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Abstract

Geometric constraints are shown to enforce scale con-
sistency and remedy the scale ambiguity issue in self-
supervised monocular depth estimation. Meanwhile, scale-
invariant losses focus on learning relative depth, leading
to accurate relative depth prediction. To combine the best
of both worlds, we learn scale-consistent self-supervised
depth in a scale-invariant manner. Towards this goal, we
present a scale-aware geometric (SAG) loss, which en-
forces scale consistency through point cloud alignment.
Compared to prior arts, SAG loss takes relative scale into
consideration during relative motion estimation, enabling
more precise alignment and explicit supervision for scale
inference. In addition, a novel two-stream architecture
for depth estimation is designed, which disentangles scale
from depth estimation and allows depth to be learned in a
scale-invariant manner. The integration of SAG loss and
two-stream network enables more consistent scale infer-
ence and more accurate relative depth estimation. Our
method achieves state-of-the-art performance under both
scale-invariant and scale-dependent evaluation settings.

1. Introduction
To alleviate the need of high-quality ground truth depth

data, there is a recent surge of interest in self-supervised
monocular depth estimation [36, 10]. The basic idea is to
jointly learn depth estimation and ego-motion prediction su-
pervised by a photometric reconstruction loss. Although,
these approaches have achieved remarkable success in pop-
ular benchmarks, they are known to suffer from the per-
frame scale ambiguity issue [27, 2]. For one thing, the esti-
mated depths are not guaranteed to be scale consistent and
the ego-motion network also fails to predict globally consis-
tent trajectories for long videos. For another, without proper
constraints, the depth network has to adapt its scales accord-
ing to the ego-motion prediction and vice versa, which con-
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Figure 1. Strength of our scale-consistent depth estimation learned
in a scale-invariant manner. (a) Scale-dependent evaluation on
KITTI [9], where predictions are aligned to ground truth using one
global scale on a per-sequence basis rather than conventional per-
frame scale alignments (See Sec. 4.2.2). (b) Scale-invariant learn-
ing allows our method to produce more accurate relative depth.

fuses network training and results in performance degener-
ation or even training divergence [27]. Meanwhile, recent
evidence [7] also indicates that the global scale is a funda-
mental source of uncertainty in supervised depth estimation,
and that scale-invariant losses focus on relative depth learn-
ing and largely benefit depth estimation in terms of accuracy
as well as generalization abilities [19].

In light of the above analysis, an interesting question to
ask is whether we can achieve scale-consistent depth es-
timation but also enjoy the advantages of scale-invariant
training under the self-supervised framework? We make
the first attempt to answer this question by proposing a new
paradigm for self-supervised monocular depth estimation.

To this end, we present a scale-aware geometric loss
(dubbed SAG loss) that operates in the 3D space. The es-
timated depth of adjacent frames are first projected to 3D
point clouds and then transformed into a common view us-
ing the predicted ego-motion. Instead of directly penal-
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izing the coordinate differences between point clouds, we
estimate their relative motion parameters in a least-square
sense, which include not only the rotation and translation,
but also the relative scale factor. The SAG loss are com-
puted by incorporating the three motion parameters to en-
force scale consistent depth estimation of adjacent frames.
With iterative training, depth consistency can finally be
propagated through entire sequences (See Fig. 1 (a)(b)).

In order to enjoy the benefits of scale invariant training,
we propose to decompose the depth estimation task into two
sub-tasks: normalized depth prediction and scale inference.
Through careful designing, we ensure that the SAG loss is
invariant to the scale of the normalized depth prediction and
that scale inference can be learned in an explicit manner to
guarantee depth scale consistency. We present a concrete
implementation of the above idea through a new depth net-
work with a two-stream architecture.

