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Abstract

Recently, some approaches are proposed to harness deep
convolutional networks to facilitate superpixel segmenta-
tion. The common practice is to first evenly divide the image
into a pre-defined number of grids and then learn to asso-
ciate each pixel with its surrounding grids. However, sim-
ply applying a series of convolution operations with lim-
ited receptive fields can only implicitly perceive the rela-
tions between the pixel and its surrounding grids. Con-
sequently, existing methods often fail to provide an effec-
tive context when inferring the association map. To rem-
edy this issue, we propose a novel Association Implantation
(AI) module to enable the network to explicitly capture
the relations between the pixel and its surrounding grids.
The proposed AI module directly implants the grid fea-
tures to the surrounding of its corresponding central pixel,
and conducts convolution on the padded window to adap-
tively transfer knowledge between them. With such an im-
plantation operation, the network could explicitly harvest
the pixel-grid level context, which is more in line with the
target of superpixel segmentation comparing to the pixel-
wise relation. Furthermore, to pursue better boundary pre-
cision, we design a boundary-perceiving loss to help the
network discriminate the pixels around boundaries in hid-
den feature level, which could benefit the subsequent infer-
ring modules to accurately identify more boundary pixels.
Extensive experiments on BSDS500 and NYUv2 datasets
show that our method could achieve state-of-the-art per-
formance. Code and pre-trained model are available at
https://github.com/wangyxxjtu/AINet-ICCV2021.

1. Introduction
Superpixels are image regions formed by grouping im-

age pixels similar in color and other low-level properties,
which could be viewed as an over-segmentation of image.
The process of extracting superpixels is known as super-
pixel segmentation. Comparing to pixels, superpixel pro-
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Figure 1: Different from the SCN [54] that implicitly learns
the association using the cascaded convolutions, our AINet
proposes to implant the corresponding grid features to the
surrounding of the pixel to explicitly perceive the relation
between each pixel and its neighbor grids.

vides a more effective representation for image data. With
such a compact representation, the computational efficiency
of vision algorithms could be improved [22, 12, 46]. Con-
sequently, superpixel could benefit many vision tasks like
semantic segmentation [13, 53, 60, 58, 59], object detec-
tion [10, 40], optical flow estimation [15, 32, 44, 52], and
even adversarial attack [8]. In light of the fundamental im-
portance of superpixels in computer vision, superpixel seg-
mentation attracts much attention since it is first introduced
by Ren and Malik [38] in 2003.

The common practice for superpixel segmentation is to
first split the image into grid cells and then estimate the
membership of each pixel to its adjacent grids, by which
the grouping could be performed. Meanwhile, the mem-
bership estimation plays the key role in superpixel seg-
mentation. Traditional approaches usually utilize the hand-
craft features and estimate the relevance of pixel to its
neighbor grids based on clustering or graph-based meth-
ods [1, 31, 25, 28, 2], however, these methods all suffer
from the weakness of the hand-craft features and are diffi-
cult to integrate into other trainable deep frameworks. In-
spired by the success of deep neural networks in many
computer version problems, researchers recently attempts
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to adopt the deep learning technique to superpixel segmen-
tation [18, 54, 47]. As mentioned in abstract, previous deep
methods attempt to assign pixels by learning the associa-
tion of each pixel to its surrounding grids using the fully
convolutional networks [41]. The popular solutions like
SCN [54], SSN [18] employ the U-net architecture [39] to
predict the association, i.e., the 9-way probabilities, for each
pixel. Although stacking convolution layers can enlarge the
receptive field and help study the pixel-grid wise probabili-
ties, introducing low-level features with skip connection in
the final layer will pollute the probabilities due to the added
pixel-pixel wise information, since the ultimate target is to
predict the association between the target pixel and its 9-
neighbor grids instead of its 9-neighbor pixels.

To tackle this weakness, we propose to directly implant
the grid features to the surrounding of the corresponding
pixel using an association implantation (AI) module. Fig. 1
simply shows the core idea of our AI module, before feed-
ing the last features into the prediction layer, our AI module
is performed: for each pixel, we place the corresponding
grid features to its neighbors, then a convolution with 3× 3
kernel is followed, this convolution is no longer to capture
the pixel-pixel relation but the relation between pixel and its
9 neighbor grids, providing the consistent context with the
target of superpixel segmentation. Our proposed AI module
provides a simple and intuitive way to allow the network to
harvest the pixel-neighbor grids context in an explicit fash-
ion, which is exactly required by superpixel segmentation.
Comparing to existing methods, such a design is more con-
sistent with the target of superpixel segmentation and could
give more beneficial support for the subsequent association
map inferring.

