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Abstract

In this work, we study the problem of human-object in-
teraction (HOI) detection with large vocabulary object cat-
egories. Previous HOI studies are mainly conducted in the
regime of limit object categories (e.g., 80 categories). Their
solutions may face new difficulties in both object detection
and interaction classification due to the increasing diver-
sity of objects (e.g., 1000 categories). Different from pre-
vious methods, we formulate the HOI detection as a query
problem. We propose a unified model to jointly discover
the target objects and predict the corresponding interac-
tions based on the human queries, thereby eliminating the
need of using generic object detectors, extra steps to as-
sociate human-object instances, and multi-stream interac-
tion recognition. This is achieved by a repurposed Trans-
former unit and a novel cascade detection over multi-scale
feature maps. We observe that such a highly-coupled solu-
tion brings benefits for both object detection and interac-
tion classification in a large vocabulary setting. To study
the new challenges of the large vocabulary HOI detection,
we assemble two datasets from the publicly available SWiG
and 100 Days of Hands datasets. Experiments on these
datasets validate that our proposed method can achieve a
notable mAP improvement on HOI detection with a faster
inference speed than existing one-stage HOI detectors. Our
code is available at https://github.com/scwangdyd/
large_vocabulary_hoi_detection.

1. Introduction
Discovering human interactions with objects plays a vi-

tal role in human-centric visual understanding and provides
a means to understand human intentions, actions, and activ-
ities. The goal is to detect one or multiple tuples <human,
verb, object> to indicate the positions of human and
objects within the image, and through the verb predict how
they interact with each other (e.g., holding something, re-
pairing something, etc.).

While recent studies on human-object interaction (HOI)
detection [1, 23, 52, 46, 9, 16, 20, 43, 40, 27] have achieved
great progress, they have largely focused on the regime with
a limited variety of objects (e.g., 80 COCO objects [26]). In

Figure 1: In this work, we aim to detect the human interactions
with large-vocabulary object categories, where there are a large
number of interactions and only a few data samples available for-
most categories.

reality, humans can interact with a large variety of objects
in our visual world. We can see various human interac-
tions with daily objects from YouTube videos [8] or Internet
data [36]. Nevertheless, it remains an under-explored prob-
lem for HOI detection in the regime of large-vocabulary
object categories, where there are a large number of inter-
actions and only a few data samples available for most in-
teractions. In this setting, existing approaches would face
new difficulties due to the greater diversity of objects and
contexts.

The main goal of this work is to study the new challenges
of discovering human interactions with large-vocabulary
objects. For HOI detection, the common practice is to de-
compose the problem into two parts: (1) person and object
instances detection; (2) instance matching and interaction
classification. Depending on whether the two parts are con-
ducted sequentially or in parallel, existing works can be fur-
ther divided into the two-stage solutions [20, 19, 52, 40, 9]
or end-to-end one-stage solutions [7, 23, 46, 17]. Regard-
less of which type of solutions, existing methods usually in-
stantiate the object detection part as generic detectors, e.g.,
Faster RCNN [34], CenterNet [5], RetineNet [25], etc. As
previous HOI studies are mainly conducted in the same cat-
egory space as COCO detection [26], it is viable to use
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the common architecture with the pre-training weights to
ease the training and ensure the detection results. However,
a new and large category space may pose challenges for
HOI detection as the generic object detectors may perform
poorly in the low-sample regime [12] and it is still an open
problem to learn the effective detectors in large-vocabulary
case. Different from the work of large-vocabulary object
detection [12, 39, 45, 18, 37, 48], we would like to explore
an effective HOI-specific solution to find the target objects
by using the interaction clues.

Another challenge is the combinatorial explosion of
the interactions when more object categories are involved.
Given the combination nature of interactions, it is intuitively
appealing to decouple the interaction detection into separate
action and object predictions and then merge their scores
to produce the final interaction score. Previous methods
often approach this using completely separate or parallel
branches. We observe that such an approach would become
sub-optimal in the large-vocabulary scenario as the action
and object predictions often conflict with each other and
result in invalid combinations. Although the invalid com-
binations can be filtered out based on prior knowledge or
external resources [50], we opine that invalid combinations
can be effectively alleviated by coupling the interaction and
object classification.

