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Abstract

While deep neural networks have shown impressive per-
formance in many tasks, they are fragile to carefully de-
signed adversarial attacks. We propose a novel adversarial
training-based model by Attention Guided Knowledge Dis-
tillation and Bi-directional Metric Learning (AGKD-BML).
The attention knowledge is obtained from a weight-fixed
model trained on a clean dataset, referred to as a teacher
model, and transferred to a model that is under training on
adversarial examples (AEs), referred to as a student model.
In this way, the student model is able to focus on the cor-
rect region, as well as correcting the intermediate features
corrupted by AEs to eventually improve the model accu-
racy. Moreover, to efficiently regularize the representation
in feature space, we propose a bidirectional metric learn-
ing. Specifically, given a clean image, it is first attacked
to its most confusing class to get the forward AE. A clean
image in the most confusing class is then randomly picked
and attacked back to the original class to get the backward
AE. A triplet loss is then used to shorten the representation
distance between original image and its AE, while enlarge
that between the forward and backward AEs. We conduct
extensive adversarial robustness experiments on two widely
used datasets with different attacks. Our proposed AGKD-
BML model consistently outperforms the state-of-the-art
approaches. The code of AGKD-BML will be available at:
https://github.com/hongw579/AGKD-BML.

1 Introduction
Deep neural networks (DNNs) have achieved great break-
through on a variety of fields, such as computer vision [22],
speech recognition [17], and natural language process-
ing [8]. However, their vulnerability against the so-called

*This work was done during the research assistantship at BNL.
†Corresponding author.

Figure 1. A clean image (“German shepherd”) and its adversarial
example (incorrectly classified as “Planetarium”) are in the first
column. The class relevant attention maps (Grad-CAM) of correct
and incorrect labels, and the class irrelevant attention maps are
shown in the second, third and fourth columns, respectively. It
shows that the adversarial perturbations corrupt the attention maps.

adversarial examples (AEs), which are the data with care-
fully designed but imperceptible perturbations added, has
drawn significant attention [38]. The existing of AEs is a
potential threat for the safety and security of DNNs in real-
world applications. Thus, many efforts have been made to
defend against adversarial attacks as well as improve the
adversarial robustness of the machine learning model. In
particular, adversarial training [16, 27]-based models are
among the most effective and popular defending methods.
Adversarial training solves a min-max optimization prob-
lem, in which the inner problem is to find the strongest AE
within an ε−ball by maximizing the loss function, while
the outer problem is to minimize the classification loss
of the AE. Madry et al. [27] provided a multi-step pro-
jected gradient descent (PGD) model, which has become
the standard model of the adversarial training. Follow-
ing PGD, a number of recent works have been proposed
to improve adversarial training from different aspects, e.g.,
[6, 11, 28, 32, 35, 42, 49, 51].

However, the adversarial training-based models still suf-
fer from relatively poor generalization on both clean and
adversarial examples. Most of the existing adversarial train-
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ing based models focus only on the on-training model that
utilizes adversarial examples, which may be corrupted, but
have not well explored the information from the model
trained on clean images. In this work, we aim to improve
the model adversarial robustness by distilling the attention
knowledge and utilizing bi-directional metric learning.

The attention mechanism plays a critical role in human
visual system and is widely used in a variety of application
tasks [34, 53]. Unfortunately, one of our observations shows
that the perturbations in the adversarial example (AE) will
be augmented through the network, and thus significantly
corrupts the intermediate features and attention maps. It
is shown in the Figure 1, the AE confuses the model by
letting it focus on different regions from the clean image.
Intuitively, if we can transfer the knowledge of clean images
from the teacher model to the student model to 1) obtain
right attention information, and 2) correct the intermediate
features corrupted by AE, we should be able to improve the
model’s adversarial robustness.