Learning scale-consistent depth in a scale-invariant man-
ner seems to be contradictory at the first glance and be-
comes even more intractable under self-supervised frame-
works, due to the scale ambiguity and lack of scale super-
vision. Thanks to the proposed SAG loss, scale supervision
can be explicitly calculated during self-supervised learning
to simultaneously ensure scale consistency and allow the
disentanglement of depth and scale. As a matter of fact,
the idea of taking scale into explicit consideration itself is
shown to be beneficial to motion estimation when scale in-
consistency indeed exists. In addition, we also explore a
new strategy for finding corresponding points between point
clouds, which further facilitates motion estimation, lead-
ing to a more effective SAG loss. By combining the SAG
loss with our two-stream depth network, our method is able
to take advantages of scale-invariant depth learning, giv-
ing rise to geometrically more consistent and quantitatively
more accurate depth estimation (See Fig. 1 (c)).

The contribution of this work can be summarized into
three folds.

• A new self-supervised depth estimation framework
that enjoys the strengths of scale-invariant learning and
delivers scale-consistent depth.

• A scale-aware geometric loss to enforce depth consis-
tency and to provide supervisions for explicit scale in-
ference during self-supervised learning.

• A two-stream depth network to disentangle depth and
scale prediction, allowing the normalized depth to be
learned irrespective of the global scale.

Experiments on KITTI datasets demonstrate that our
method can not only improve depth accuracy but also ben-
efit long-term ego-motion estimation. Extensive ablation
studies have also been conducted, which further confirm the
effectiveness of our contribution.

2. Related Work
In the deep learning era, fully-supervised CNN mod-

els have shown record-breaking performance [7, 18, 8, 29].
Self-supervised learning has also been highlighted by re-
cent studies [12, 30, 16] to alleviate the needs of ground
truth depth annotation. In the seminal work of Zhou et
al. [36], self-supervised depth estimation is achieved in a
purely monocular setting. Following this line of work,
rapid progress [23, 34, 22, 17] has been made by explor-
ing new architectures and training strategies to further im-
prove the accuracy and robustness. For instance, some
works [37, 32, 4, 34] propose to incorporate optical flow to
handle moving objects, while others [14, 5] leverage seman-
tic labels to guide self-supervised learning. Later on, the
photometric loss is replaced by the deep feature reconstruc-
tion loss, where the deep features are either pre-trained [33]
or jointly learned with depth networks [24]. In [11], Godard
et al. propose a new appearance matching loss with auto-
mask techniques, which further closes the performance gap
between stereo and monocular self-supervised depth esti-
mation. Recently, a self-supervised depth estimation net-
work with symmetrical 3D packing and unpacking blocks
is designed in [13], which is shown to even outperform su-
pervised counterparts.

Scale-Consistent Depth Learning. To ensure depth scale
consistency in monocular self-supervised learning, a geo-
metric consistency loss is proposed in [2], which directly
minimizes the differences between depth predictions of
consecutive frames. In a similar spirit, [4] enforces depth
scale and structure consistency by projecting multi-view
depth into the 3D space and penalizing the coordinate dif-
ferences of corresponding points. In [13], the camera ve-
locity is leveraged as an additional supervision to solve the
scale ambiguity issue. In comparision, [25] uses bundle-
adjusted scene structures and poses as supervision to learn
more consistent depth estimation. Compared to the above
methods, our unique contribution is to combine the bene-
fits of scale-consistent depth estimation with scale-invariant
learning under the self-supervised learning framework. The
most related work to ours is [20] which proposes a 3D
constraint to align point clouds through an approximate
back-propagation algorithm. Our method differs from [20]
mainly in three aspects. First, point clouds alignment in
[20] is performed by estimating a 6-DOF transformation in-
cluding rotation and translation, where we take scale into
explicit consideration, which is shown to result in more ac-
curate alignment and can be used to provide direct supervi-
sion for depth scale inference. Second, in [20] correspon-
dences between 3D points are determined by using a clos-
est point heuristic [1], which is solved in an iterative man-
ner and can only provide local optimal. In comparison, we
leverage the correspondences learned from view synthesis,
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which is more accurate and enable closed-form solutions
for point cloud alignment. Finally, by combining the pro-
posed two-stream network and SAG loss, our method can
be trained in a scale-invariant manner, which can not only
ensure scale-consistency, but also deliver more accurate rel-
ative depth structures.

