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Abstract

In this paper, we propose a generalizable mixed-
precision quantization (GMPQ) method for efficient in-
ference. Conventional methods require the consistency
of datasets for bitwidth search and model deployment to
guarantee the policy optimality, leading to heavy search
cost on challenging largescale datasets in realistic appli-
cations. On the contrary, our GMPQ searches the mixed-
quantization policy that can be generalized to largescale
datasets with only a small amount of data, so that the
search cost is significantly reduced without performance
degradation. Specifically, we observe that locating net-
work attribution correctly is general ability for accurate vi-
sual analysis across different data distribution. Therefore,
despite of pursuing higher model accuracy and complex-
ity, we preserve attribution rank consistency between the
quantized models and their full-precision counterparts vi-
a efficient capacity-aware attribution imitation for gener-
alizable mixed-precision quantization strategy search. Ex-
tensive experiments show that our method obtains com-
petitive accuracy-complexity trade-off compared with the
state-of-the-art mixed-precision networks in significant-
ly reduced search cost. The code is available at http-
s://github.com/ZiweiWangTHU/GMPQ.git.

1. Introduction
Deep neural networks have achieved the state-of-the

art performance across a large number of vision tasks
such as image classification [15, 44, 18], object detection
[40, 28, 14], face recognition [6, 49, 29] and many other-
s. However, the mobile devices with limited storage and
computational resources are not capable of processing deep
models due to the extremely high complexity. Therefore, it
is desirable to design network compression strategy accord-
ing to the hardware configurations.
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Figure 1. (a) Conventional methods require the consistency of
datasets for bitwidth search and model deployment, while our GM-
PQ searches the optimal quantization policy on small datasets and
generalizes it to largescale datasets. (b) The attribution computed
by Grad-cam for images from ImageNet (top row) and PASCAL
VOC (bottom row). Different from random quantization, the op-
timal quantization policy keeps similar attribution with the full-
precision counterparts regardless of datasets. ARD means the av-
erage Attribution Rank Distance for the top-100 pixels with the
highest attribution in the full-precision feature maps.

Recently, several network compression techniques have
been proposed including pruning [27, 16, 33], quantiza-
tion [59, 30, 51], efficient architecture design [20, 17, 37]
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and low-rank decomposition [7, 57, 26]. Among these
approaches, quantization constrains the network weights
and activations in limited bitwidth for memory saving and
fast processing. In order to fully utilize the hardware re-
sources, mixed-precision quantization [50, 9, 3] is present-
ed to search the bitwidth in each layer so that the optimal
accuracy-complexity trade-off is obtained. However, con-
ventional mixed-precision quantization requires the consis-
tency of datasets for bitwidth search and network deploy-
ment to guarantee policy optimality, which causes signif-
icant search burden for automated model compression on
largescale datasets such as ImageNet [5]. For example,
it usually takes several GPU days to acquire the expected
quantization strategy for ResNet18 on ImageNet [50, 3].

In this paper, we present a GMPQ method to learn gen-
eralizable mixed-precision quantization strategy via attribu-
tion rank preservation for efficient inference. Unlike ex-
isting methods which requires the dataset consistency be-
tween quantization policy search and model deploymen-
t, our method enables the acquired quantization strategy
to be generalizable across various datasets. The quanti-
zation policy searched on small datasets achieves promis-
ing performance on challenging largescale datasets, so that
policy search cost is significantly reduced. Figure 1(a)
shows the difference between our GMPQ and convention-
al mixed-precision networks. More specifically, we observe
that correctly locating the network attribution benefits vi-
sual analysis for various input data distribution. Therefore,
despite of considering model accuracy and complexity, we
enforce the quantized networks to imitate the attribution of
the full-precision counterparts. Instead of directly minimiz-
ing the Euclidean distance between attribution of quantized
and full-precision models, we preserve their attribution rank
consistency so that the attribution of quantized networks can
adaptively adjust the distribution without capacity insuffi-
ciency. Figure 1(b) demonstrates the attribution computed
by Grad-cam [42] for mixed-precision networks with opti-
mal and random quantization policy and their full-precision
counterparts, where the mixed-precision networks with the
optimal bitwidth assignment acquire more consistent attri-
bution rank with the full-precision model. Experimental re-
sults show that our GMPQ obtains competitive accuracy-
complexity trade-off on ImageNet and PASCAL VOC com-
pared with the state-of-the-art mixed-precision quantization
methods in only several GPU hours.