In this paper, we propose a new strategy to address the
HOI task and formulate it as a query problem. As the per-
son is often the dominant class, conventional detectors can
usually give a reliable result. We thus first detect humans
in the image and use them as queries to search for corre-
sponding interactions and target objects. We aim to develop
a unified model powered by Transformers [41] to jointly de-
tect the objects interacting with the given human query and
predict their interactions. This alleviates the need of using
generic object detectors, multi-stream interaction recogni-
tion, and additional human-object instance matching pro-
cess. The main idea is to find the region that may include the
target objects by comparing the human query feature with
the image feature at all sliding window positions. Then, we
update the human query feature by progressively aggregat-
ing the context information from regions with high attention
scores. The updated feature will be used to predict both the
action and object classes and regress the bounding box. To
better improve the detection capability, we propose a new
cascade detection pipeline and enable the use of multi-scale
and high-resolution feature maps.

Our contributions are summarized below. (1) To the best
of our knowledge, we are the first to study the HOI de-
tection in the regime of large-vocabulary object categories.
(2) To enable the study, we assemble an HOI dataset with
1000 object categories from SWiG [32]. Besides, we com-
pose a subset from 100DOH dataset [36] and annotate them
with∼300 object categories for hand-object interaction. (3)

We propose a new one-stage and end-to-end strategy by
jointly detecting the target objects and interactions. This
is achieved by using a repurposed Transformer unit and a
new cascade detection framework over multi-scale feature
maps. (4) Experimental results demonstrate that our method
achieves a better result and faster inference speed than ex-
isting one-stage HOI detectors.

2. Related work

Previous HOI works [3, 10, 50, 49, 44, 30, 21] mainly
performed with a limited variety of objects. Existing bench-
marks [13, 3] focus on human interactions with 80 object
categories. As they share the common category space as
MS-COCO [26], existing approaches usually make use of
generic object detectors [34, 24, 5] and their pre-trained
weights to help with the instance detection, and focus on the
subsequent interaction classification. As the standard object
detection systems generate box candidates for almost all ob-
jects present in the image, it often introduces a lot of noises
for the subsequent interaction prediction. Recent studies
have gravitated towards solutions that can better discover
the true interacting humans and objects among the detec-
tion results.

Gkioxari et al. [11] predict Gaussian heatmaps associ-
ated with humans to re-weight object candidates. Li et
al. [22] propose to use a binary classifier to estimate the
interactiveness of human-object pair and filter out low-
confident ones before inference. Some recent works [31,
30, 50] utilize semantic features and word analogy to aid
interaction predictions. As human body language often in-
cludes strong clues for the interaction, many recent stud-
ies [51, 42, 14, 6] model the human skeleton to improve
the interaction prediction robustness. Another promising di-
rection is to build graphs over all box candidates and then
perform graph parsing to resolve the ambiguity caused by
considering only single human-object pair [33, 9].

Different from the above two-stage pipeline, some recent
works [46, 43] proposed one-stage solutions to jointly learn
object detection and interaction classification. For exam-
ple, PPDM [23] embeds CenterNet detector [5] to the whole
framework and proposes an interaction branch to predict the
interaction points and offsets to group the target instances.
UnionDet [17] adopts RetineNet [25] to generate object
boxes and predicts union regions in parallel to better pro-
duce interaction pairs and predictions. As the pure union re-
gions of interactions may include unnecessary background
information, DIRV [7] proposes a new one-stage approach
to find the discriminative interaction regions. We observe
that regardless of two-stage or one-stage methods, almost
all previous methods use generic object detectors to find the
target objects. In a large-vocabulary scenario, it is challeng-
ing to learn the object detectors to detect the diverse objects.
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Figure 2: Left: The overall framework of our proposed method. We propose a cascaded detection to detect the HOIs over multi-scale
feature maps (from low-resolution P5 to high-resolution P2). At each level, we conduct a joint detection (JD) for target objects and
interactions based on the human query. Right: Illustration of the cascaded detection over multi-scale feature maps. For the small objects,
we first estimate a rough position at the coarsest feature map. It then crops a sub-region on the higher-resolution feature map based on the
initial guess and performs a second round of detection. In such a way, it progressively discovers the target object and refines the box.

