

Learning from a single image: Although most deep
learning works use large datasets, seminal works showed
that single image training is effective in some settings. [2]
showed that a single image can be used to learn deep fea-
tures. Limited work has been done on training image gen-
erators from a single image - Deep Image Prior [34], retar-
geting [29] and super-resolution [30]. Recently, the seminal
work, SinGAN [28], presented a general approach for sin-
gle unconditional image generative model training. How-
ever its ability for conditional manipulation is very limited.
TuiGAN [22], on the other hand, proposed a conditional un-
supervised image-to-image method based on a single image
pair. However, their method requires retraining the network
for every new pair. Our method, on the other hand, uses a
single aligned image pair for training a single generator that
can be used for multiple manipulations without retraining,
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Figure 5: Results on challenging manipulations. Top right corners - primitive images. Left - original image used to train our
model. Center- switching the positions between the two rightmost cars. Right- removing the leftmost car and inpainting the
background. See the SM for many more results.

it is able to affect significantly more elaborate changes to
images including to large objects in the scene.

3. DeepSIM: Learning Conditional Generators
from a Single Image

Our method learns a conditional generative adversarial
network (cGAN) using just a single image pair consisting of
the main image and its primitive representation. To account
for the limited training set, we augment the data by using
thin-plate-spline (TPS) warps on the training pair. The pro-
posed approach has several objectives: i) single image train-
ing ii) fidelity - the output should reflect the primitive rep-
resentation iii) appearance - the output image should appear
to come from the same distribution as the training image.
We will next describe each component of our method:

3.1. Model:

Our model design follows standard practice for cGAN
models (particularly Pix2PixHD [35]). Let us denote our
training image pair (x, y) where y ∈ Rdx×dy×3 is the input
image (dx and dy are the number of rows and columns) and
x ∈ Rdx×dy×dp is the corresponding image primitive (dp is
the number of channels in the image primitive). We learn
a generator network G : Rdx×dy×dp → Rdx×dy×3, which
learns to map input image primitive x to the generated im-
age G(x). The fidelity of the result is measured using the
VGG perceptual loss ℓperc : (Rdx×dy×3,Rdx×dy×3) → R
[17] , which compares the differences between two images
using a set of activations extracted from each image using
a VGG network pre-trained on the ImageNet dataset (we
follow the implementation in [35]). We therefore write the
reconstruction loss ℓrec:

ℓrec(x, y;G) = ℓperc(G(x), y) (1)

Conditional GAN loss: Following standard practice,
we add an adversarial loss which measures the ability
of a discriminator to differentiate between the (primitive,
generated image) pair (x,G(x)) and the (primitive, true

Figure 6: TPS Visualisation. A random TPS warp of the
primitive-image pair. Also see SM.

image) pair (x, y). The conditional discriminator D :
(Rdx×dy×dp ,Rdx×dy×3) → [0, 1] is implemented using
a deep classifier which maps a pair of primitive and cor-
responding image into the probability of the two being a
ground truth primitive-image pair. D is trained adversari-
ally against G. The loss of the discriminator (ℓadv) is:

ℓadv(x, y;D,G) = log(D(x, y))

+ log(1−D(x,G(x)))
(2)

The combined loss ℓtotal is the sum of the reconstruction
and adversarial losses, weighted by a constant α:

ℓtotal(x, y;D,G) = ℓrec(x, y;G)

+α · ℓadv(x, y;D,G)
(3)

3.2. Augmentations:

When large datasets exist, finding the generator G and
conditional discriminator D that optimize ℓtotal under the
empirical data distribution can result in a strong generator
G. However, as we only have a single image pair (x, y), this
formulation severely overfits. This has the negative conse-
quence of G not being able to generalize to new primitive
inputs. In order to generalize to new primitive images, the
size of the training dataset needs to be artificially increased
so as to cover the range of expected primitives. Conditional
generative models typically use simple crop-and-flip aug-
mentations. We will later show (Sec. 4) that this simple
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Figure 7: Results on three different image primitives. The leftmost column shows the source image, then each column
demonstrate the result of our model when trained on the specified primitive. We manipulated the image primitives, adding a
right eye, changing the point of view and shortening the beak. Our results are presented next to each manipulated primitive.
The combined primitive performed best on high-level changes (e.g. the eye), and low-level changes (e.g. the background).

augmentation strategy however will not generalize to prim-
itive images with non-trivial changes.