2. Related Work
Fixed-precision quantization: Network quantization

has aroused extensive interests in computer vision and ma-
chine learning due to the significant reduction in computa-
tion and storage complexity, and existing methods are di-
vided into one-bit and multi-bit quantization. Binary net-
works constrain the network weights and activations in one

bit at extremely high compression ratio. For the former,
Hubara et al. [19] and Courbariaux et al. [4] replaced the
multiply-add operations with xnor-bitcount via weight and
activation binarization, and applied the straight-through es-
timators (STE) to optimize network parameters. Rastegari
et al. [39] leveraged the scaling factor for weight and activa-
tion hashing to minimize the quantization errors. Liu et al.
[30] added extra shortcut between consecutive convolution-
al layers to enhance the network capacity. Wang et al. [54]
mined the channel-wise interactions to eliminate inconsis-
tent signs in feature maps. Qin et al. [36] minimized the
parameter entropy in inference and utilized the soft quan-
tization in backward propagation to enhance the informa-
tion retention. Since the performance gap between full-
precision and binary networks is huge, multi-bit networks
are presented for better accuracy-efficiency trade-off. Zhu
[61] trained an adaptive quantizer for network ternarization
according to weight distribution. Gong et al. [12] applied
the differentiable approximations for quantized networks to
ensure the consistency between the optimization and the ob-
jective. Li et al. [24] proposed the four-bit networks for ob-
ject detection with hardware-friendly implementations, and
overcome the training instabilities by custom batch normal-
ization and outlier removal. However, the fixed-precision
quantization ignores the redundancy variance across dif-
ferent layers and leads to suboptimal accuracy-complexity
trade-off in quantized networks.

Mixed-precision quantization: The mixed-precision
networks assign different bitwidths to weights and acti-
vations in various layers, which considers the redundan-
cy variance in different components to obatin the opti-
mal accuracy-efficiency trade-off given hardware configu-
rations. Existing mixed-precision quantization methods are
mainly based on either non-differentiable or differentiable
search. For the former, Wang et al. [50] presented a re-
inforcement learning model to learn the optimal bitwidth
for weights and activations of each layer, where the model
accuracy and complexity were considered in reward func-
tion. Wang et al. [52] jointly searched the pruning ratio, the
bitwidth and the architecture of the lightweight model from
a hypernet via the evolutionary algorithms. Since the non-
differentiable methods require huge search cost to obtain
the optimal bitwidth, the differentiable search approaches
are also introduced in mixed-precision quantization. Cai et
al. [3] designed a hypernet where each convolutional lay-
er consisted of parallel blocks in different bitwidths, which
yielded the output by summing all blocks in various weight-
s. Optimizing the block weight by back propagation and s-
electing the bitwidth with the largest value during inference
achieved the optimal accuracy-complexity trade-off. More-
over, Yu et al. [56] further presented a barrier penalty to
ensure that the searched models were within the complex-
ity constraint. Yang et al. [55] decoupled the constrained
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optimization via Alternating Direction Method of Multipli-
ers (ADMM), and Wang et al. [53] utilized the variation-
al information bottleneck to search for the proper bitwidth
and pruning ratio. Habi et al. [13] and Van et al. [48]
directly optimized the quantization intervals for bitwidth s-
election of mixed-precision networks. However, differen-
tiable search for mixed-precision quantization still needs a
large amount of time due to the optimization of the large
hypernet. In order to solve this, Dong et al. [9, 8] de-
signed bitwidth assignment rules according to Hessian in-
formation. Nevertheless, the hand-crafted rules require ex-
pert knowledge and cannot adapt to the input data.