Besides, a satisfactory superpixel algorithm should acc-
tually identify the boundary pixels, however, some designs
towards this target still missed among existing works. To
pursue better boundary precision, we augment the optimiza-
tion with a boundary-perceiving loss. To be specific, we
first sample a set of small local patches on the pixel embed-
ding map along the boundaries. Then, the features with the
same/different labels in each patch are treated as the posi-
tive/negative samples, on which a classification procedure is
performed to enhance the compactness of the features with
the same label while distinguish the different semantic fea-
tures. Our boundary-perceiving loss encourages the model
to pay more attention to discriminate the features around
boundaries, consequently, more boundary pixels could be
identified.

Quantitative and qualitative results on BSDS500 [3] and
NYUv2 [42] datasets demonstrate that the proposed method
achieves more outstanding performance against the state-of-
the-art superpixel segmentation methods. In summary, we
make the following contributions in this work:

• We propose a novel AI module to directly capture the

relation between the pixel and its surrounding grid
cells, such a design builds a more consistent architec-
ture with the target of superpixel segmentation.

• A boundary-perceiving loss is designed to discrimi-
nate the features with different semantic labels around
boundaries, which could help the network accurately
identify boundary pixels and improve the boundary
precision.

2. Related Work
Superpixel Segmentation Superpixel segmentation is a
well-defined problem and has a long line of research [43,
33, 23, 48, 6, 20]. Traditional superpixel algorithms can
be broadly classified into graph-based and clustering-based
approaches. Graph-based methods consider the pixels as
nodes and the edges as strength of connectivity between
adjacent pixels, respectively. Consequently, the superpixel
segmentation could be formulated as a graph-partitioning
problem. Wide-used algorithms, Felzenszwalb and Hutten-
locher (FH) [9] and the entropy rate superpixels (ERS) [28],
belong to this category. On the other hand, clustering-
based approaches utilize classic clustering techniques like
k-means to compute the connectivity between the anchor
pixels and its neighbors. Well-known methods in this cate-
gory include SLIC [1], LSC [25], Manifold-SLIC [31] and
SNIC [2]. Inspired by the success of deep learning tech-
niques, recently, researchers attempt to utilize the deep neu-
ral network to learn the membership of each pixel to its sur-
rounding grid cells. Jampani et al. [18] develop the first
differentiable deep network motivated by the classic SLIC
method, and Yang et al. [54] further simplify the framework
and contribute a more efficient model.
Application of Superpixel The pre-computed superpixel
segmentation could be viewed as a type of weak label or
prior knowledge to benefit many downstream tasks like
image & video segmentaion [34, 57, 29, 16, 35, 19, 17,
55, 51, 49, 5], object detection [24, 27, 50, 37] and so
on. The superpixels could be integrated into deep learn-
ing pipeline to provide guidance so that some important
image properties (e.g., boundaries) could be better pre-
served [11, 45, 56, 4, 26]. For example, KwaK et al. [22]
utilize the superpixel segmentation to perform a region-wise
pooling to make the pooled feature have better semantic
compactness. In [36], Cheng et al. consider the superpixel
as pseudo label and attempt to boost the image segmentation
by identifying more semantic boundary. Besides benefiting
the image segmentation or feature pooling, superpixel also
provides flexible ways to represent the image data. He et
al. [14] convert 2D images patterns into 1D sequential rep-
resentation, such a novel representation allows the deep net-
work to explore the long-range context of the image. Liu et
al. [30] learn the similarity between different superpixels,

7079



.		.		.

.		
.		
.

.		.		.

.		
.		
.

.		.		.

.		.
		.

.		.
		.

.		.		.

…

…

… …!"#

$

Superpixel	Embedding	%

&'(

Conv

)*

Output +(

$ = &' + !".

!"/

!"0
!". !"1

!"01

!"/# !"/ !"/1

!"# !"1

!"0# !"0 !"01

&'

Pixel	Embedding	+

!"/1!"/#

1 16

16 1 16

16!"0#

Pixel	Embedding	!