We incorporate the thin-plate-spline (TPS) as an addi-
tional augmentation in order to extend our single image
dataset. For each TPS augmentation an equispaced 3 × 3
grid of control points (i, j) is placed on the image, we then
shift the control points by a random (uniformly distributed)
number of pixels in the horizontal and vertical directions.
This shift creates a non-smooth warp which we denote by
t(i, j). To prevent the appearance of degenerate transfor-
mations in our training images, the shifting amount is re-
stricted to at most 10% of the minimum between the image
width and height. We calculate the smooth TPS interpolat-
ing function f by minimizing:

min
f

∑
i,j

∥t(i, j)− f(i, j)∥2

+λ

∫ ∫ (
f2
xx + f2

yy + 2f2
xy

)
dxdy

(4)

Where fxx, fxy, fyy denote the second order partial deriva-
tives of f which forms the smoothness measure, regularised
by λ. The optimization over the warp f can be performed
very efficiently e.g. [11]. We denote the distribution of ran-
dom TPS that can be generated using the above procedure
as Ω. The above is illustrated in Fig. 6

3.3. Optimization:

During training, we sample random TPS warps. Each
random warp f ∼ Ω transforms both the input primitive
x and image y to create a new training pair (f(x), f(y))
(where we denote f(x)(i, j) = x(i′, j′) where (i′, j′) =
f(i, j)). We optimize the generator and discriminator ad-
versarially to minimize the expectation of the loss ℓtotal un-

der the empirical distribution of random TPS warps:

D′, G′ = min
G

max
D

Ef∼Ωℓtotal(f(x), f(y);D,G) (5)

We used the Pix2PixHD architecture with the official hy-
perparameters (except using 16000 iterations).

3.4. Primitive images:

To edit the image, we condition our generator on a repre-
sentation of the image that we denote the image primitive.
The required properties of the image primitive are: being
able to precisely specify the required output image and the
ease of manipulation by image editor. These two objectives
are in conflict, although the most precise representation of
the edited image is the edited image itself, this level of ma-
nipulation is very challenging to achieve by a human editor,
in fact, simplifying this representation is the very motiva-
tion for this work. Two standard image primitives used by
previous conditional generators are the edge representation
of the image and the semantic instance/segmentation map of
the image. Segmentation maps provide information on the
high-level properties of the image, but give less guidance on
the fine-details. Edge maps provide the opposite trade-off.
To achieve the best of both worlds, we use the combination
of the two primitive representations. The advantages of the
combined representation are shown in Sec. 5. Our editing
procedure is illustrated in the SM.

4. Experiments
4.1. Qualitative evaluation

We present many results of our method in the main paper
and SM. In Fig. 2, our method generates very high resolu-
tion results from single image training. In the top row we
perform fine changes to the facial images from edge prim-
itives e.g. raising the nose and flipping the eyebrows. In
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Figure 8: Single Image Animation. Top: translating an animation into a video clip, bottom- translating a video clip into
a painted animation. Left: single training pairs, middle- subsequent frames, right: generated outputs. The video clips are
available on our project page.

Training Pair Input SinGAN

TuiGAN Ours

Figure 9: Image manipulation comparison. The leftmost
column shows the training pair consisting of a painted im-
age that was created manually and a target image. The ma-
nipulated image is given as input. We can see that SinGAN
preserves some details while failing to capture the shape,
on the other hand, TuiGAN correctly captures the shape but
does not preserve the details of the image. Our method is
able to capture both the shape and the details of the manip-
ulation with high fidelity.

the second row, on the left, we used the combined prim-
itive (edges and segmentation), we modify the dog’s hat
and made his face longer. On the right, we show com-
plex shape transformations by using segmentation primi-
tives. Our method added a third wheel to the car and con-
verted its shape into a sports car. This shows the power of
the segmentation primitive, enabling major changes to the
shape using simple operations. See figures Fig. 3 and Fig. 4
for more examples.

In Fig. 9, we compare the results of different single-
image methods on a paint-to-image task. Our method was
trained to map from a rough paint image to an image of
a tree, while SinGAN and TuiGAN were trained using the

Training Image Pair Input Pix2PixHDBicycleGAN Ours
-MI

Figure 10: Edges-to-image comparison. Columns 1, 2 show
the training edges and images. Column 3 shows the edges
used as input at inference time. Pix2PixHD-MI cannot gen-
erate the correct shoe as there is not enough guidance. Bi-
cycleGAN has sufficient guidance but cannot reproduce the
correct details. Our results are of high quality and fidelity.

authors’ best practice. We can see that SinGAN outputs an
image which is more similar to the paint than a photoreal-
istic image and fails to capture the new shape of the tree.
We note that although SinGAN allows for some conditional
generation tasks, it is not its main objective, explaining the
underwhelming results. TuiGAN on the other hand, does
a better job in capturing the shape but fails to capture the
fine details and texture. Our method is able to change the
shape of the tree to correspond to the paint while keeping
the appearance of the tree and background as in the training
image. Differently from TuiGAN, we learn a single genera-
tor for all future manipulations of the primitive without the
need to retrain for each manipulations.