Attribution methods: Attribution aims to produce
human-understandable explanations for the predictions of
neural networks. The contribution of each input componen-
t is calculated by examining the its influence on the net-
work output, which is displayed as the attribution in 2D
feature maps. Early works [10, 43, 60] analyzed the sen-
sitivity and the significance of each pixel by leveraging its
gradients with respect to the optimization objective. The
recent studies on attribution extraction can be categorized
into two types: gradient-based and relevance-based meth-
ods. For the first regard, Guided Backprop [45], Grad-Cam
[42] and integrated gradient [46] combined the pixel gradi-
ents across different locations and channels for information
fusion, so that more accurate attribution was obtained. For
the latter regard, Zhang et al. [58] constructed a hierarchi-
cal probabilistic model to mine the correlation between the
input components and the prediction. In this paper, we ob-
serve that the attribution rank consistency of feature maps
between vanilla and compressed networks benefits visual
analysis for various data distribution, which is extended to
generalizable mixed-precision quantization for significan-
t search cost reduction.

3. Approach
In this section, we first introduce the mixed-precision

quantization framework which suffers from significan-
t search burden. Then we demonstrate the observation that
the attribution rank consistency between full-precision and
quantized models benefits visual analysis for various data
distribution. Finally, we present the generalizable mixed-
precision quantization via attribution rank preservation.

3.1. Mixed-Precision Quantization

The goal of mixed-precision quantization is to search the
proper bitwidth of each layer in order to achieve the opti-
mal accuracy-complexity trade-off given hardware config-
urations. Let W be the quantized network weight and Q
be the quantization policy that assigns different bitwidths to
weights and activations in various layers. Ω(Q) means the
computational complexity of the compressed networks with
the quantization policy Q. The search objective function is

≈ 8 bit ≈ 4 bit ≈ 2 bit 

ARD=8.20 ARD=8.44 ARD=7.60

ARD=8.96 ARD=9.40 ARD=9.21

Figure 2. The attribution of the mixed-precision networks in d-
ifferent capacities with the optimal quantization policy. For the
networks in low bitwidth, the attribution is more concentrated al-
though the rank remains similar. The concentrated attribution en-
ables the model capacity to be sufficient by redundant attention
removal, so that the promising performance is achieved.

written as the following bi-level optimization form:

min
Q
Lval(W

∗(Q),Q)

s.t. W ∗(Q) = arg min Ltrain(W ,Q)

Ω(Q) 6 Ω0 (1)

where Lval and Ltrain depict the task loss on the validation
data and the training data. Ω0 stands for the resource con-
straint of the deployment platform. In order to obtain the
optimal mixed-precision networks, the quantization policy
Q and the network weights W (Q) are alternatively opti-
mized until convergence or the maximal iteration number.
Since the distribution of the training and validation data for
policy search significantly affects the acquired quantization
strategy, existing methods require the training and valida-
tion data for quantization policy search and those for mod-
el deployment to come from the same dataset. However,
the compressed models are usually utilized on largescale
datasets such as ImageNet, which causes heavy computa-
tional burden during quantization policy search. To address
this, an ideal solution is to search for the quantization poli-
cy whose optimality is independent of the data distribution.
The search objective should be modified in the following:

min
Q

Ex∼DA
val
L(W ∗(Q),Q,x)

s.t. W ∗(Q) = arg minEx∼DG
train

L(W ,Q,x)

Ω(Q) 6 Ω0 (2)

where L(W ,Q,x) represents the task loss for network
weightW , quantization policyQ and input x. DA

val depicts
the dataset containing all validation images in deploymen-
t and DG

train illustrates the dataset including given training
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Figure 3. The pipeline of our GMPQ. The hypernet consists of multiple parallel branches including convolutional filters and activations in
different bitwidths. The output from various branches is added with learnable importance weights to construct the output feature maps.
Despite of the cross-entropy and complexity loss, we present additional generalization loss to optimize the network weights and branch
importance weights, which enables the quantization policy searched on small datasets to be generalized on largescale datasets.

images in bitwidth search, where the distribution gap be-
tween DA

val and DG
train may be sizable. Because DA

val is in-
tractable in realistic applications, it is desirable to find an al-
ternative way to solve for the generalizable mixed-precision
quantization policy.