3. Methodology
This work aims to address the problem of human-object

interaction (HOI) detection with large vocabulary object
categories. Given an image I , the goal is to generate
multiple tuple (bp, bo, yo, ya) to represent HOIs, where the
bounding box bp, bo ∈ R4 indicates the positions of the per-
son and object, ya ∈ A = {1, . . . , A} represents the human
actions, and yo ∈ O = {1, . . . , C} denotes the object cate-
gories. Different from existing HOI works, here we assume
C is a large number (e.g., C = 1000) instead of 80 MS-
COCO object categories.
3.1. Proposed method

Existing HOI methods often decompose the detection
into two stages [10, 20, 52, 9] or parallel branches [23, 7,
46, 17], where one stage (or branch) uses generic object de-
tectors (e.g., Faster RCNN [34], CenterNet [23], etc.) to
generate human and object boxes, while the other stage (or
branch) is for constructing human-object pairs and predict-
ing interactions. However, when detecting diverse objects,
data will be inevitably scarce for certain categories. In this
case, the deep learning methods for generic object detection
may perform poorly [12]. Different from the work of large-
vocabulary object detection [12, 37, 18, 48, 45], we aim to
develop an HOI-specific detector to find the target objects
by leveraging on the interaction clues. Our aim is a unified
model that can jointly find the objects and corresponding
interactions.

To achieve this goal, we reformulate the HOI detection
as a query problem. We employ a standard Faster RCNN
to find person boxes {bp} and then use them as queries to
search for the interactions within the image. The main goal
is to learn a model F(I, bp) that takes the image and person
query as input, and outputs a set of interaction predictions
P = {P1, P2, . . . , PK}, where each prediction Pk is either
one interaction performed by the input person query or an
empty element Ø representing the no-interaction case. Fig 2
shows the overview of our proposed method. We propose
a cascaded framework to detect HOIs over multi-scale fea-

ture maps. At each feature level, we propose a novel HOI
detector (JD) to jointly predict action and object categories
and regresss the bounding box of target objects. We will
elaborate on each module in the following sections.

3.1.1 Person Query Generation
Compared with detecting large-vocabulary objects, person
detection would be a relatively simple task and most exist-
ing detectors can give a reliable result. We employ Faster
RCNN to first generate person boxes {bp} and extract the
RoI-Pooled visual feature fp ∈ Rd for each person box bp.
Many works [11, 40, 52] have shown that the spatial infor-
mation between the person and objects often provide strong
priors of the interaction. Hence, in addition to the visual
feature, we also compute the positional embedding fb ∈ Rd

for each box [41]. Concretely, the box [x, y, w, h] is con-
verted to a concatenation of four d/4-dimensional embed-
dings, fb = [ex; ey; ew; eh], where et is a combined sine
and cosine vector of box variable t ∈ {x, y, w, h}. Inter-
ested readers can find the details of the computation in the
supplementary material and [41]. Let us denote q as the
person query vector and Fq : Rd → Rd as a projection
function. We obtain the query vector by

q = Fq(fp + fb) ∈ Rd (1)

3.1.2 Joint Detection of Objects and Interactions
Given the person queries, the next step is to search for the
interactions and corresponding target objects within the im-
age. Let F ∈ Rh×w×d denote the feature representation of
the image which integrates both the visual feature from the
backbone network and the positional embedding. Our core
idea is to compare the person query q with F at each slid-
ing window position to gauge the existence of objects which
may interact with the given person query. Then, we aggre-
gate the features from high-response regions to predict the
interactions and regress the bounding boxes.

We effectuate this idea by using re-purposed Trans-
former units. As each person query is processed indepen-
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dently and in parallel, for a concise presentation, we only
discuss one single query q in the following. We aim to find
potential regions (reflected by attention maps) that may in-
clude the target objects. Consider that one person query can
interact with more than one object at the same time. We
propose to use separate attention maps to disambiguate dif-
ferent target objects. Specifically, we duplicate the person
query K times (e.g., K = 10), q1, . . . ,qK , and introduce a
set of learnable offset vectors, δ1, . . . , δK , to pertube them,
i.e., qk+δk. We expect that the offset vectors can force the
duplicate queries to point to different target objects, if exist.
Let Ak ∈ Rh×w denote the attention map with respect to
the k-th pertubed query. Its weight at position (x, y) can be
calculated as

Ak
xy ∝ exp{ (q

k + δk)TUTVFxy√
d

} (2)

and normalized as
∑

Ak
xy = 1, in which U,V ∈ Rd×d are

both learnable projection weights and Fxy ∈ Rd is the fea-
ture at position (x, y). Ideally, we expect that the attention
weight can locate regions (in most case, the discriminative
parts) of the targets objects. We then aggregate the features
based on the attention weights as

ck = W2[
∑
x,y

Ak
xy ·W1Fxy] (3)

where W1,W2 ∈ Rd×d are learnable weights. We can un-
derstand ck as a context feature integrating the information
of target objects. We then use it to update the original query
vector similar as the original Transformer. That is,

qk ← LayerNorm
(
qk + Dropout

(
ck

))
qk ← LayerNorm

(
qk + Dropout

(
MLP(qk)

)) (4)

The above computations are conducted several times to pro-
gressively locate the target objects and aggregate the context
features. The final updated query feature will pass through
three different Feed Forward Network (FFN) to predict hu-
man actions, regress the bounding boxes of target objects,
and recognize the object categories, respectively.