"#$

%

Avg.	
Pool.

"#&'

"($

"(&

)*+

)*+

)*+

Cross
Entropy

AI	Module

Boundary-Perceiving
Loss

Input	𝐼 Association	
Map	𝑸

Superpixel
Embedding

Boundary-Perceiving
Loss

Conv/Deconv Fea. AI	Module

Skip	Connection

AI

Figure 2: The framework of our AINet. The network takes an image as input and outputs the association map. Meanwhile, the
superpixel embedding and pixel embedding are first obtained by the convolutions and then fed into the AI module to obtain
the pixel-superpixel context. And the local patch loss is performed on the pixel-wise embeddings to boost the boundary
precision. In AI module, the sampling interval is set to 16, and each block indicates a pixel or superpixel embedding.

the developed framework could produce different grained
segmentation regions by merging the superpixels according
to the learned superpixel similarity.

3. Preliminaries
Before delving into the details of our method, we first

introduce the framework of deep-learning based superpixel
segmentation, which is also the fundamental theory of this
paper. As illustrated in Fig. 1, the image I is partitioned into
blocks using a regular size grid, and the grid cell is regarded
as the initial superpixel seed. For each pixel p in image
I , the superpixel segmentation aims at finding a mapping
that assigns each pixel to one of its surrounding grids, i.e.
9 neighbors, just as shown in Fig. 1. Mathematically, deep-
learning based method feeds the image I ∈ RH×W×3 to
convolution neural network and output an association map
Q ∈ RH×W×9, which indicates the probability of each
pixel to its neighbor grids [18, 54]. Since there is no ground-
truth for such an output, the supervision for network train-
ing is performed in an indirect fashion: the predicted asso-
ciation map Q serves as the intermediate variable to recon-
struct the pixel-wise property l(p) like semantic label, posi-
tion vector, and so on. Consequently, there are two critical
steps in training stage.

Step1: Estimate the superpixel property from the sur-
rounding pixels:

h(s) =

∑
p:s∈Np

l(p) · q(p, s)∑
p:s∈Np

q(p, s)
. (1)

Step2: Reconstruct the pixel property according to the
superpixel neighbors:

l
′
(p) =

∑
s∈Np

h(s) · q(p, s), (2)

where the Np is the set of adjacent superpixels of p, q(p, s)
indicates the probability of pixel p assigned to superpixel s.
Thus, the training loss is to optimize the distance between
the ground-truth property and the reconstructed one:

L(Q) =
∑
p

dist(l(p), l
′
(p))). (3)

Following Yang’s practice [54], the properties of pixel in
this paper include the semantic label and the position vec-
tor, i.e., two-dimension spatial coordinates, which are opti-
mized by the cross-entropy loss and the L2 reconstruction
loss, respectively.

4. Methodology
An overview of our proposed AINet is shown in Fig. 2.

In general, the overall architecture is an encoder-decoder
style paradigm, the encoder module compresses the input
image and outputs a feature map called superpixel embed-
ding, whose pixels exactly encode the features of grid cells.
Subsequently, the superpixel embedding is further fed into
the decoder module to produce the association map. Mean-
while, the superpixel embedding and the pixel embedding
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in decoding stage are integrated to perform the association
implantation, and the boundary-perceiving loss also acts on
the pixel embedding. Hereinafter, we elaborate the details
of our proposed AI module and boundary-perceiving loss.

4.1. Association Implantation Module

To enable the network to explicitly perceive the relation
between each pixel and its surrounding grid cells, this work
proposes an association implantation module to perform a
direct interaction between the pixel and its neighbor grids.
As shown in the top right of Fig. 2, we first obtain the em-
beddings of superpixels and pixels by the convolution net-
work. Then, for each pixel embedding, the corresponding
neighbor superpixel features are picked and implanted to its
surrounding. Finally, a convolution with kernel size 3×3 is
conducted on the expanded pixel embedding to achieve the
knowledge propagation.