Scale-Invariant Depth Learning. The advantage of scale-
invariant training is first explored in supervised methods [7,
3, 31]. Eigen et al. [7] observe that the global depth scale
is ambiguous in monocular images, and propose a scale-
invariant error to learn relative depth irrespective of scales.
The idea is further extended in [19] to improve the gener-
alization ability across datasets with different scales. Later
on, Wang et al. [28] propose a new architecture to disentan-
gle depth and scale estimation for fully-supervised learn-
ing. In the self-supervised domain, Wang et al. [27] achieve
scale-invariant learning through depth normalization. How-
ever, it is still an open question to leverage scale-invariant
training while ensuring scale-consistency.

3. Self-Supervised Scale-Consistent Depth

This section will elaborate on our major contributions,
i.e., the two-stream depth network with disentangled scale
inference and the scale-aware geometric loss to enforce
scale consistency. We first revisit the principles of self-
supervised depth estimation in Sec. 3.1 to introduce our mo-
tivation and notations. In Sec. 3.2 and 3.3, we present our
network architectures and loss functions, respectively. Fi-
nally, Sec. 3.4 provides implementation details.

3.1. A Revisit to Self-Supervised Training

The primary idea behind self-supervised depth estima-
tion from monocular videos is to cast the joint learning
of depth and ego-motion network to a novel view synthe-
sis problem. More formally, given a target frame It and a
source frame Is that are adjacent to each other, the depthDt

of It and the camera motionM = [R, T ] (with rotation ma-
trixR and translation T ) from the source to the target frame
can be estimated using the depth and ego-motion networks,
respectively. The target frame depth can be projected into a
point cloud Pt as follows,

P ijt = K−1Dij
t [i, j, 1]ᵀ, (1)

whereK denotes the camera intrinsics; [i, j, 1] indicates the
homogeneous coordinate of a pixel at location [i, j] of the
image plane; while P ijt and Dij

t represent the correspond-
ing 3D point and depth of that pixel.

With the predicted camera motion, we can transform the
point cloud Pt to that of the source frame P̂s = RPt + T ,
and then project the point cloud back to the source image

plane. The whole process can be represented as follows1.

[̂i, ĵ, 1]ᵀ ∼ KRDij
t K

−1[i, j, 1]ᵀ +KT, (2)

where [̂i, ĵ] and [i, j] are coordinates of corresponding pix-
els in the source and target frames, respectively. According
to this pixel-level mapping, we can reconstruct the target
frame using the source frame through bilinear warping.

The above view synthesis process is entirely differen-
tiable, and the predicted depth and ego-motion are involved
as intermediate variables. Therefore, the depth and ego-
motion networks can be jointly trained by minimizing the
photometric reconstruction error. Most existing approaches
implement photometric loss with the combination of the L1
and SSIM loss:

LP =
α

2
(1− SSIM(Ît, It)) + (1− α)‖Ît − It‖1, (3)

where Ît are the reconstructed target frame and α = 0.85.
An edge-aware gradient smoothness constraint has also

been introduced in [12] to regularize the predicted depth:

LS =
∑
i,j

|∂xDij
t |e−|∂xI

ij
t | + |∂yDij

t |e−|∂yI
ij
t |. (4)

It can be easily shown that the photometric loss in (3) is
scale ambiguous to the joint prediction of depth and ego-
motion. To demonstrate this, one can consider another set
of prediction D′t = aDt and M ′ = [R, T ′] with T ′ = aT ,
which have different scales from the original prediction Dt

and M . By substituting Dt and M with D′t and M ′ in (2),
the same pixel mapping is established, leading to the same
photometric loss. As a consequence of the scale ambiguity
issue, the learned depth and ego-motion are not scale con-
sistent across one video sequence. In addition, the depth and
ego-motion networks have to learn to co-adapt their scales,
which potentially confuses network learning and even leads
to training divergence.