3.1.3 Cascaded Multi-Scale Detection
Due to the computation complexities of Transformers, early
works for object detection tasks [29, 2] usually use the
high-level feature map with limited spatial resolution. It
often attains a low performance on small objects. Recent
works [53, 47] have proposed various variants to allow the
use of high-resolution feature maps and achieved clear im-
provements. Inspired by this, we propose a cascaded detec-
tion framework for our HOI detection and also enable the
use of multi-scale feature maps.

We employ the Feature Pyramid Network (FPN) back-
bone [24] and aim to search for interactions over P2, P3,

Figure 3: Left: Sum of attention weights within boxes. Right:
Maximal attention weight out of boxes. Each point denotes one
box prediction. Large, medium, and small objects are highlighted
by green, blue and red colors, respectively. The bounding box re-
gression for small objects generally suffers from more noises even
though the attention module can precisely reveal their positions.

P4, and P5 feature maps, which are 4×, 8×, 16×, 32×
smaller than the original image size, respectively. An in-
tuitive way is to conduct separate joint detection (as intro-
duced in Sec 3.1.2) at each feature level and then integrate
their results. However, in this way, the computational com-
plexity will increase with the feature resolution, as we com-
pare the human query with each position in the map. Be-
sides, we find that small objects still suffer from the poor
bounding box regression even using the highest-resolution
P2 feature map. To explore the behind reasons, we plot the
maximal attention weight outside the ground truth boxes
and the sum of attention weights within boxes (shown in
Fig 3). We observe that, for small objects, the maximal at-
tention out of the box is comparably low to large objects,
while the sum of weights within the box is generally less
than 0.5, which means that it aggregates a lot of noisy in-
formation. This is mainly due to the vast number of back-
ground positions and simply adopting a large feature map
(e.g., P2) will not alleviate this issue.

Hence, we propose a cascaded detection approach to pro-
gressively find the target objects. The assumption is that
although the coarse feature map may not give a precise lo-
calization, it can roughly reveal its position within the im-
age panel. Based on the initial estimation, we can crop a
small region in a higher-resolution feature map and conduct
a second round of prediction. Fig 2 shows an example of
the proposed cascaded detection. We first perform a base
detection on the coarsest P5 feature map and obtain initial
predictions for the target objects and corresponding interac-
tions. Then, we conduct a second round of predictions on
P4 and so on.

Specifically, at Pi feature map, i > 2, if the relative area
of the predicted box (compared with the input image size)
is smaller than the pre-defined threshold τ2i and both of the
relative height and width are less than τi, we will continue
to use the next higher-resolution feature map (i.e., Pi−1) to
refine the prediction. Instead of using the whole map, we
crop a region of interest with a shape of (τi, τi) centered
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by the previously predicted box. We define the threshold
τ5, τ4, τ3 as 0.5, 0.25, 0.125 respectively. We do this due to
two considerations. First, we can use this way to control the
computational complexity at high-resolution feature maps.
Second, we can progressively eliminate the background re-
gions and address the issue as shown in Fig 3.

3.1.4 Loss Function
In this subsection, we describe the loss functions of our pro-
posed method. We use a standard Faster RCNN [34] to gen-
erate the person boxes. The first loss function Lperson fol-
lows the conventional Faster RCNN including both the clas-
sification and regression loss of region proposal network
and box head. For the joint object and interaction detec-
tor, we compute the losses at each feature level. At the i-th
feature level, the loss function is similar to DETR [2] in-
cluding the box regression loss Li

bbox, generalized IoU loss
Li
giou [35], and object classification loss Li

o, while we addi-
tionally consider the action classification loss Li

a. For each
person query, the model will produce K different predic-
tions. We assign them labels by finding the best bipartite
matching between the predictions and ground truths. The
final loss is calculated as

Lperson +

5∑
i=2

(λ1Li
bbox + λ1Li

giou + Li
o + Li

a) (5)

where λ1 = 5 and λ2 = 2.