In Fig. 10, we compare to two models that were
trained on a large dataset. We can see that Pix2PixHD-
MI (Pix2PixHD that was trained on the entire edge2shoes
dataset, where ”MI” is an acronym for ”Multi Image”) is un-
able to capture the correct identity of the shoes as there are
multiple possibilities for the appearance of the shoe given
the edge image. BicycleGAN is able to take as input both
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Method S1 S2 S3 S4 S5

L S L S L S L S L S

Pix2PixHD-SIA 0.44 0.51 0.47 0.49 0.41 0.5 0.53 0.26 0.46 0.44
Ours - no VGG 0.14 0.05 0.26 0.11 0.11 0.07 0.28 0.14 0.19 0.08
Ours 0.12 0.07 0.21 0.12 0.1 0.04 0.22 0.12 0.14 0.06

Table 1: Quantitative comparison on LRS2 frames. Results of Pix2PixHD-SIA (crop-and-flip) and our method (TPS) on 5
LRS2 videos (both trained on a single pair). For each sequence left column: LPIPS, right column: SIFID.

Figure 11: Visually comparing the affect of TPS augmentations. Our method with TPS outputs an image much more similar
to the ground truth than just crop-and-flip augmentation (further results in SM).

the edge map and guidance for the appearance (style) of
the required shoe. Although it is able to capture the gen-
eral colors of the required shoe, it is unable to capture the
fine details of the shoes (e.g. shoe laces and buckles). This
is a general disadvantage of training on large datasets, as
a general mapping function becomes less specialized and
therefore less accurate on individual images.

Single Image Animation the idea of generating short
clip art videos from only a single image was demonstrated
in [28] in an unsupervised fashion, we show that our model
can be used to create an artistic short video clips in a su-
pervised fashion from a single image-pair. This application
allows to ”breath life” in a single static image, by creating
a short animated clip in the primitive domain, and feeding
it frame-by-frame to the trained model to obtain a photo-
realistic animated clip. In contrast to SinGAN, which per-
forms a random walk in the latent space, we allow for fine
grained control over the animation ”story”. In addition, our
model can be used also in the opposite direction. That is,
translating short video clips into painted animations based
on a single frame and corresponding stylized image. This
application may be useful for animators and designers. An
example may be seen in Fig. 8. We note that since our
work does not focus on video generation, we do not have
any temporal consistency optimization as was done by [33].
We strongly encourage the reader to view the videos on our
project page.

4.2. Quantitative evaluation

As previous single image generators have mostly oper-
ated on unconditional generation, there are no established
suitable evaluation benchmarks. We propose a new video-
based benchmark for conditional single image generation

spanning a range of scenes. A single frame from each video
is designated for training, where the network is trained to
map the primitive image to the designated training frame.
The trained network is then used to map from primitive to
image for all the other video frames and compute the predic-
tion error using LPIPS [36] and fidelity using SIFID [28].

A visual evaluation on a frame from the LRS2 dataset
can be seen in Fig. 11. Our method is compared against
Pix2PixHD-SIA, where ”SIA” stands for ”Single Image
Augmented” e.g. a Pix2PixHD model that was trained on a
single image using random crop-and-flip warps but not TPS.
Our method significantly outperforms Pix2PixHD-SIA in
fidelity and quality indicating that our TPS augmentation
is critical for single image conditional generation. Quan-
titative evaluations on Cityscapes and LRS2 are provided
in Tab. 2 and Tab. 1. We report LPIPS and SIFID for
each of the 5 LRS2 sequences and for the average of 16
Cityscapes videos. Our method significantly outperformed
Pix2PixHD-SIA in all comparisons. More technical details
may be found in the SM. SinGAN cannot perform this task
and did not obtain meaningful results. While TuiGAN can
in theory perform this task, it would require retraining a
model for each frame which is impractical.