3.2. Attribution Rank Consistency

Since acquiring all validation images in deployment is
impossible, we solve for the generalizable mixed-precision
quantization policy via an alternative way. We observe
that correctly locating the network attribution benefits vi-
sual analysis for various input data distribution. The feature
attribution is formulated according to the loss gradient with
respect to each feature map, where the importance of the cth
feature map in the last convolutional layer for recognizing
the objects from the tth class is written as follows:

αc[t] =
1

Z

∑
m,n

∂f(x)[t]

∂Ac[m,n]
(3)

where f(x)[t] means the output score for input x of the tth
class, and Ac[m,n] represents the activation element in the
mth row and nth column of the cth feature map in the last
convolutional layer. Z is a scaling factor that normalizes the
importance into the range [0, 1]. With the feature map visu-
alization techniques presented in Grad-cam [42], we obtain
the feature attribution in the networks. We sum the fea-
ture maps from different channels with the attention weight
calculated in (3), and remove the influence from opposite
pixels via the ReLU operation. The feature attribution in
the last convolutional layer with respect to the tth class is
formulated in the following:

M [t] = ReLU(
∑
c

αc[t] ·Ac) (4)

The feature attribution only preserves the supportive fea-
tures for the given class, and the negative features related to

other classes are removed.
The full-precision networks achieve high performance

due to paying more attention to important parts in the im-
age, while the quantized models deviate the attribution from
that of the full-precision networks due to the limited ca-
pacity. Figure 2 demonstrates the attribution of networks
with the optimal quantization policy in different complexi-
ty, where attribution of networks in lower capacity is more
concentrated due to the limited carried information. As the
network capacity gap between the quantized networks and
their full-precision counterparts is huge, directly enforcing
the attribution consistency fails to remove the redundant at-
tention in the compressed model, which causes capacity in-
sufficiency with performance degradation. Therefore, we
preserve the attribution rank consistency between the quan-
tized networks and their full-precision counterparts for gen-
eralizable mixed-precision quantization policy search. The
attribution rank illustrates the importance order of different
pixels for model predictions. Constraining attribution rank
consistency enables the quantized networks to focus on im-
portant regions, which adaptively adjusts the attribution dis-
tribution without capacity insufficiency.

3.3. Generalizable Mixed-Precision Quantization
via Attribution Rank Preservation

Our GMPQ can be leveraged as a plug-and-play mod-
ule for both non-differentiable and differentiable search
methods. Since differentiable methods achieve the com-
petitive accuracy-complexity trade-off compared with non-
differentiable approaches, we employ the differentiable
search framework [3, 56, 55] to select the optimal mixed-
precision quantization policy. We design a hypernet with
Nk

a and Nk
w parallel branches for convolution filters and

feature maps in the kth layer. Nk
a and Nk

w represent the
size of the search space for weight and activation bitwidths.
The parallel branches are assigned with various bitwidths
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Figure 4. The Lp norm of the attribution for the full-precision net-
works with different p. The attribution is more concentrated for
larger p while the rank keeps same.