4. Experiments
Datasets We assemble two datasets from SWiG [32] and
DOH datasets [36] to study human interactions with large-
vocabulary objects. SWiG is originally collected for the
task of grounded situation recognition. It provides 504
visually grounded verbs, ∼10k noun categories and the
corresponding bounding box annotations. We extract the
top 1,000 frequent object categories that can interact with
humans and obtain 406 human actions. In our extracted
SWiG-HOI subset, there are ∼45k train images and ∼14k
test images. To further investigate the effectiveness of our
proposed method, we also compose a dataset from 100DOH
for detecting hand interactions with diverse daily objects.
As the original DOH dataset only annotates the bounding
boxes of the target objects without specific categories, we
annotate ∼30k training images and ∼5k test images with
300 object categories.

One important aspect to discuss is whether the objects
are distributed throughout the image planes instead of being
salient in the middle of the images. For this aim, Figure 4
shows the object-center density of the newly composed
datasets and compares them against the HICO-DET [4] and
VCOCO [13] benchmarks. It shows that all HOI datasets
have center bias while the newly constructed datasets have

Figure 4: Distribution of object centers in normalized image co-
ordinates for four datasets. VCOCO has the largest spatial diver-
sity. Our composed SWiG-HOI and DOH have greater complexity
than the commonly used HICO-DET dataset.

n = 10 AR ARs ARm ARl ARr ARc ARf
RFS 38.16 2.70 7.74 41.99 27.20 26.18 41.48
EQL 37.09 2.72 6.89 40.88 25.16 25.60 40.32
Ours 57.96 6.15 21.01 62.81 40.99 41.16 62.46
n = 100 AR ARs ARm ARl ARr ARc ARf
Ref.∗ 32.69 22.25 45.89 55.32 33.49 30.41 33.16
RFS 54.64 13.33 31.51 57.86 46.85 47.62 56.61
EQL 54.70 15.23 34.78 57.55 47.47 48.16 56.56
Ours 67.84 16.79 38.77 70.50 50.35 52.89 69.02

Table 1: Average recall of the top n class agnostic boxes on ex-
tracted SWiG-HOI. ARs, ARm and ARl represent the average re-
call of the small, medium and large objects. ARr, ARc and ARf
represent the average recall of the rare, common and frequent ob-
jects. We also report a reference result (Ref.∗) of the Faster RCNN
with RFS on LVIS [12] v0.5 val set.

greater complexity than HICO-DET. More details of the
datasets are available in the supplementary material.

Implementation Details Our backbone is ResNet50 [15]
with Feature Pyramid Network (FPN) [24], which is initial-
ized using the pre-trained COCO detection weights. The
joint detection model uses a stack of 4 Transformer decoder
units (without the cross-attention computations among in-
put queries) at each feature level and set the feature dimen-
sion to 256. We adopt AdamW [28] to train the model with
40 epochs and set the initial learning rate as 0.0001 and a
weight decay of 0.0001.

4.1. Target Object Detection

HOI detection involves the localization and classifica-
tion of humans and interacting objects. To better understand
the challenges of the task with large vocabulary objects, we
start by discussing the performance of object detection. We
use the COCO-style Average Recall (AR) to reflect the lo-
calization quality and Average Precision (AP) for the object
detection performance. As most previous two-stage HOI
methods rely on generic detectors (e.g., Faster RCNN) to
find the target objects, in the following we mainly explore
the performance of Faster RCNN with large-vocabulary
techniques [37, 18, 45, 39] as well as the state-of-the-art
one-stage HOI detectors.
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E2E Action AP APr APc APf
FRCNN+RFS [12] ✓ 6.12 2.45 5.61 10.87

EQL [37] ✓ 5.74 1.51 5.21 10.95
BAGS [18] 6.62 2.47 6.05 11.98

SimCal [45] 5.61 1.27 5.08 10.89
De-confound [39] 5.96 1.62 5.67 10.21

JSL [32] ✓ ✓ 6.81 3.26 6.42 10.80
Ours baseline ✓ 5.70 1.39 5.12 11.15

Ours ✓ ✓ 7.31 3.83 6.75 12.14

Table 2: Average precision of large-vocabulary object detection
methods on SWiG-HOI. We highlight the end-to-end (E2E) ap-
proaches and methods using the action clues to assist the object
detection.