3.2. Disentangled Depth and Scale Estimation

Our main goal is to alleviate the above scale ambigu-
ity issue. Meanwhile, as scale-invariant learning is shown
to benefit fully-supervised depth estimation, we also expect
that this advantage can be transferred to the self-supervised
domain. Our first step towards this goal is to disentangle
scale inference from depth estimation in the network archi-
tecture level. As such, one part of our network can focus
on learning to predict accurate relative depth irrespective of
scales, while the other part is able to explicitly learn depth
scale inference to ensure scale consistency as described.

We implement the above idea through the design of a
two-stream depth network as shown in Fig. 2. It consists

1For notation conciseness, we omit the detailed conversion steps to the
homogeneous coordinates
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Figure 2. Pipeline of our proposed method.

of the depth estimation and scale inference stream build-
ing on top of a shared backbone network. Following prior
arts, we adopt the ResNet18 network [15] as our backbone,
which can already achieve satisfactory results but is more
lightweight and efficient. We believe other more sophisti-
cated networks can also meet our purpose. Given an input
frame, the backbone network generates a multi-scale feature
pyramid (i.e., the output feature maps produced by Res2-
Res5 stages of ResNet18), which serves as the input to the
depth estimation stream.

In each feature level, the depth estimation stream first
process the input feature map with a standard 3×3 convolu-
tion layer. The processed feature map is then combined with
that from the last level through concatenation followed by
another 3× 3 convolution layer. Finally, the combined fea-
ture is upsampled with nearest neighbor interpolation and
fed to the next level. The above procedure is progressively
conducted from the coarsest to the finest feature level, pro-
ducing the output feature map. An additional convolution
layer takes the produced feature map as input to generate
the one-channel depth output. We further explore different
strategies to normalize the output depth as follows,

D̄ = D̂/m, (5)

where D̂ denotes the output depth of our depth estimation
stream; m indicates either the mean or median value of the
output depth; and D̄ denotes the normalized depth. As a re-
sult, the normalized depth is independent to the global scale
of the depth stream output, and therefore the depth stream
can be learned in a scale-invariant manner.

In parallel to the depth estimation stream, the scale infer-
ence stream consumes the coarsest output of backbone (i.e.,
output feature of Res5 in ResNet18), and consists of four
3× 3 convolution layers followed by a global average pool-
ing layer. Finally, a Sigmoid unit acts as the output layer

to produce a depth scale µ for the input frame. Given the
normalized depth and scale, we compute the final depth by
multiplying them D = µD̄. Further training with our SAG
loss allows that the final depth is scale consistent.

For ego-motion estimation, we adopt the architecture
proposed in [11], which modifies a ResNet18 backbone to
accept a pair of RGB frames as input and predict the 6-DoF
relative motion, including the rotation with an axis-angle
representation and the translation. Please refer to [11] for
more architecture details.

3.3. Scale Aware Geometric Loss

A straightforward idea to enforce scale consistency is to
directly penalize the disagreement between the estimated
depth of adjacent frames. Our scale-aware geometric (SAG)
loss also adheres to this principle but operates on the point
clouds. As shown in the following, our SAG loss to-
gether with the two-stream depth network can not only en-
sure scale consistency, but also retain the benefits of scale-
invariant depth learning.

Recall that in Sec 3.1, we project the predicted depth
of target and source frames into point clouds Pt and Ps,
respectively, and convert Pt to the source view P̂s using
the predicted ego-motion. To measure the disagreement be-
tween the predicted target and source depth, we first align
the point cloud P̂s with Ps through a least-square estima-
tion of transformation parameters between them. Since P̂s
and Ps are scale inconsistent under most circumstances, the
transformation parameters consist of not only rotation Φ
and translation Γ, but also a scale factor τ , to ensure more
precise point alignment. Let us assume that the correspon-
dences between two point clouds are given, the least-square
estimation can be formally described as follows,

Φ,Γ, τ = arg min
Φ̃,Γ̃,τ̃

∑
i

∥∥∥τ̃ Φ̃P̂ is + Γ̃− PN(i)
s

∥∥∥2

2
, (6)
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where i andN(i) indicates the indices of two corresponding
points in point cloud P̂s and Ps. The above least-square es-
timation can be solved in a closed-form as shown in [26],
and the solutions can be further represented as differen-
tiable functions of the input point clouds, allowing gradi-
ent backward-propagation. Our SAG loss is defined using
the estimated transformation parameters and comprises an
alignment constraint and a scale consistency constraint.