With this motivation, we propose an Attention Guided
Knowledge Distillation (AGKD) module, which applies
knowledge distillation (KD) [18] to efficiently transfer at-
tention knowledge of the corresponding clean image from
the teacher model to the on-training student model. Specif-
ically, the teacher model is pre-trained on the original clean
images and will be fixed during training, while the student
model is the on-training model. The attention map of a
clean image obtained from the teacher model is used to
guide the student model to generate the attention map of
the corresponding AE against the perturbations.

We further use t-distributed Stochastic Neighbor Embed-
ding (t-SNE) to study the behavior of the AE in the latent
feature space (see Figure 3), and observe that the repre-
sentations of the AE are usually far away from their orig-
inal class, similar as shown in [28]. While AGKD trans-
fers information of clean image to the student model from
the teacher model and thus provides the constraints on the
similarity between the AE and its corresponding clean im-
age, there is no constraint of samples from different classes
taken into account. Previous works [24, 28, 52] proposed
using metric learning to regularize the latent representations
of different classes. Specifically, a triplet loss is utilized,
in which latent representations of the clean image, its cor-
responding AE and an image from another class are con-
sidered as the positive, anchor, and negative example, re-
spectively. However, this strategy only considers the one-
directional adversarial attack, i.e., from the clean image to
its adversarial example, making it less efficient.

To address the above issue, we propose a Bi-directional
attack Metric Learning (BML) to provide a more efficient
and strong constraint. Specifically, the original clean im-
age (positive) is first attacked to its most confusing class,
which is the class that has the smallest loss other than the

correct label, to get the forward adversarial example (an-
chor). Then, a clean image is randomly picked from the
most confusing class and is attacked to the original image
to get the backward adversarial example as the negative.

By integrating AGKD and BML, our AGKD-BML
model outperforms the state-of-the-art models on two
widely used datasets, CIFAR-10 and SVHN, under differ-
ent attacks. In summary, our contribution is three-fold:

• An attention guided knowledge distillation module is
proposed to transfer attention information of clean im-
age to the student model, such that the intermediate
features corrupted by adversarial examples can be cor-
rected.

• A bidirectional metric learning is proposed to effi-
ciently constrain the representations of the different
classes in feature space, by explicitly shortening the
distance between original image and its forward adver-
sarial example, while enlarging the distance between
the forward adversarial example and the backward ad-
versarial example from another class.

• We conduct extensive adversarial robustness experi-
ments on the widely used datasets under different at-
tacks, the proposed AGKD-BML model outperforms
the state-of-the-art approaches with both the qualita-
tive (visualization) and quantitative evidence.