Target object coverage Among large-vocabulary object
detectors [37, 18, 45, 32, 39] with Faster RCNN or Mask
RCNN implementation, one common assumption is that the
class-agnostic proposals usually have a reliable recall on the
target objects. In Table 1, we explore if this assumption still
holds for the HOI task on SWiG and report the results of the
proposals generated by Faster RCNN with repeated factor
sampler (RFS) [12] and equalization loss [37] (EQL). To
give a better sense, we also report the AR of RFS on the
LVIS v0.5 val set as the reference. Consider that there are
often a few target objects (compared with object detection
tasks) interacting with the humans in the image. We limit
the number of proposals and expect the top confident ones
can well capture the targets.

Compared with the reference result in LVIS, we observe
that class-agnostic boxes produced on SWiG generally give
a higher AR except for the small (ARs) and medium (ARm)
objects. The higher result is mainly due to that there are
fewer target objects (only those interacting with humans)
required to be detected than LVIS. We hypothesize that the
low ARs and ARm are due to that small/medium objects
often suffer from occlusions when they interacting with hu-
mans, making it more challenging to find them.

Table 1 also shows that our proposed method can better
find the target objects. Especially at the top 10 boxes, our
method achieves∼20 AR improvements than the object de-
tection counterpart. We believe that the gap is mainly be-
cause generic detectors produce many non-interacting ob-
jects present in the image as they are incapable of differ-
entiating the meaning of interaction. In contrast, our HOI-
specific detection method can find the true target by com-
paring them with the human queries; thus, it is less likely to
be influenced by other objects in the background.

Large-vocabulary detection In addition to the box local-
ization, another challenging problem is to classify the large-
vocabulary categories. Some pioneer works [37, 18, 45, 39]
have been proposed to address the long-tailed instance seg-
mentation and object detection problem. In Table 2, we ex-
plore their results on the composed SWiG-HOI. Besides,
we compare against the Joint Situation Localizer (JSL) from

n=10 AR ARs ARm ARl ARr ARc ARf
PPDM 57.89 6.17 20.00 62.82 40.76 40.41 62.40
DIRV 55.65 4.74 17.57 60.58 38.45 37.70 60.26
Ours 57.96 6.15 21.01 62.81 40.99 41.16 62.46
n=100 AP APs APm APl APr APc APf
PPDM 3.47 1.90 2.31 3.74 0.49 2.64 9.38
DIRV 3.08 1.52 1.94 3.34 0.46 2.35 8.30
Ours 7.31 2.52 4.14 7.62 3.83 6.75 12.14

Table 3: Comparison with state-of-the-art one-stage HOI detec-
tors. We report the average recall at the top 10 boxes and the aver-
age precision of the top 100 predictions on SWiG-HOI.

SWiG [32] which modifies the RetineNet to recurrently find
targets based on the action prediction and previously de-
tected objects. For a fair comparison, all methods use the
ResNet-50 backbone and limit the number of class-specific
detections per image to 100 with the minimum score thresh-
old of 0.001.

Table 2 shows that the task-specific detectors (JSL and
ours) generally achieve a better result than generic object
detectors. For the HOI task, objects present in the im-
age are usually sparsely annotated as only interacted ob-
jects are treated as foreground, while other objects will be-
come background. This does not match with the objective
of generic object detectors, and it is difficult to train generic
detectors, resulting in worse results as shown in Table 2.
Besides, we observe that coupling the action prediction can
assist the object classification. One evidence is that JSL,
without special designs for tail categories, achieves an AP
of 6.81 and beats all generic detectors. To delineate this
point, we report a baseline model that ablates the action pre-
diction from the framework and this leads to a 1.61 AP drop.
We hypothesize that objects and actions often have obvious
dependency relationships. We opine that, in addition to the
generic large-vocabulary techniques, it would also be possi-
ble to leverage on unique characters of HOIs (i.e., the com-
positional relationship, the dependency between objects and
actions) to handle the large-vocabulary object categories.