Formally, let ep ∈ RD be the embedding of pixel p from
the pixel embedding E ∈ RH×W×D, which is obtained by
the deep neural network as shown in Fig. 2. To obtain the
embeddings of the grid cells, i.e., superpixel embedding,
we compress the input image by log2 S times using mul-
tiple convolutions and max-pooling operations, where S is
the sampling interval for the grid cell. For example, if the
sampling interval is 16, then, we downsample the image 4
times. This would result in a feature map M ∈ Rh×w×D

′

whose pixels exactly encode the features of grid cells, where
h = H/S, and w = W/S. To perform the implantation op-
eration on the pixel embedding, we first adjust the channels
of M using two 3 × 3 convolutions, producing a new map
M̂ ∈ RH×W×D. Then, for the pixel p, we pick up its 9
adjacent superpixel embeddings from left to right and top
down: {m̂tl, m̂t, m̂tr, m̂l, m̂c, m̂r, m̂bl, m̂b, m̂br} from M̂ .
To allow the network could explicitly capture the relation
between pixel p and its neighbor grids, we directly implant
the superpixel embeddings into the surrounding of the pixel
p to provide pixel-superpixel context:

SP =

m̂tl m̂t m̂tr

m̂l m̂c + ep m̂r

m̂bl m̂b m̂br

 . (4)

It is worth noting that the pixels in the same initial grid
would share the same surrounding superpixels, since they
would degrade into one element in superpixel view. We then
adopt a 3 × 3 convolution to adaptively distill information
from the expanded window to benefit the subsequent asso-
ciation map inferring:

e
′

p =
∑
ij

SPij × wij + b, (5)

where w and b are the convolution weight and bias, respec-
tively. We traverse all of the pixel embeddings in E and

apply the operations in Eq. 4- 5, thus, we could obtain a
new pixel embedding E

′
whose elements capture the pixel-

superpixel level context. In the following, the feature map
E

′
is fed through a convolution layer to predict the associa-

tion map Q.
As shown in Eq. 4- 5, our AI module directly places the

neighbor grid embeddings in the surrounding of the pixel
to provide the context required by superpixel segmentation,
which is an intuitive and reasonable solution. Comparing
to the existing methods that use the stacked convolutions
to accumulate the pixel-wise relation, the pixel-superpixel
context captured by our AI module is more in line with the
target of superpixel segmentation.

4.2. Boundary-Perceiving Loss

Our boundary-perceiving loss is proposed to help the
network appropriately assign the pixels around boundaries.
As shown in the bottom right of Fig. 2, we first sample a se-
ries of patches with a certain size (5×5, for example) around
boundaries in the pixel embedding map, and then a classifi-
cation procedure is conducted to improve the discrimination
of the different semantic features.

Formally, let E ∈ RH×W×D be the pixel-wise em-
bedding map, since the ground-truth label is available dur-
ing training stage, we could sample a local patch B ∈
RK×K×D surrounding a boundary pixel from E. For
the sake of simplification, the patch B only covers the
pixels from two different semantic regions, that is, B =
{f1, · · · , fm, g1, · · · , gn}, where f, g ∈ RD,m+n = K2.
Intuitively, we attempt to make the features in the same cate-
gories be closer, while the embeddings from different labels
should be far away from each other. To this end, we evenly
partition the features in the same categories into two groups,
f1,f2, g1, g2, and employ a classification-based loss to en-
hance the discrimination of the features:

LB = −1

2
(log(sim(µf1,µf2)) + log(1− sim(µf1,µg1)))

− 1

2
(log(sim(µg1,µg2)) + log(1− sim(µf2,µg2))),

(6)
where the µf1 is the average representation for f1, and the
function sim(·, ·) is the similarity measure for two vectors:

µf1 =
1

|f1|
∑
f∈f1

f, (7)

sim(f, g) =
2

1 + exp(||f − g||1)
, (8)

Taking all of the sampled patches B into consideration,
our full boundary-perceiving loss is formulated as follow:

LB =
1

|B|
∑
B∈B

LB . (9)
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(a) Patch shuffle (b) Random shift

Figure 3: The illustrations for our patch jitter augmentation,
patch shuffle and random shift. Color frames indicate the
changed regions.

Overall, the full losses for our network training comprise
three components, i.e., cross-entropy (CE) and L2 recon-
struction losses for the semantic label and position vector
according to the Eq. 3, and our boundary-perceiving loss:

L =
∑
p

CE(l
′

s(p), ls(p)) + λ||p− p
′
||22 + αLB (10)

where l
′

s(p) is the reconstructed semantic label from the pre-
dicted association map Q and the ground-truth label ls(p)
according to Eq. 1- 2, and λ, α are two trade-off weights.