The alignment constraint is used to enforce the accuracy
of relative depth and ego-motion prediction irrespective of
the scale. If the predicted relative depth and ego-motion are
accurate, the scaled point cloud τP̂s should already be per-
fectly aligned with Ps. Otherwise, the estimated rotation Φ
and transformation Γ in (6) will imply their misalignment.
Therefore, our alignment constraint penalizes the inaccurate
predictions by forcing the estimated transformation Φ and
Γ to approximate an identity mapping.

Our scale consistency constraint pursues a more direct
supervision for depth scale inference. Let us denote µt and
µs as the depth scales of target and source frame predicted
by our scale inference stream. According to the point cloud
alignment (6), the scaled point cloud τP̂s (with depth scale
τµt) is already scale-consistent to Ps (with depth scale µs).
Therefore, for scale-consistent predictions, the ideal depth
scales of the target and source frames should be τkµt and
kµs, respectively, up to an unknown factor k, where the es-
timated scale factor τ embodies the inconsistency between
the predicted scales, and servers as an amendment to the tar-
get scale. By treating the ideal scales as our objectives, we
eliminate the unknown factor through division and define
our scale consistency constraint as the differences between
the predicted and objective scale ratios of the two frames:

LC =
∥∥∥µt
µs
− τ̇ kµ̇t

kµ̇s

∥∥∥
1

=
∥∥∥µt
µs
− τ̇ µ̇t

µ̇s

∥∥∥
1
,

(7)

where the notation ẋ indicates that x is used as a constant
to compute the ground truth and its gradient backward-
propagation is disabled. We provide more detailed deriva-
tion and explanation to interpret the scale consistency con-
straint in the supplementary material.

By combining the alignment and scale consistency con-
straints, our SAG loss can be described as follows,

LSAG = ‖Φ− E‖1 + ‖Γ‖1 +
∥∥∥µt
µs
− τ̇ µ̇t

µ̇s

∥∥∥
1
, (8)

where E denotes the identity matrix.
Until now, one remaining problem is how to obtain the

correspondences
(
i,N(i)

)
between point clouds P̂s and Ps

in order to estimate the transformation in (6). In [20], this is
approached by the iterative closet points (ICP) method [1]
that alternates between finding correspondences and the

least-square estimation of transformation parameters. How-
ever, the correspondences are found merely based on a clos-
est point heuristic and the photometric appearance informa-
tion is left unused. In our preliminary experiments, we find
that the ICP algorithm is computational inefficient and can
only deliver local optimums, especially when the two point
clouds are scale inconsistent. Therefore, we propose to use
the pixel-level correspondences established by (2), which
eliminates the need of iterative estimation. Since these cor-
respondences are directly learned through view synthesis,
they are more accurate than those only relying on closet
point heuristics. As training proceeds, the depth and ego-
motion network becomes stronger, giving rise to more ac-
curate correspondences. However, one may still concern
that the correspondences established by (2) may still be in-
accurate, particularly during the initial training stage. As
detailed in Sec. 3.4, we remedy this issue by exploring a se-
lection mechanism to perform least-square estimation using
only reliable correspondences.

Discussion. Compared to prior methods, our SAG loss re-
quires explicit estimation of depth scales, and thus the name
“scale-aware”. Our experiments show that taking scale into
account can facilitate more accurate translation estimation
(6), and thus more effective 3D constraints. Besides, we fur-
ther leverage the estimated scale factor to construct the scale
consistency constraint (7) which provides direct and explicit
supervision for depth scale inference. By training our disen-
tangled depth and scale prediction network using our SAG
loss, we can finally achieve scale consistency while retain
the advantages of scale-invariant training.