whose output is summed with the importance πk
a and πk

w

for weight and activation respectively to form the interme-
diate feature maps. Figure 3 depicts the pipeline of our GM-
PQ. The feed-forward propagation for each layer in the K-
layer hypernet is written as follows:

zk =

Nk
w∑

i=1

πk
w,if

k
i (

Nk
a∑

j=1

πk
a,ja

k
j ) (5)

where zk means the output intermediate feature maps of
the kth layer. ak

j represents the output of the jth activation
quantization branch in the kth layer, and fki is the convolu-
tion operation in the ith filter branch of the kth layer. πk

a,i

and πk
w,i stand for the importance weight for the ith quan-

tized activation and filter branch in the kth layer.
As we observe that the attribution rank consistency be-

tween quantized networks and their full-precision counter-
parts enables the compressed models to possess the dis-
criminative power of the vanilla model regardless of the da-
ta distribution, we impose the attribution rank consistency
constraint in optimal quantization policy search despite of
the accuracy and efficiency objective. In order to obtain
the optimal accuracy-complexity trade-off for generalizable
mixed-precision quantization, the learning objective is for-
mulated in the Lagragian form:

R = RE(W ,Q,x) + ζRC(Q) + ηRG(W ,Q,x) (6)

where RE(W ,Q,x), RC(Q) and RG(W ,Q,x) respec-
tively mean the classification, complexity and the general-
ization risk for the networks with weight W and quantiza-
tion policy Q for the input x. ζ and η are the hyperparam-
eters to balance the importance of the complexity risk and
generalization risk in the overall learning objective. In dif-
ferentiable policy search, RE(W ,Q,x) is represented by
the objective of vision tasks, and RC(Q) is defined as the

expected Bit-operations (BOPs) [53, 1, 3]:

RC(Q) =

K∑
k=1

(

Nk
w∑

i=1

πk
w,iq

k
w,i) · (

Nk
a∑

i=1

πk
a,iq

k
a,i) ·Bk

full (7)

where qkw,i and qka,i stand for the bitwidth of the ith branch
of weights and activations in the kth layer, andBk

full means
the BOPs of the kth layer in the full-precision network. K
represents the number of layers of the quantized model. As
the attribution rank consistency between the full-precision
networks and their quantized counterparts enhance the gen-
eralizability of the mixed-precision quantization policy, we
define the generalization risk in the following form:

RG(W ,Q,x) =
∑
i,j

||r(Mq,ij [yx])− r(Mf,ij [yx])||22

where Mq,ij [yx] represents the pixel attribution in the ith
row and jth column of the feature maps with respect to the
class yx in the quantized networks, and Mf,ij [yx] demon-
strates the corresponding variable in full-precision models.
yx means the label of the input x, and || · ||2 is the element-
wise l2 norm. r(·) stands for the attribution rank, which
equals to k if the element is the kth largest in the attribution
map. We only preserve the attribution rank consistency for
top-k pixels with the highest attribution in the full-precision
networks, as low attribution is usually caused by noise with-
out clear information. Since minimizing the generalization
risk is NP-hard, we present the capacity-aware attribution
imitation to differentially optimize the objective.

We enforce attribution of the mixed-precision networks
to approach the lp norm of that in full-precision models,
because the lp norm preserves the rank consistency while
adaptively selects the attribution distribution according to
the network capacity. The generalization risk is rewritten as
follows for efficient optimization:

RG(W ,Q,x) =
∑
i,j

||Mq,ij [yx]− Mf,ij [yx]p∑
i,j Mf,ij [yx]p

||22

Large p leads to concentrated attribution and vice versa, and
we assign pwith larger value for hypernets in lower capacity
with hyperparamters Q0

w and Q0
a for L-layer networks:

p =
1

L

L∑
k=1

(Q0
w/

Nk
w∑

i=1

πk
w,iq

k
w,i) · (Q0

a/

Nk
a∑

i=1

πk
a,iq

k
a,i) (8)

Since the classification, complexity and generalization risks
are all differentiable, we optimize the hypernet weight and
the branch importance weight iteratively in an end-to-end
manner. When the hypernet converges or achieves the maxi-
mum training epoch, the bitwidth represented by the branch
with the largest important weight is selected to form the fi-
nal quantization policy. We finetune the quantized networks
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with the data in deployment to acquire the final model ap-
plied in realistic applications. GMPQ searches quantization
policies on small datasets with generalization constraint,
which leads to high performance on largescale datasets in
deployment with significantly reduced search cost.