End-to-end HOI detectors In addition to ours, some
prior works have also proposed end-to-end solutions to de-
tect interacted objects rather than using off-the-shelf ob-
ject detectors. As they are originally developed under the
regime of limited object categories (e.g., 80 MS-COCO cat-
egories), we test their performance on the large vocabulary
case. Table 3 reports the results of two state-of-the-art end-
to-end HOI detectors, PPDM [23] and DIRV [7], whose
codes have been made available. Their common idea is to
predict interaction points or regions, working with the em-
bedded object detector, to better detect interacted humans
and objects. From Table 3, we can see that they can achieve
a good recall on capturing the target boxes, while the per-
formance for AP is leaves much to be desired. The object
scores are produced alone by the embedded object detector
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Figure 5: Examples of human interactions with diverse objects detected by our method.

mAP mAP-r mAP-nr mRec mRec-r mRec-nr
PPDM 3.17 1.62 6.53 14.17 7.77 28.13
DIRV 2.83 1.46 5.82 12.50 6.90 24.69
JSR 7.33 6.10 10.01 18.20 14.32 26.67
Ours 7.98 6.63 10.93 20.17 16.03 29.21

Table 4: Experimental results of HOI detection. We report the
average precision and recall of rare interactions (mAP-r, mRec-r)
and non-rare interactions (mAP-nr, mRec-nr).

which is isolated with their interaction branches. Specifi-
cally, PPDM uses CenterNet [5] and DIRV uses Efficient-
Det [38] to produce the object scores. To better handle the
rare and common categories, additional techniques for ad-
dressing the low-shot samples are required to work with
their detectors. Besides, during the re-training, we notice
that DIRV conducts a 1000-way classification for all an-
chors in the feature map, resulting in huge memory costs
and computations.

4.2. HOI Detection
In this section, we discuss the full interaction detection

with large-vocabulary object categories. We follow the ex-
isting HOI benchmark [3] and use the mean average pre-
cision (mAP) and mean recall (mRec) evaluation metrics.
Specifically, we first calculate the AP and Rec per interac-
tion category and then report the mean. An interaction de-
tection is considered as positive only if the following condi-
tions are satisfied: (1) the person and object bounding boxes
have an IoU ≥ 0.5 with the ground truth; (2) the interaction
prediction is correct, including both the correct action and
object prediction. Following [3], we treat interaction as a
rare case if it has at least one but less than 10 training sam-
ples. Next, we discuss the result of the interaction detection.

HOI detection with box grounding. We test two state-
of-the-art one-stage HOI detectors which are re-trained in
SWiG-HOI and the well-trained model JSR from the orig-
inal SWiG work [32]. Due to the compositional nature of

mAP mAP-r mAP-nr mRec mRec-r mRec-nr
PPDM 7.67 5.19 13.08 56.24 50.71 68.30
DIRV 7.49 5.03 12.87 52.60 46.34 66.26
JSR 19.46 15.32 28.48 50.14 40.85 70.43
Ours 20.96 16.48 29.88 59.64 48.69 83.54

Table 5: Results of HOI recognition without box grounding re-
quirements.

HOIs, the number of possible interactions will grow quickly
as more object categories are involved. In our composed test
set, there is a total of 4,745 seen human-object interactions.
Among them, 1,491 belongs to the non-rare case and 3,254
are rare interactions. Table 4 reports the result of HOI de-
tection using the standard HOI evaluate metrics. Our pro-
posed method outperforms state-of-the-art one-stage HOI
detectors by a clear mAP margin (∼4.81 mAP). Among all
methods, we also observe that our method can achieve a
relatively higher recall on the interactions.

HOI recognition without box grounding. Here we relax
the requirements of localization and only consider the cor-
rectness of interaction prediction. In this case, a prediction
will be treated as true positive if the interaction category
is correctly predicted. Table 5 reports the evaluation re-
sults without box requirements. As shown, our method still
gives the best performance on the interaction prediction. We
also observe that JSR misses 1,635 out of 3,254 (50.25%)
rare interactions. In comparison, our method misses 1,507
(46.31%) rare interactions. Although our result is slightly
better than the baseline, it is still an initial result and more
advanced solutions along this direction can be expected in
the future.

Unseen interactions between actions and objects. The
above evaluation is mainly conducted on the seen interac-
tions. As more object categories are included, there will
be more chances to see the novel interactions. In the com-
posed test set, there are about ∼1.8k novel interactions that
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mAP-novel mRec-novel
PPDM 0.78 2.73
DIRV 0.75 2.62
JSR 2.34 4.30
Ours 2.64 8.55

Inference Speed (ms)
PPDM 237
DIRV 214
JSR 353
Ours 93

Table 6: Left: Experimental results on novel interactions. Right:
Inference speed of one-stage HOI detectors.

do not appear in the training set. Table 6 (left) reports the re-
sults (with box requirements) on these novel combinations
between the actions and objects. Compared with previous
methods, our proposed method can capture more novel in-
teractions. While the results are expectedly low in both
mAP and mRec, this presents another promising research
direction to study how to handle the novel combinations in
the regime of large-vocabulary object categories.