3.4. Implementation

We initialize the backbones of depth and ego-motion net-
work using ResNet18 pre-trained on ImageNet [6]. To bal-
ance efficiency with precision, our networks operate in an
input resolution of 640 × 192 pixels, though higher res-
olutions are shown to further boost accuracy. Our final
loss function combines the photometric loss, the smooth-
ness constraint, and the proposed SAG loss:

L = LP + λ1LSAG + λ2LS , (9)

where the loss weights are empirically set to λ1 = 0.05 and
λ2 = 0.001. During training, we predict depth and compute
the loss values at multiple scales following prior works. To
address issues caused by occlusion, out of view, and static
camera, we adopt the strategies proposed in [11]. Specifi-
cally, instead of computing the averaged photometric losses
over all pixels, we compare, at each pixel, the losses a) com-
puted by warping the target frame to all source views and b)
computed by using original target frame. A per-pixel mask
can then be obtained indicating potentially valid pixels. We
use this mask to weight the photometric loss and to select
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Method Year Error ↓ Accuracy ↑
Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

SfMLearner [36] CVPR 2017 0.198 1.836 6.565 0.275 0.718 0.901 0.960
DDVO et al. [27] CVPR 2018 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Mahjourian et al. [20] CVPR 2018 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Zhan et al. [33] CVPR 2018 0.135 1.132 5.585 0.229 0.820 0.933 0.971

DF-Net [37] ECCV 2018 0.146 1.182 5.215 0.213 0.818 0.943 0.978
Bian et al. [2] NeurIPS 2019 0.137 1.089 5.439 0.217 0.830 0.942 0.975

CC [23] CVPR 2019 0.140 1.070 5.326 0.217 0.826 0.941 0.975
Zhou et al. [35] ICCV 2019 0.121 0.837 4.945 0.197 0.853 0.955 0.982

Monodepth2 [10] ICCV 2019 0.115 0.903 4.863 0.193 0.877 0.959 0.981
SGDepth [17] ECCV 2020 0.113 0.835 4.693 0.191 0.879 0.961 0.981

pRGBD-Refined [25] ECCV 2020 0.113 0.793 4.655 0.188 0.874 0.960 0.983
DeaFet [24] CVPR 2020 0.126 0.925 5.035 0.200 0.862 0.954 0.980

Johonston et al. [16]* CVPR 2020 0.111 0.941 4.817 0.189 0.885 0.961 0.981
PackNet-SfM [13] CVPR 2020 0.111 0.785 4.601 0.189 0.878 0.960 0.982

Ours – 0.109 0.779 4.641 0.186 0.883 0.962 0.982

Table 1. Comparison on KITTI benchmark. The best and second best methods are in bold and underlined, respectively. * denotes results
achieved with the ResNet18 backbone for fair comparison.

correspondences for point cloud alignment (6). We adopt a
sequence length of three frames for training, with the cen-
tral frame as the target view and the rest as the source views.
The Adam optimizer is used to learn network parameters
with an initial learning rate of 1e− 4 for the first 20 epochs
and 1e−5 for another 15 epochs. Data augmentation strate-
gies including random color jittering and horizontal flipping
has also been adopted to improve generalization abilities.

4. Experiments
4.1. Evaluation of Monocular Depth

We evaluate our method on KITTI benchmark [9] by fol-
lowing the training protocol established by Eigen et al. [7].
We also adopt Zhou et al.’s [36] pre-processing strategy to
remove static frames, giving rise to 3910 monocular triplets
for training, 4424 for validation and 697 for testing. Ex-
cept the ImageNet pre-trained backbones, we do not per-
form any additional pre-training on depth datasets. Source
code and pre-trained models will be released at https:
//bit.ly/3m8GFON.