4. Experiments
In this section, we conducted extensive experiments on

image classification and object detection. We first introduce
the implementation details of our GMPQ. In the follow-
ing ablation study, we then evaluated the influence of value
assignment strategy for p in the capacity-aware attribution
imitation, investigated the effects of different terms in the
risk function and discovered the impact of the dataset for
quantization policy search. Finally, we compare our method
with the state-of-the-art mixed-precision networks on image
classification and object detection with respect to accuracy,
model complexity and search cost.

4.1. Datasets and Implementation Details

We first introduce the datasets that we carried experi-
ments on. For quantization policy search, we employed the
small datasets including CIFAR-10 [23], Cars [22], Flowers
[34], Aircraft [32], Pets [35] and Food [2]. CIFAR-10 con-
tains 60, 000 images divided into 10 categories with equal
number of samples, and Flowers have 8,189 images spread
over 102 flower categories. Cars includes 16, 185 images
with 196 types at the level of maker, model and year, and
Aircraft contains 10, 200 images with 100 samples for each
of the 102 aircraft model variants. Pet was created with 37
dog and cat categories with 200 images for each class, and
Food contains 32, 135 high-resolution food photos of menu
items from the 6 restaurants.

For mixed-precision network deployment, we evaluated
the quantized networks on ImageNet for image classifica-
tion and on PASCAL VOC for object detection. ImageNet
[5] approximately contains 1.2 billion and 50k images for
training and validation from 1, 000 categories. For train-
ing, 224 × 224 random region crops were applied from the
resized image whose shorter side was 256. During the infer-
ence stage, we utilized the 224×224 center crop. The PAS-
CAL VOC dataset [11] collects images from 20 categories,
where we fintuned our mixed-precision networks on VOC
2007 and VOC 2012 trainval sets containing about 16k im-
ages and tested our GMPQ on VOC 2007 test set consisting
of 5k samples. Following [11], we used the mean average
precision (mAP) as the evaluation metric.

We trained our GMPQ with MobileNet-V2 [41],
ResNet18 and ResNet50 [15] architectures for image classi-
fication, and applied VGG16 [44] with SSD framework [28]
and ResNet18 with Faster R-CNN [40] for object detec-
tion. The bitwidth in the search space for network weight-
s and activations is 2-8 bit for MobileNet-V2 and 2-4 bit
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Figure 5. The accuracy-complexity trade-off of (a) fixed and (b)
capacity-aware value assignment strategies for p in (8), where hy-
perparameters are also varied.

for other architectures. Inspired by [3], we utilized com-
positional convolution whose filters were weighted sum of
each quantized filters in different bitwidths, so that complex
parallel convolution was avoided. We updated the impor-
tance weight of different branches and the network param-
eters simultaneously. The hyperparameters Q0

w and Q0
a in

capacity-aware attribution imitation were set to 4 and 6 re-
spectively. Meanwhile, we only minimize the distance be-
tween attribution in quantized networks and lp norm of that
in full-precision model for top-1000 pixels with the highest
attribution in the real-valued model. For evaluation on Ima-
geNet, we finetuned the mixed-precision networks with the
Adam [21] optimizer. The learning rate started from 0.001
and decayed twice by multiplying 0.1 at the 20th and 30th
epoch out of the total 40 epochs. For object detection, the
backbone was pretrained on ImageNet and then finetuned
on PASCAL VOC with the same hyperparameter settings
on image classification. The batchsize was set to be 256 in
all experiments. By adjusting the hyperparameters ζ and η
in (6), we obtained the mixed-precision networks at differ-
ent accuracy-complexity trade-offs.