2 Related Works

Adversarial Attacks. Generally, there are two types of
adversarial attacks: white-box attack where the adversary
has full access to the target model, including the model pa-
rameters, and the black-box attack, where the adversary has
almost no knowledge of the target model. For white-box
attack, Szegedy et al. [38] discovered the vulnerability of
deep networks against adversarial attacks. They used a box-
constrained L-BFGS method to generate effective adversar-
ial attacks. After that, several algorithms were developed
to generate adversarial examples. As a one-step attack, the
fast gradient sign method (FGSM) proposed in [16] uses
the sign of the gradient to generate attacks, with `∞-norm
bound. In [23], Kurakin et al. extended FGSM by apply-
ing it iteratively and designed basic iterative method (BIM).
A variant of BIM was proposed in [12] by integrating mo-
mentum into it. DeepFool [29] tried to find the minimal per-
turbations based on the distance to a hyperplane and quan-
tify the robustness of classifiers. In [31], the authors in-
troduced a Jacobian-based Saliency Map Attack. The pro-
jected gradient descent (PGD) was proposed in [27] as a
multi-step attack method. The CW attack, a margin-based
attack, was proposed in [4]. Recently, Croce et al. in-
troduced a parameter-free attack named AutoAttack [10],
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which is an ensemble of two proposed parameter-free ver-
sions of PGD attacks and the other two complementary at-
tacks, i.e., FAB [9] and Square Attack [1]. It evaluates each
sample based on its worst case over these four diverse at-
tacks which includes both white-box and black-box ones.
Besides the additive attacks, [14, 15, 20] show that even
small geometric transformations, such as affine or projec-
tive transformation can fool a classifier. In addition to those
attacks on the image input to the model, attempts are made
to design adversarial patches that can fool the model in the
physical world [13, 19, 23]. On the other side of the coin,
adversarial attacks may also be used to improve the model
performance [44, 25, 30].
Adversarial defense. Adversarial training-based mod-
els, which aim to minimize the classification loss to the
strongest adversarial examples (maximal loss within a
ε−ball), are believed as one of the most effective and widely
used defense methods. In practice, they iteratively generate
adversarial examples for training. In [16], Goodfellow et al.
generated the adversarial examples by FGSM, while Madry
et al. [27] used the Projected Gradient Descent (PGD) at-
tacks during adversarial training. Many variants based on
adversarial training were proposed in recent years. For ex-
ample, [35] computed the gradient for attacks and the gradi-
ent of model parameters at the same time, and significantly
reduced the computation time. Adversarial logit paring [21]
constraints distance between the logits from a clean im-
age and its adversarial example, while [28] and [52] built
a triplet loss between a clean image, its corresponding ad-
versarial example and a negative sample. TRADES [51]
optimized the trade-off between robustness and accuracy.
In [41], the authors designed an adversarial training strategy
with both adversarial images and adversarial labels. In [49],
feature scattering is used in the latent space to generate ad-
versarial examples and further improved the model’s accu-
racy under different attacks. Xie et al. [45] proposed feature
denoising models by adding denoise blocks into the archi-
tecture to defend the attack.

Most of the existing adversarial training-based models
focus on the on-training model that utilizes adversarial ex-
amples, which may be corrupted, but have not explored the
information from the model trained on clean images.

Other adversarial defense models. In [26, 46], the au-
thors proposed to firstly detect and reject adversarial exam-
ples. Several methods proposed to estimate the clean image
by using a generative model [36, 37, 47]. Cohen et al. [7]
proposed to use randomized smoothing to improve adver-
sarial robustness. There are also several works utilized large
scale external unlabeled data to improve the adversarial ro-
bustness, e.g., [5] and [39].

In this paper, we focus on improving the adversarial ro-
bustness of the model itself without using external data or
pre-processing the testing data.

3 Proposed Method
In this section, we present the framework of our proposed
AGKD-BML model in detail. As illustrated in Figure 2,
AGKD-BML framework consists of two modules, i.e., the
attention guided knowledge distillation (AGKD) module
and the bidirectional attack metric learning (BML) module.
The AGKD module is used for distilling attention knowl-
edge of the clean image to the student model, to obtain
a better attention map for adversarial example, as well as
correcting the corrupted intermediate features. The BML
module efficiently regularizes the representation in feature
space by using bidirectional metric learning. In the rest of
this section, we first briefly introduce the standard adversar-
ial training (AT) and (non-)targeted adversarial attack, and
then describe the two modules of our proposed model and
the integration of them.

3.1 Preliminaries
We first briefly describe the standard adversarial training
(AT) [27]. Suppose we have a labeled C-class classification
dataset D = {(x, y)}Ni=1 of N samples, where the label
y ∈ {1, 2, . . . , C}. There are two types of adversarial at-
tacks, i.e., the non-targeted attacks and the targeted attacks,
which can be formulated as eq. (1) and (2), respectively:

max
δ∈∆
L(fθ(x+ δ), y) (1)

min
δ∈∆
L(fθ(x+ δ), yt) (2)

where δ is the perturbation added to the image x, ∆ pro-
vides an `∞-norm bound of the perturbation, and fθ(·) and
L(·) to denote the network with model parameters θ and the
loss function, respectively. Non-targeted attacks maximize
the loss function given the correct label y, while targeted
attacks minimize the loss function given the target label yt.