The comparison results between our method and state-
of-the-art approaches are shown in Tab. 1. Unless otherwise
specified, all compared methods are trained using the same
protocol with same input resolutions. Since self-supervised
learning cannot restore accurate scales, we compute all the
metrics after scale alignment to ground truth on a per-frame
basis. It can be shown that our method can consistently out-
perform other compared methods in terms of all metrics.
Among others, [20] also uses 3D constraints for consis-
tent depth estimation. Unlike ours, their approaches do not
take scale into explicit account. Our two-stream depth net-
work adopts the same backbone architecture with Godard

et al. [10]. The additional overhead brought by our scale
inference stream is very limited. However, the improve-
ment of our method over [10] is substantial, which verifies
the strength of scale-invariant training enabled by our two-
stream architecture as well as the SAG loss. Fig. 3 further
visualizes the predicted depth and point cloud reconstruc-
tion using our method.

4.2. Ablation Analysis on Monocular Depth

To understand the impact of learning scale-consistent
depth in scale-invariant manner, we conduct ablation stud-
ies on KITTI dataset. We have also evaluated the perfor-
mance of our method with stronger backbones and higher
input resolutions. Since these are not our main contribu-
tions, they are included in the supplementary material.

4.2.1 Scale-Invariant Training

We compare 5 variants of our method to analyze the
strength of scale-invariant training in self-supervised depth
estimation. Among them, Baseline only contains the depth
estimation stream, while Baseline+MN further normalizes
each predicted depth map with its mean value. Two-stream
adopts the same architecture as ours with disentangled
depth and scale estimation. Meanwhile, Two-stream+MN
and Two+stream+MdN normalize the predicted depth with
mean and median depth values, respectively. All the above
methods are trained using the conventional photometric loss
with smoothness constraints. Comparison results are shown
in Tab. 2 (a). Compared with Baseline, Baseline+MN learns
depth estimation in a scale-invariant manner. However, its
improvement over Baseline is marginal, which is not con-
sistent to our knowledge obtained from the self-supervised
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Method Scale-Disen. Scale-Inv. Scale-Consis. Error ↓ Accuracy ↑
Abs Rel RMSE δ < 1.25

Baseline 0.118 4.956 0.862
Baseline+MN X 0.117 4.956 0.864
Two-stream X 0.116 4.954 0.863

(a) Two-stream+MN X X 0.112 4.689 0.878
Two-stream+MdN X X 0.115 4.864 0.862

Two-stream+MN+SAG-w/o-scale X X X 0.111 4.689 0.880
Two-stream+MN+SAG-ICP X X X 0.115 4.854 0.865

Two-stream+MN+SAG X X X 0.109 4.641 0.883
Baseline 0.126 5.035 0.824

Two-stream+MN X 0.124 4.956 0.826
(b) Two-stream+MN+SAG-w/o-scale X X X 0.114 4.723 0.870

Two-stream+MN+SAG X X X 0.111 4.672 0.875

Table 2. Ablation study on KITTI benchmark. (a) Scale-invariant evaluation, where scales of predicted depths are aligned to ground-truth
for each frames. (b) Scale-dependent setting, where predictions are aligned to ground-truth with the same scale factor per-sequence. Scale-
Disen., Scale-Inv., and Scale-Consis. indicate that the method is trained in scale-disentangled, scale-invariant, and scale-consistent manner,
respectively. MN and MdN denote mean-value and median-value normalization, respectively. The best results are in bold.

methods. One possible reason may be that depth and
ego-motion networks have to co-adapt their scales in self-
supervised learning. Directly normalizing depth will con-
fuse ego-motion network which further affects the training
of depth estimation. Since the model size of Two-stream is
comparable to Baseline, their performances are also simi-
lar when learned with the same training strategy. Through
output mean normalization, Two-stream+MN not only dis-
entangles scale inference from depth estimation, but also
ensures depth estimation to be learned in a scale-invariant
manner, which significantly improves depth accuracy under
self-supervised learning. By comparing Two-stream+MN
and Two-stream+MdN, it is clear that mean-value normal-
ization is more superior than median-value normalization.