4.2. Ablation Study

In order to investigate the effectiveness of attribution
rank preservation, we assign the value of p in the capacity-
aware attribution imitation with different strategies. By
varying the hyperparameters ζ and η in the overall risk
(6), we evaluated the influence of classification, complex-
ity and generalization risks with respect to the model ac-
curacy and efficiency. We conducted the ablation study on
ImageNet with the ResNet18 architecture, and searched the
mixed-precision quantization policy on CIFAR-10 for the
above investigation. Moreover, we searched the generaliz-
able mixed-precision quantization policy on different small
datasets to discover the effects on the accuracy-complexity
trade-off and search cost.

Effectiveness of different value assignment strategies
for p: To investigate the influence of value assignmen-
t strategies to p on the accuracy-complexity trade-off, we
searched the mixed-precision quantization policy with fixed

5296



10 15 20 25 30
BOPs(G)

56

58

60

62

64

66

68

70

72

To
p-

1 
A

cc
ur

ac
y(

%
)

=0
=10
=20
=40
=80

(a) Varying ζ and η

10 15 20 25 30
BOPs(G)

65

66

67

68

69

70

71

To
p-

1 
A

cc
ur

ac
y(

%
)

CIFAR10(0.5GH)
Flowers(0.4GH)
Pets(0.3GH)
Aircraft(0.9GH)
Food(0.8GH)
Cars(0.7GH)

(b) Varying datasets
Figure 6. (a) The accuracy-complexity trade-off for different η,
where ζ is varied to select various network capacity. (b) The top-
1 accuracy on ImageNet, the BOPs and the average search cost
of the mixed-precision quantization policy searched on different
small datasets, where GH means GPU hours for the search cost.

and capacity-aware p value. For fixed p, we set the value
as 1, 2, 3 and 4 that constrains the attribution of quantized
networks with various concentration. The capacity-aware
strategy assigns p with the strategy shown in (8), where
the product of Q0

w and Q0
a was varied in the ablation study.

Figure 5(a) and 5(b) demonstrate the accuracy-complexity
trade-off for fixed and capacity-aware value assignment s-
trategies for p respectively with different hyperparameters.
The optimal accuracy-complexity curve in capacity-aware
strategy outperforms that in fixed strategy, which indicates
the importance of attribution variation with respect to net-
work capacity. For fixed strategy, medium p outperforms
other values. Small p causes attention redundancy for quan-
tized networks with limited capacity and large p leads to in-
formation loss that fails to utilize the network capacity. For
capacity-aware strategy, setting the product of Q0

w and Q0
a

to 24 results in the optimal accuracy-complexity trade-off.
For hypernetworks whose product of weight and activation
bitwidths is 24, the network capacity is comparable with
their full-precision counterparts since they mimic the attri-
bution of real-valued models without extra concentration.

Influence of hyperparameters in overall risk (6): In
order to verify the effectiveness of the generalization risk,
we report the performance with different η. Meanwhile,
we also varied the hyperparameter ζ to obtain differen-
t accuracy-complexity trade-offs. Figure 6(a) illustrates the
results, where medium η achieves the best trade-off curve.
Large η fails to leverage the supervision from annotated
labels, and small η ignores the attribution rank consisten-
cy which enhances the generalization ability of the mixed-
precision quantization policy. With the increase of ζ, the re-
sulted policy prefers lightweight architectures and vice ver-
sa. For different η, the same assignment of ζ selects similar
BOPs in the accuracy-complexity trade-off.

Effects of datasets for quantization policy search: We
searched the mixed-precision quantization policy on differ-
ent small datasets including CIFAR-10, Cars, Flowers, Air-
craft, Pets and Food to discover the effects on model ac-

Table 1. The top-1/top-5 accuracy (%) on ImageNet, model storage
cost (M), model computational cost (G) and the search cost (G-
PU hours) for networks in different capacity and mixed-precision
quantization policy. Param. means the model storage cost, and
Comp. means the compression ratio of BOPs.

Methods Param. BOPs Comp. Top-1 Top-5 Cost.