Standard AT uses non-targeted PGD (Projected Gradient
Descent) attack [27] during training, which can be formu-
lated as a min-max optimization problem:

min
θ

E
x∈D

[
max
δ∈∆
L(fθ(x+ δ), y)

]
(3)

In the objective function, the outer minimization is the up-
date of the model parameters while the inner maximization
is for generating adversarial attacks. Specifically, PGD is
used to generate attacks, which is an iterative non-targeted
attack with random start at the beginning. In this paper, fol-
lowing [41], we use targeted attacks during training with the
most confusing class as target class.

3.2 Attention guided knowledge distillation
To distill attention information of clean images to the stu-
dent model, we propose an attention guided knowledge
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Figure 2. The framework of the proposed AGKD-BML model. Top-left is a clean image that belongs to “Dog”, and bottom-left is its
adversarial example (AE) targeted attack to its most confusing class “Cat”. Similarly, top-right and bottom-right are a clean image of
“Cat” and its AE targeted “Dog”, respectively. “Teacher” is the model pre-trained on clean images and “Student” is the on-training model.
The AE will fool the model by 1) focusing on incorrect regions, and 2) crossing the decision boundary in feature space. Attention guided
knowledge distillation, illustrated as a green ellipse, is used for correcting the focus region. Bidirectional metric learning, illustrated as red
arrows in the “Feature space”, is used to pull the AEs back to their original classes. Better viewed in color.

distillation module. Figure 1 shows attention maps of a
clean image (“German shepherd”) and its adversarial ex-
ample (“Planetarium”). As a class relevant attention map,
the Grad-CAM [34] shows the focusing region related to
a specific class. From the figure we can see that although
the adversarial example degrades the attention map of orig-
inal class, it hurts the attention map of target (incorrect)
class much more largely, and makes the features of incorrect
class overwhelm the correct class and dominate overall (as
such makes the model mis-classified). We argue that only
distilling the class relevant attention information has lim-
ited effects on correcting the features of the targeted class.
Therefore, we propose to distill class irrelevant attention in-
formation (see section 3.2.1) of clean images. We provide
more explanations and discussions to justify our choice in
supplementary materials.

3.2.1 Class irrelevant attention map

We generate the class irrelevant attention map at the last
convolutional layer. Specifically, we treat the backbone
neural network until the last convolutional layer as a fea-
ture extractor, denoted by F(x) for a given image x, where
F(x) ∈ RC×H×W . We then produce an operator, denoted
by A(·), to map the feature map to the two-dimensional at-
tention map, A(F(x)) ∈ R1×H×W . In this paper, we sim-

ply pick the average pooling through the channel dimension
(or identical weights 1×1 convolution) as A.

3.2.2 Knowledge distillation

The knowledge distillation (KD) [18] utilizes a student-
teacher (S-T) learning framework to transfer information
learned from the teacher model to the student model. In
this paper, we treat the model trained on the natural clean
images by standard training as the teacher model and the
one under adversarial training as the student model. The at-
tention information is what we expect to transfer from the
teacher model to the student model. As the teacher model is
trained on the clean images with high testing accuracy, it is
able to provide correct regions that model should focus on.
Therefore, the attention map of the clean image extracted
by the teacher model will transfer to the student model. The
loss function of this attention guided knowledge distillation
is written as:

LKD(xt, xs) = D(A(Ft(xt)),A(Fs(xs))) (4)

where xt and xs are input images of the teacher and student
model, respectively, and Ft and Fs are feature extractors of
the teacher and student models, respectively. D(·) is the dis-
tance function (e.g., `1) to measure the similarity between
these two attention maps. Given an adversarial example,
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the AGKD guides the student model to focus on the same
regions as its clean image.