4.2.2 Scale-Consistent Training

On top of the Two-stream+MN variant, we investigate
different constraints to understand the impact of scale-
consistent training. As shown in Tab. 2 (a), SAG-w/o-
scale denotes a simplified version of our SAG loss, which
does not consider scale during point cloud alignment and
only consists of the alignment constraint. SAG-ICP per-
forms point cloud alignment with the iterative ICP algo-
rithm. The performances of Two-stream with and with-
out SAG-w/o-scale are similar, which is reasonable due to
the scale-invariance of our evaluation process, i.e., the per-
frame scale alignment to ground-truth depth is conducted
before computing metrics. Nonetheless, the improvement
of SAG loss over SAG-w/o-scale is still considerable, sug-
gesting that taking scale into explicit consideration can de-
liver more precise point cloud alignment, thus more supe-
rior depth estimation performance. Meanwhile, the perfor-

Method Sequence 9 Sequence 10 Frames
ORB-Slam [21] 0.014±0.008 0.012±0.011 –
SfMLearner [36] 0.021±0.017 0.020±0.015 5

DF-Net [37] 0.017±0.007 0.015±0.009 5
CC [23] 0.012±0.007 0.012±0.008 5

DDVO [27] 0.045±0.108 0.033±0.074 3
Mahjourian [20] 0.013±0.010 0.012±0.011 3
Monodepth2 [11] 0.017±0.008 0.015±0.010 2

Baseline 0.020±0.010 0.016±0.011 2
Ours 0.014±0.008 0.014±0.010 2

Table 3. Comparison on KITTI Odometry benchmark. The best
results are in bold font.

mance of SAG-ICP is not satisfactory, indicating point cor-
respondences learned from view-synthesis is more accurate
than its counterparts based on the closest point heuristic.

The above evaluation process is scale-invariant and is
thus not in favor of our SAG loss. To further demon-
strate the power of our SAG loss, we replace the per-frame
depth scale alignment with the per-sequence alignment be-
fore computing all metrics, i.e., we align the depth scale for
each frame of one video sequence with the same scale factor
computed using the ground-truth depth. As shown in Tab. 2
(b), the performance gain brought by our SAG loss becomes
even more significant, which confirms the effectiveness of
our SAG loss in maintaining scale consistency.

4.3. Evaluation of Ego-Motion

Since the depth network is jointly trained with the ego-
motion network, their performances are reliant to each
other. To further confirm the effectiveness of our method,
evaluation results on KITTI Odometry benchmark are re-
ported in Tab. 3. Following [11], our method is trained on
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Input Image Our Point Cloud Our Depth Baseline Depth
Figure 3. Visual comparison of our method and Baseline. The predicted depth maps of our method are perceptually more accurate with
more details. The point clouds reconstructed based on our predictions are also visually plausible. Best viewed in color and zoom in.

sequences 0-8 and evaluated on sequences 9 and 10. The
absolute trajectory error is averaged over all overlapping
five-frame snippets in the test sequences. Although our ego-
motion network accepts only two consecutive frames as in-
put to predict their relative motion, we still compare favor-
ably against existing methods. Besides, our ego-motion net-
work adopts the exactly same architecture as that of [11].
The performance gain of our method is therefore solely
brought by our proposed two-stream depth network trained
using our SAG loss.

5. Conclusion

We propose a self-supervised depth estimation method,
which can ensure scale consistency while enjoying the ad-
vantages of scale-invariant learning. The core design of

our method is the two-stream depth network and the scale-
aware geometric (SAG) loss. On the one hand, the network
disentangles scale inference from depth estimation, allow-
ing depth to be learned in a scale-invariant manner. On the
other hand, the SAG loss explicitly estimates relative scale
factor during 3D geometric alignment, providing direct su-
pervision for consistent scale inference. Experiments on
KITTI depth and odometry dataset verify our contribution.
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