5. Experiments
Datasets. We conduct experiments on two public bench-
marks, BSDS500 [3] and NYUv2 [42] to evaluate the ef-
fectiveness of our method. BSDS500 comprises 200 train-
ing, 100 validation and 200 test images, and each image
is annotated by multiple semantic labels from different ex-
perts. To make a fair comparison, we follow previous
works [54, 18, 47] and treat each annotation as an indi-
vidual sample. Consequently, 1,087 training, 546 valida-
tion samples and 1,063 testing samples could be obtained.
NYUv2 is an indoor scene understanding dataset and con-
tains 1,449 images with object instance labels. To evaluate
the superpixel methods, Stutz et al. [43] remove the unla-
belled regions near the boundary and collect a subset of 400
test images with size 608×448 for superpixel evaluation.

Following Yang’s practice [54], we conduct a standard
train and test pipeline on the BSDS500 dataset. On the sub-
ject of NYUv2 dataset, we directly apply the model trained
on BSDS500 and report the performance on the 400 tests to
evaluate the generality of the model.

Augmentation via Patch Jitter. To further improve the
performance and enhance the generality of our model, we
propose to augment the data by jittering the image patches.
Specifically, the proposed patch jitter augmentation com-
prises two components, i.e., patch shuffle and random shift.
Fig. 3 shows the respective examples for these two types
of data augmentation. The patch shuffle first samples two
image patches with shape S × S and then randomly ex-

change them to extend the image patterns, the correspond-
ing ground-truth patches are also exchanged accordingly
to maintain the consistency. To further augment the data,
we randomly pick up one of the selected two patches and
replace it with a random patch, whose ground-truth is as-
signed with a new label. While the random shift could be
conducted along with the horizontal or vertical directions.
For horizontal random shift, we first randomly sample a
patch with shape S × L, where L = rand int(S,W ), and
a random offset o = rand int(0, S). Then, we conduct a
cycle translation on the patch by o offset towards left or
right. Meanwhile, the random patch trick in patch shuffle
could also be adopted. Finally, the augmentation is done
by replacing the original patch with the new one. Analo-
gously, the augmentation along vertical direction could be
done similarly. The patch jitter augmentation is repeated 2
times during training. SSN [54] is adopted as our baseline
method in our experiments.

Implementation Details. In training stage, the image is
randomly cropped to 208×208 as input, and the network
is trained using the adam optimizer [21] for 4k iterations
with batch size 16. The learning rate starts with 8e-5 and
is discounted by 0.5 for every 2K iterations. The sampling
interval is fixed as 16, consequently, the encoder part em-
ploys 4 convolution&pooling operations to get the super-
pixel embedding with shape 13× 13× 256. The following
decoder module produces the pixel embedding with shape
208 × 208 × 16 using 4 convolution&deconvolution op-
erations. Then, the channels of superpixel embedding are
first compressed by two convolution layers: 256⇒64⇒16,
then our AI module is performed. The boundary-perceiving
loss also acts on the pixel embedding, where the patch size
is set to 5, i.e., K = 5. In the following, two convolu-
tion layers are stacked to predict the association map Q
with shape 208 × 208 × 9. In our practice, simultane-
ously equipping the boundary-perceiving loss and AI Mod-
ule could not make the performance step further, therefore,
we first train the network using the first two items in Eq. 10
for 3K iterations, and use the boundary-perceiving loss to
finetune 1K. Following Yang’s practice [54], the weight
of position reconstruction loss is set to 0.003/16, while the
weight for our boundary-perceiving loss is fixed to 0.5, i.e.,
λ = 0.003/16, α = 0.5. In testing, we employ the same
strategy as [54] to produce varying numbers of superpixels.

Several methods are considered for performance com-
parison, including classic methods, SLIC [1], LSC [25],
ERS [28], SEEDS [7], SNIC [2] and deep learning-based
methods, SEAL [47], SSN [18], SCN [54]. We simply use
the OpenCV implementation for methods SLIC, LSC and
SEEDS. For other methods, we use the official implemen-
tations with the recommended parameters from the authors.