3.3 Bidirectional attack metric learning
In our work, we use the targeted attack to obtain the adver-
sarial examples. Let xs refers to a samples with the label
y = s, and xst refers to an adversarial example of xs with
the target label yt = t. In this paper, the forward adver-
sarial example is targeted towards the most confusing class,
which is defined as follow:

ymc = arg min
y 6=s

L(f(xs), y). (5)

Given an original clean image xs, we first generate the
targeted adversarial example xsymc

towards its most confus-
ing class. Then, we randomly select a sample xymc from the
most confusing class, and generate its adversarial example
xymc
s that targeted back to the original label s. We utilize
xs, xsymc

, xymc
s as positive, anchor and negative sample, re-

spectively. The triplet loss is defined as:

Ltr(xa, xp, xn)

= [d(E(xa), E(xp))− d(E(xa), E(xn)) +m]+,
(6)

where xa, xp, xn denote to positive, anchor and negative
samples, respectively. E(·) is the representation from the
penultimate layer of the model. d(a, b) denotes the distance
between two embeddings a and b, which is defined as the
angular distance d(a, b) = 1− |a·b|

‖a‖2‖b‖2 , following [28]. m
is the margin. Comparing to the previous metric learning
based adversarial training, e.g., [28] and [52] which only
consider forward adversarial example, we consider both the
forward and backward adversarial examples. Therefore, we
name it the bidirectional metric learning.

By adding a `2-norm regularization on the embedding,
the final BML loss function is written as:

LBML = λ1Ltr(xsymc
, xs, xymc

s ) + λ2Lnorm, (7)

where Lnorm = ‖E(xsymc
)‖2 + ‖E(xs)‖2 + ‖E(xymc

s )‖2
is the normalization term, and λ1 and λ2 are the trade-off
weights for the two losses.

3.4 Integration of two modules
We integrate the attention guided knowledge distillation and
bidirectional metric learning together to take the benefits
from both modules. As we consider bidirectional adver-
sarial attack, we have two clean/adversarial image pairs,
xs/xsymc

and xymc /xymc
s . For both pairs, we apply the

AGKD from the attention map of the clean image obtained
by teacher model to the student model, which can be for-
mulated as:

LAGKD =LKD(xs, xsymc
) + LKD(xymc , xymc

s ) (8)

where the first term denotes the AGKD loss for the forward
attack pair, i.e., xs and xsymc

, while the second term denotes
the backward attack pair, i.e., xymc and xymc

s ,
By combining the standard cross entropy loss used in

the traditional adversarial training, the BML loss, and the
AGKD loss, the final total loss is:

Ltotal = Lce + LAGKD + LBML (9)

The overall procedure of AGKD-BML model is shown in
Algorithm. 1.

Algorithm 1: AGKD-BML model
Input: Clean image set D, epoch number N , batch

size b, learning rate γ
Output: Network parameter θ

1 for epoch = 1, ..., N do
2 for minibatch {xi, yi}bi=1 do
3 initialize Lbatch = 0 ;
4 for sample one xs belongs to class s do
5 a. find its MC class ymc by Eq. 5,

sample one data xymc from class ymc ;
6 b1. obtain xsymc

by attacking xs to ymc ;
7 b2. obtain xymc

s by attacking xymc to s ;
8 c. calculate LBML by Eq. 7 ;
9 d. calculate LAGKD by Eq. 8 ;

10 e. calculate Ltotal by Eq. 9 ;
11 f. update Lbatch = Lbatch + 1

bLtotal .

12 update θ = θ − γ · ∇θLbatch .

13 return θ;

4 Experiments

4.1 Experimental settings
Dataset We evaluate our method on two popular datasets:
CIFAR-10 and SVHN. CIFAR-10 consists of 60k 3-channel
color images with size of 32 × 32 in 10 classes, in which
50k images for training and 10k images for testing. SVHN
is the street view house number dataset, which has 73257
images for training and 26032 images for testing. We eval-
uate model on a larger datasets: Tiny ImageNet, and the
results are shown in supplementary materials.