Inference speed Table 6 (right) shows the inference speed
of various methods. Existing one-stage HOI detectors of-
ten include a matching process to associate the generated
person and object instances for each predicted action class.
Their computation complexity will increase as more action
and object classes are required to be considered. In com-
parison, our model jointly detects the target objects and in-
teractions without extra matching processes. Due to this
advantage, it can achieve a faster speed than the baseline
methods.

4.3. Hand-Object Interaction
In addition, we investigate the effectiveness of our pro-

posed model on another closely related task - hand and
object interaction. We conduct the experiments on the
100DOH dataset as it provides human hand interactions
with diverse daily objects (including∼300 categories based
on our annotations). To keep it consistent with the above
studies and our formulation, we treat each hand as a query
and search for the target objects. In this experiment, the ac-
tion is defined as the contact state (e.g., self-contact/person-
to-person/contact-to-portable/non-portable). More details
about this dataset are available in the supplementary ma-
teria.

Table 7 reports the experimental result of both object
detection and interaction detection. Similar to above, we
use the COCO-style AP to evaluate the object detection and
mAP metric to reflect the performance of interaction predic-
tion. We compare against the DOH [36] baseline method
and one-stage HOI detectors, PPDM and DIRV. Although
in this experiment, the simple contact state definition may
not provide additional clues to ease the object recognition,
we still see that our proposed method can effectively de-
tect target objects. As shown, our method achieves 2.5 AP
improvement on detecting the interacted objects. For the
full interaction detection, our method can obtain a 1.9 mAP
boost compared to selected one-stage HOI baselines.

AP APr APc APf mAP mAP-r mAP-nr
DOH 20.8 10.3 18.9 27.8 22.6 12.1 25.6
PPDM 25.5 13.4 23.5 30.8 24.5 15.3 27.2
DIRV 25.1 14.2 22.1 31.5 24.0 15.2 26.6
Ours 28.0 15.8 24.3 32.7 26.4 16.5 29.2

Table 7: Experimental results on the composed DOH dataset.
We evaluate the object detection performance using AP, APr(are),
APc(ommon), APf(reqeunt). The interaction detection is evalu-
ated using mAP metric similar as existing benchmarks.

multi-scale cascade action AP APs APm APf
Baseline 1 5.16 1.24 3.03 5.78
Baseline 2 ✓ 5.28 2.11 3.48 5.87
Baseline 3 ✓ ✓ 5.70 2.34 3.92 6.29
Full model ✓ ✓ ✓ 7.31 2.52 4.14 7.62

Table 8: Ablation studies of the proposed method. We ablate
the multi-scale feature maps, cascaded detection framework, and
coupled object detection and action prediction.

4.4. Ablation Studies
In this section, we conduct some ablation studies for our

proposed method. Table 8 reports the result of our base-
line models. We first investigate the effectiveness of us-
ing multi-scale and high-resolution feature maps. The first
baseline model can simply be interpreted as a variant of the
vanilla DETR [2] model (baseline 1). It only uses the coarse
P5 feature maps to find the target objects. As shown, such
a basic model has a low result on APs and APm. Then we
incorporate multi-scale and higher-resolution feature maps.
An intuitive way is to parallelly detect objects at P2, P3, P4,
P5 feature maps from the FPN backbone (baseline 2) and
then merge the results. We see that such a simple modifi-
cation can bring about 0.87 AP improvement in APs. We
then introduce our proposed cascade detection framework
(baseline 3) which further boosts the object detection per-
formance. The biggest challenge is the box classification
in the large vocabulary case. When we couple the object
classification with the action classification, we see another
obvious boost for AP performance.

5. Conclusion
In this paper, we propose a novel model to address the

problem of HOI detection in a regime of large-vocabulary
object categories. It jointly discovers the target objects and
interactions with human queries in a cascaded framework
over multi-scale feature maps. It does not rely on any front-
stage object detectors and can be end-to-end trained. We as-
semble two datasets from SWiG and DOH datasets to study
the new challenges of HOI detection in the large-vocabulary
setting and investigate the effectiveness of our method. We
observe that the coupled object detection and interaction
prediction not only helps detect the target objects but also
delivers a notable improvement on interaction prediction.
These contributions allow us to detect human interactions
with diverse objects in our daily life.
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