Evaluation Metrics. We use three popular metrics includ-
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Figure 4: Performance comparison on datasets BSDS500 and NYUv2.

(a) Inputs (b) GT label (c) SEAL [47] (d) SCN [54] (e) SSN [18] (f) AINet

Figure 5: Qualitative results of four SOTA superpixel methods, SEAL, SCN, SSN, and our AINet. The top row exhibits the
results from BSDS500 dataset, while the bottom row shows the superpixels on NYUv2 dataset.

ing achievable segmentation accuracy (ASA), boundary re-
call (BR) and boundary precision (BP) to evaluate the per-
formance of superpixel. ASA score studies the upper bound
on the achievable segmentation accuracy using superpixel
as pre-processing step, while BR and BP focus on accessing
how well the superpixel model could identify the semantic
boundaries. The higher value of these metrics indicates bet-
ter superpixel segmentation performance.

5.1. Comparison with the state-of-the-arts

Fig. 4 reports the quantitative comparison results on
BSDS500 and NYUv2 test sets. As indicated in Fig. 4,
our AINet attains the best ASA score and BR-BP on both
datasets. With the help of deep convolution networks, the
methods, SEAL, SCN, SSN, and AINet could achieve su-
perior or comparable performance against the traditional su-
perpixel algorithms, and our AINet is the best model among
them. From Fig. 4 (a)-(b), the AINet could surpass the tra-
ditional methods by a large margin on BSDS500 dataset.
By harvesting the pixel-sueprpixel level context and high-
lighting the boundaries, AINet could also outperform the
deep methods SEAL, SCN and SSN. Fig. 4 (c)-(d) shows
the performance when adapting to the NYUv2 test set, we

Ablation Study 𝑆𝑃 Variations

Figure 6: Ablation study on BSDS500. The left figure
shows the contributions of each component in our system,
while the right one discusses two variations of SP (Eq. 4).

can observe that the AINet also shows better generality. Al-
though the BR-BP is comparable with the SCN and SSN,
our ASA score is more outstanding than all of the competi-
tive methods.

Fig. 5 shows the qualitative results of four state-of-the-
art methods on dataset BSDS500 and NYUv2, comparing
to the competing methods, the boundaries of our results are
more accurate and clearer, which intuitively shows the su-
periority of our method.
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(a) Images (b) SEAL [47] (c) SCN [54] (d) SSN [18] (e) AINet (f) GT label

I: The generated proposals from DEL [30] using different superpixels.

(a) Images (b) Threshold=0.3 (c) Threshold=0.4 (d) Threshold=0.5 (e) Threshold=0.6 (f) GT label

II: The generated proposals using different thresholds (1 as upper bound).

Figure 7: Qualitative proposals from DEL [30] using different superpixels (I), and the results of DEL [30] with our superpixel
using different thresholds (II), where threshold=0.3 mean merging the adjacent superpixels if their similarity is above 0.3.

5.2. Ablation Study

To validate the respective contributions of our proposed
modules including the data augmentation trick, AI mod-
ule, and the boundary-perceiving loss, we conduct abla-
tion study on BSDS500 dataset to thoroughly study their
effectiveness. The left figure in Fig. 6 reports the perfor-
mances of all methods, where the BPL means the boundary-
perceiving loss, and BPL+PJ stands for the baseline simul-
taneously equipped with the boundary-perceiving loss and
the patch jitter augmentation. From Fig. 6, we can ob-
serve that individually applying the three modules on the
baseline method could all boost the performance, and the
boundary-perceiving loss could contribute the most perfor-
mance gains. The combination of the patch jitter augmenta-
tion and the BPL or AI Module could make the performance
step further, and the AI module equipped with the data aug-
mentation achieves better performance. When simultane-
ously employing the three modules, we could harvest the
best BR-BP.