Comparison methods We use comparison methods in-
clude: (1) undefended model (UM), where the model
is trained by standard training; (2) adversarial training
(AT) [27], which uses non-targeted PGD adversarial ex-
amples (AEs) for training; (3) single-directional metric
learning (SML) [28]; (4) Bilateral [41], which generates
AEs on both images and labels; (5) feature scattering
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(FS) [49], where adversarial attacks for training are gen-
erated with feature scattering in the latent space; (6) and (7)
utilize the channel-wise activation suppressing (CAS) [3]
on TRADES [50] and MART [43], respectively, which
showed the superior compared to the original version. Note
that Bilateral, FS generate AEs by using single-step at-
tacks in training, while AGKD-BML uses 2-steps attacks,
“AT” and “SML” use 7-step attacks, and “TRADES+CAS”
and “MART+CAS” use 10-step attacks. To fairly com-
pare to these multi-step attack models, we also train a 7-
step attack variant of AGKD-BML, referred as to “AGKD-
BML-7”. We test the models with various attacks including
FGSM [16], BIM [23], PGD [27], CW [4], MIM [12] with
different attack iterations. We also evaluate the models in
a per-sample manner using AutoAttack (AA) [10], which is
an ensemble of four diverse attacks. Finally, we also test the
black-box adversarial robustness of the model.

Implementation details Following [27] and [28], we
use Wide-ResNet (WRN-28-10) [48], and set the initial
learning rate γ as 0.1 for CIFAR-10 and 0.01 for SVHN.
We use the same learning rate decay points as [41] and [49],
where decay schedule [100, 150] for CIFAR-10 and [60, 90]
for SVHN, with 200 epochs in total. “AGKD-BML-7” has
the learning rate that decays at 150 epochs and the training
stops at 155 epochs, following the suggestions in [43, 33].
In training phase, the perturbation budget ε = 8 and la-
bel smoothing equals to 0.5 following [49]. In the AGKD
module, we adopt `1 norm to measure the similarity be-
tween attention maps. For the BML module, parameters
are the same as [28], i.e., margin m = 0.03, λ1 = 2 and
λ2 = 0.001.

4.2 Evaluation of adversarial robustness

We evaluate our model’s adversarial robustness and report
the comparisons in Table 1. The results on “clean” images
are used as a baseline for evaluating how much the accuracy
of the defenders will drop as increasing the adversarial ro-
bustness. It is shown in Table 1, AGKD-BML overall out-
performs the comparison methods on CIFAR-10. AGKD-
BML also shows better adversarial robustness on SVHN
dataset with a large margin.

Interestingly, in Table 1, we observed that AGKD-BML
showed different superiors to different attacks, i.e., AGKD-
BML trained on 7-step attack has higher performance than
that trained on 2-step attack against AA, but much lower
performance against the regular attacks, e.g. PGD and CW.
The reason for this phenomenon is, in our opinion, that
compared to the regular attacks, AA is an ensemble of four
different types of attack, including white-box and black-
box ones, which requires the generalization capability of
defense against different types of attack. The generation
of the 7-step attack significantly increases the diversity of

AEs used for training and thus, it improves the robustness
against AA with some sacrifice on accuracy against regu-
lar attacks. On the other hand, the generation of the 2-step
attack focuses more on the regular attacks but less diverse,
which makes it has lower performance against AA. As an
empirical defense method, we argue the model trained by
small-number-step attack is still useful in some scenarios
that the adversarial attacks are known. We provide more
results of AGKD-BML model trained on large-number-step
attacks against AA in supplementary materials.

4.3 Ablation study

We analyze the ablation effect of each component of
AGDK-BML on CIFAR-10 dataset. The quantitative and
qualitative results are shown in Table 2 and Figure 3, re-
spectively. “UM”, “AT” and “SML” are the same mod-
els described above. “BML” denotes the bidirectional
metric learning without using any knowledge distillation.
“AGKD” denotes the model applied attention map guided
knowledge distillation without any metric learning. In Fig-
ure 3, we provide the t-SNE plots to show the sample rep-
resentations in feature space. The triangle points with dif-
ferent colors represent the clean images in different classes,
while the red circle points are the AEs under PGD-20 at-
tack. We show AEs from two classes (i.e., deer and frog).