User Study We conducted a user study, following the
protocol of Pix2Pix and SinGAN. We sequentially pre-
sented 30 images: 10 real, 10 manipulated images, and 10
of side-by-side pairs of real and manipulated images. The
participants were asked to classify each as “Real” or “Gen-
erated by AI”. In the case of pairs, we asked participants
to determine if the ‘left’ or ‘right’ image was real. Each
image was presented for 1 second, as in previous proto-
cols. The study consisted of 140 participants. (104 males,
36 females). The confusion rate on the unpaired images
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Metric Pix2PixHD-SIA DeepSIM (Ours)
Seg, Crop+Flip Seg, TPS Seg+Edge, TPS

LPIPS 0.342 0.216 0.134
SIFID 0.292 0.127 0.104

Table 2: Results for the Cityscapes dataset - we report the
average over the 16 videos. The results show the importance
of the TPS augmentation and the combined primitive.

was 42.6%, while on the paired images it was 32.6%. This
shows that our manipulated images are very realistic.

5. Analysis

Input primitives As segmentations capture high-level as-
pects of the image while edge maps capture the low-level
of the image better, we analyze the primitive that combines
both. This choice is uncommon, e.g. Pix2PixHD proposed
combining instance and semantic segmentation maps, how-
ever, this does not provide low-level details. Fig. 7 com-
pares the three primitives. The edge representation is un-
able to capture the eye, presumably as it cannot capture its
semantic meaning. The segmentation is unable to capture
the details in the new background regions creating a smear-
ing effect. The combined primitive is able to capture the
eye as well as the low-level textures of the background re-
gion. In Fig. 5 we present more manipulation results using
the combined primitive. In the center column, we switched
the positions of rightmost cars. As the objects were not of
the same size, some empty image regions were filled using
small changes to the edges. A more extreme result can be
seen in the rightmost column, the car on the left was re-
moved, creating a large empty image region. By filling in
the missing details using edges, our method was able to suc-
cessfully complete the background (see SM for an ablation).

Runtime: Our runtime is a function of the neural archi-
tecture and the number of iterations. When running all ex-
periments on the same hardware (NVIDIA RTX-2080 Ti), a
256x256 image e.g. the ”face” image (Fig. 2) takes SinGAN
72 minutes to train, and 180 minutes for TuiGAN while
DeepSIM (ours) takes 49 minutes. As was discussed pre-
viously, TuiGAN requires a new training process for each
new manipulation whereas our DeepSIM does not.

Is the cGAN loss necessary? We evaluated removing the
cGAN loss, keeping just the VGG perceptual loss on the
Cars image (see SM). For such high-res images the cGAN
was a better perceptual loss. At lower resolutions, the VGG
results were reasonable but still blurrier than the cGAN loss.

Can methods trained on large datasets generalize to rare
images? We present examples where this is not the case.
Fig. 10 showed that BicycleGAN did not generalize as well
as Pix2PixHD-MI for new (in-distribution) shoes. We show

Tr
ai

ni
ng

O
ut

pu
t

Figure 12: Failure modes. Left: generating unseen objects
- eyes of the dog. Center: background duplication - sea
behind the turtle. Right: empty space interpolation - nose
of the cat.

that in the more extreme case, where the image lies further
from the source distribution used for training, current meth-
ods fail completely. See SM for further analysis.

Augmentation in deep single image methods: Although
we are the first to propose single-image training for manip-
ulation using extensive non-linear augmentations, we see
SinGAN as implicitly being an augmentation-based uncon-
ditional generation approach. In its first level it learns an
unconditional low-res image generator, while latter stages
can be seen as an upscaling network. Critically, it relies on
a set of “augmented” input low-res images generated by the
first stage GAN. Some other methods e.g. Deep Image Prior
do not use any form of augmentation.

Failure modes: We highlight three main failure modes of
DeepSIM (Fig. 12): i) generating unseen objects - when the
manipulation requires generating objects unseen in training,
the network can do so incorrectly. ii) background duplica-
tion - when adding an object onto new background regions,
the network can erroneously copy some background regions
that originally surrounded the object. iii) interpolation in
empty regions - as no guidance is given in empty image
regions, the network hallucinates details, sometimes incor-
rectly. See SM for further analysis.

6. Conclusions

We proposed a method for training conditional genera-
tors from a single training image based on TPS augmenta-
tions. Our method is able to perform complex image ma-
nipulation at high-resolution. Single image methods have
significant potential, they preserve image fine-details to a
level not typically achieved by previous methods trained on
large datasets. One limitation of single-image methods (in-
cluding ours) is the requirement for training a separate net-
work for every image. Speeding up training of single-image
generators is a promising direction for future work.
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