Besides, we also give a discussion for two alternative
choices of SP (Eq. 4): a greedy version of SP that further
adds the neighbor pixels to the corresponding surrounding
superpixels like the central position, for example, m̂t is re-
placed by m̂t+et; And a simplified version that ignoring the
central superpixel, i.e., m̂c + ep changes to ep. The models
with the above two versions of SP are marked as AINet-

PNbor and AINet-CPix, respectively. The right figure of
Fig. 6 shows the results, we can observe that AINet-PNbor
and AINet-CPix could both surpass the baseline but per-
form a litter worse than AINet. By summing the neighbor
pixels, the AINet-PNbor could integrate the pixel-wise rela-
tion, on the other hand, the sum operation would also reduce
the force of superpixel embedding, which would conspire
against capturing the pixel-superpixel context. For AINet-
CPix, the excluded m̂c is also one of the neighbor super-
pixels, directly abandoning m̂c would fail to explicitly per-
ceive the relation between pixel ep and central superpixel
m̂c. Consequently, the above two variations of SP are both
not effective to capture the super context.

5.3. Inference Efficiency

Besides the performance, the inference speed is also a
concerned aspect. Therefore, we conduct experiments on
BSDS500 dataset to investigate the inference efficiency of
four deep learning-based methods. To make a fair compari-
son, we only count the time of network inference and post-
processing steps (if available). All methods run on the same
workstation with NVIDIA 1080Ti GPU and Intel E5 CPU.

The time costs of four deep learning-based methods,
SEAL, SCN, SSN and our AINet are reported in Fig. 8.
The method SCN achieves the best inference efficiency due
to its simple architecture, while our AINet introduces more
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Figure 8: The average time costs of four deep learning
based methods w.r.t number of superpixels. The runtime
is added with 1 and scaled by logarithmic to show positive
values and a clear tendency.
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Figure 9: The ASA scores of four state-of-the-art methods
on object proposal generation.

layers and operations, consequently, the inference is slightly
slower than the SCN. The superpixel segmentation of SEAL
and SSN is much complex comparing to the SCN and our
AINet, SEAL needs first output the learned deep features
and then feed them to a traditional algorithm to conduct su-
perpixel segmentation, and SSN further performs the K-
means iteration after obtaining the pixel affinity. As a re-
sult, SEAL and SSN both cost much more time in infer-
ence stage. Although the SCN is faster, the performance of
AINet is much better than SCN. Comparing to these com-
peting methods, our AINet achieves a good trade-off be-
tween the performance and the inference efficiency.

5.4. Application on Object Proposal Generation

Image annotation is one of the important application sce-
narios for superpixels, since it could identify the semantic
boundaries and provide the outlines of many semantic re-
gions. To generate the object proposals, Liu et al. [30] pro-
pose a model named DEL, they first estimate the similari-
ties between superpixels and merge them according to a cer-
tain threshold, by which the proposed method could flexibly
control the grain size of object proposal. In this subsection,
we feed the superpixels from four state-of-the-art methods,
SEAL, SCN, SSN and our AINet to the framework of [30]
to further investigate the superiority of our AINet. To evalu-
ate the performance, we use the ASA score to measure how

well the produced object proposals cover the ground-truth
labels:

ASA(O,G) =
1

N

∑
Ok

max
Gk

{|Ok ∩Gk|}, (11)

where N is the number of generated object proposal O, and
G is the ground-truth semantic label.

The performance of all methods is reported in Fig. 9,
from which we can observe that the average performance of
our AINet is more outstanding. Fig. 7 I shows three results
of DEL [30] with the superpixels from four methods, dif-
ferent thresholds are used to produce varied size proposals:
the adjacent superpixels would be merged if their similar-
ity is above the threshold, which means that higher value
would produce finer object proposals. As shown in Fig. 7 I,
our AINet could generate more satisfactory object propos-
als comparing to the competing methods, which validates
the effectiveness of our proposed method. Fig. 7 II exhibits
the results using the superpixels of our AINet with differ-
ent thresholds, varying sizes of generated object proposals
could be generated by adjusting the threshold.

6. Conclusion

We have presented an association implantation network
for superpixel segmentation task. A novel association im-
plantation module is proposed to provide the consistent
pixel-superpixel level context for superpixel segmentation
task. To pursue better boundary precision, a boundary-
perceiving loss is designed to improve the discrimination of
pixels around boundaries in hidden feature level, and a data
augmentation named patch jitter is developed to further im-
prove the performance. Experiments on two popular bench-
marks show that the proposed method could achieve state-
of-the-art performance with good generalizability. What’s
more, the produced superpixels by our method could also
perform well when applied to the object proposal genera-
tion. In the future, we will continue to study the effective-
ness of the proposed AINet on the stereo matching task.
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