“UM” shows how the adversarial attacks behave if a
model dose not have any defense. A simple one step attack
FGSM drops UM’s accuracy to∼30%, while the multi-step
attacks, e.g., PGD-20 and CW-20, drop its accuracy to 0%.
It is also visualized in the first column of Figure 3, where
all the AEs locate far from their original class, and fit into
the distributions of other classes. As a standard benchmark
defense model, “AT” provides a baseline for improvements
on both single-step and multi-step attacks.

The Effect of Bidirectional Metric Learning “SML”
and “BML” both apply metric learning to constrain the
clean image and its AE to keep a short distance, while push
away the images in different classes. The difference be-
tween them is that SML only considers forward attacks and
BML considers both forward and backward attacks. In the
second and third columns of Figure 3, we can see that the
SML does pull many of the AEs back to their original class,
i.e., purple in the first row and cyan in the second row. How-
ever, one of the side effects of SML is that it makes classes
confusing for clean images and thus may make a significant
accuracy drop on clean images. In contrast, BML keeps
better separations between different classes, and has much
less amount of AEs located far away compared to SML. It
demonstrates the benefit of the bidirectional strategy.

The Effect of Attention Guided Knowledge Distilla-
tion Utilizing “AGKD” alone is able to obtain a good accu-
racy, which is better than BML. By integrating both AGKD
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Table 1. Evaluation results on CIFAR-10 and SVHN, under different widely used attacks. For CIFAR-10 dataset, we grouped the models
by small-number or larger-number steps attack in training. “Bilateral” and “FS” use one-step attack, AGKD-BML uses two-step attack,
and others use large-number steps with the step numbers show followed by the model names. “AGKD-BML-7” is a veriant of AGKD-BML
that uses 7-step attack for training. The best accuracy for each group is illustrated as bold, and the overall best accuracy is highlighted.

CIFAR-10
Attacks(steps) clean FGSM BIM(7) PGD (20) PGD (100) CW (20) CW (100) AA [10]

UM 95.99% 31.39% 0.38% 0% 0% 0% 0% 0%
Bilateral [41] 91.2% 70.7% - 57.5% 55.2% 56.2% 53.8% 29.35%

FS [49] 90.0% 78.4% - 70.5% 68.6% 62.4% 60.6% 36.64%
AGKD-BML 91.99% 76.69% 73.81% 71.02% 70.72% 63.67% 62.55% 37.07%

AT-7 [27] 86.19% 62.42% 54.99% 45.57% 45.22% 46.26% 46.05% 44.04%
SML-7 [28] 86.21% 58.88% 52.60% 51.59% 46.62% 48.05% 47.39% 47.41%

TRADES+CAS-10 [3] 85.83% 65.21% - 55.99% - 67.17% - 48.40%
MART+CAS-10 [3] 86.95% 63.64% - 54.37% - 63.16% - 48.45%

AGKD-BML-7 86.25% 70.06% 64.97% 57.30% 56.88% 53.36% 52.95% 50.59%
SVHN

Attacks(steps) clean FGSM BIM(10) PGD (20) PGD (100) CW (20) CW (100) MIM (40)
UM 96.36% 46.33% 1.54 % 0.33% 0.22% 0.37% 0.24% 5.39%

Bilateral [41] 94.1% 69.8% - 53.9% 50.3% - 48.9% -
FS [49] 96.2% 83.5% - 62.9% 52.0% 61.3% 50.8% -

AT-7 [27] 91.55% 67.13% 54.03% 45.64% 44.02% 47.14% 45.66% 52.13%
SML-7 [28] 83.95% 70.28% 57.58% 51.91% 49.81% 51.25% 49.31% 43.80%

TRADES+CAS-10 [3] 91.69% 70.79% - 55.26% - 60.10% - -
MART+CAS-10 [3] 93.05% 70.30% - 51.57% - 53.38% - -

AGKD-BML 95.04% 89.32% 75.06% 74.94% 69.23% 69.85% 62.22% 76.86%

Figure 3. t-SNE plots for illustrating the sample representations in feature space. The triangle points with different colors represent the
clean images in different classes, and the red circle points are the adversarial examples under PGD-20 attack. Best viewed in color.

and BML, the proposed AGKD-BML obtain the best perfor-
mance in terms of both quantitative and qualitative results.
In the fourth column of Figure 3, AGKD-BML pulls most
of the AEs back to their original class, while keeps better

separation between classes than BML does. We also pro-
vide the attention maps of the AEs obtained by the trained
models in Figure 4. Compared to AT, AGDK-BML obtains
better attention maps which are more identical to the ones
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Table 2. Ablation study on CIFAR-10 dataset.
FGSM PGD (20) CW (20)

UM 31.39% 0% 0%
AT [27] 62.42% 45.57% 46.26%

SML [28] 58.88% 51.59% 48.05%
BML 71.08% 60.51% 56.53%

AGKD 75.57% 65.93% 60.71%
AGKD-BML 76.69% 71.02% 63.67%

of clean images. This suggests that the AGKD does help on
correcting the representation of AEs in feature space.

Figure 4. (a) Sample adversarial examples. (b) Attention maps
obtained from clean images, which are treated as ground truth. (c)
and (d) are the attention maps obtained by AGDK-BML and AT.

Different attack iterations and budgets We evaluate
model robustness under different PGD attack iterations, and
different attack budgets (ε) with a fixed attack iteration of
20. It is shown in Figure 5 that AGKD-BML consistently
outperforms two comparison methods, i.e., feature scatter
(FS) [49] and standard AT, on all numbers of attack itera-
tions up to 100 and all attack budgets up to ε = 20. More-
over, AGKD-BML also shows more robust to large attack
budgets as the accuracy drops are significantly less than the
other two comparison methods.

Figure 5. The accuracy under different attack iterations and pertur-
bation budgets (ε).

Table 3. Black-box adversarial robustness.
AT [27] FS [49] Bilateral [41] SML [28] AGKD-BML
85.4% 88.9% 89.9% 86.4% 90.75%

4.4 Black box adversarial robustness
To evaluate the black-box adversarial robustness, i.e., the
adversary has no knowledge about the model, we generate
an AE for each clean image in CIFAR-10 testing set by us-
ing natural models under PGD-20 attack with ε = 8. Then
the AGKD-BML model, as well as the comparison models,
are tested on the generated adversarial example data. As
demonstrated in Table 3, AGKD-BML model achieves the
best accuracy among the models suggesting that AGKD-
BML is robust to the black-box attacks as well.

4.5 Discussion
Based on the analysis in [2], we claim that the robustness of
our model is not from gradient obfuscation for the following
reasons: 1) In table 1, iterative attacks are stronger than one-
step attack (FGSM). 2) Figure 5 shows that the accuracy
monotonically declines under attacks with more steps or in-
creasing perturbation budgets. 3) Table 3 shows that black-
box attacks have a lower success rate (higher accuracy)
than white-box attacks. 4) We evaluate our model against a
gradient-free attack [40] and the accuracy is 88.67%, which
is higher than gradient-based attacks (71.02% for PGD20).

5 Conclusion
We proposed a novel adversarial training based model,
named as AGKD-BML, that integrates two modules, i.e., the
attention guided knowledge distillation module and the bi-
directional metric learning module. The first module trans-
fers attention knowledge of the clean image from a teacher
model to a student model, so as to guide student model for
obtaining better attention map, as well as correcting the in-
termediate features corrupted by adversarial examples. The
second module efficiently regularizes the representation in
the feature space, by shortening the representation distance
between original image and its forward adversarial exam-
ple, while enlarging the distance between the forward and
backward adversarial examples. Extensive adversarial ro-
bustness experiments on two popular datasets with various
attacks show that our proposed AGKD-BML model consis-
tently outperforms the state-of-the-art approaches.
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