ResNet18
Full-precision 46.8 1853.4 − 69.7 89.2 −

ALQ 1.8 58.5 31.7 67.7 − 34.7

HAWQ 5.8 34.0 54.5 68.5 − 15.6

GMPQ 5.4 27.8 66.7 70.2 90.1 0.5

APoT 4.6 16.3 113.8 69.8 − −
GMPQ 4.1 15.3 121.0 69.9 89.7 0.6

ALQ 3.4 7.2 256.0 66.4 − 38.5

EdMIPS 4.7 7.2 258.0 65.9 86.5 9.5

EdMIPS-C 4.5 7.4 251.9 59.1 81.0 0.6

GMPQ 3.7 7.2 255.8 67.8 88.0 0.9

ResNet50
Full-precision 97.5 3952.6 − 76.4 93.1 −

HAWQ 13.1 61.3 64.5 75.3 92.4 36.6

HAQ 12.2 50.3 78.6 75.5 92.4 67.7

BP-NAS 13.4 55.2 71.7 76.7 93.6 30.2

GMPQ 12.4 53.0 74.6 76.7 93.3 2.2

HMQ 15.6 37.7 104.8 75.5 − 49.4

BP-NAS 11.3 33.2 119.0 75.7 92.8 35.6

GMPQ 9.6 30.7 128.6 75.8 92.9 2.7

EdMIPS 13.9 15.6 254.2 72.1 90.6 26.5

EdMIPS-C 13.7 16.0 247.2 65.6 87.3 2.9

GMPQ 8.8 15.7 252.2 73.6 91.2 3.4

MobileNet-V2
Full-precision 13.4 337.9 − 71.9 90.3 −

RQ 2.7 11.9 28.4 68.0 − −
GMPQ 1.4 10.4 32.6 71.5 90.2 1.7

HAQ 1.4 8.3 41.0 69.5 88.8 51.1

HAQ-C 1.6 8.1 41.6 62.7 82.4 4.5

DJPQ 1.9 7.9 43.0 69.3 − 12.2

GMPQ 1.2 7.4 45.8 70.4 90.7 2.6

HMQ 1.7 5.2 64.4 70.9 − 33.5

DQ 1.7 4.9 68.7 69.7 − 21.6

GMPQ 1.0 4.8 69.7 70.1 89.9 2.8

curacy and efficiency. Figure 6(b) demonstrates the top-
1 accuracy and the BOPs for the optimal mixed-precision
networks obtained on different small datasets. We also
show the average search cost across all computation cost
constraint in the legend, where GH means GPU hours
that measures the search cost. The mixed-precision net-
works searched on CIFAR-10 achieves the best accuracy-
efficiency trade-off, because the size of CIFAR-10 is the
largest with the most sufficient visual information. More-
over, the gap of object category between CIFAR-10 and
ImageNet is the smallest compared with other datasets.
Searching quantization policy on Aircraft requires the high-
est search cost due to the large image size 512× 512.

4.3. Comparison with State-of-the-art Methods

In this section, we compare our GMPQ with the state-
of-the-art fixed-precision models containing APoT [25] and
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Table 2. The mAP (%) on PASCAL VOC, model storage cost (M),
model computational cost (G) and the search cost (GPU hours)
for backbone networks in different capacity and mixed-precision
quantization policy. Param. means the model storage cost, and
Comp. means the compression ratio of BOPs.

Methods Param. BOPs Comp. mAP Cost

SSD & VGG16
Full-precision 105.5 27787.7 − 72.4 −

HAQ 42.7 847.2 32.8 70.9 62.5

HAQ-C 42.9 819.7 33.9 67.6 5.1

EdMIPS 33.5 958.2 29.0 69.4 25.9

EdMIPS-C 37.2 868.4 32.0 65.2 1.5

GMPQ 36.6 796.2 34.9 70.5 1.6

HAQ 35.5 430.15 64.6 69.1 67.9

HAQ-C 32.3 445.3 62.4 66.4 6.8

EdMIPS 29.4 454.0 61.2 68.7 30.2

EdMIPS-C 31.3 423.6 65.6 64.3 1.6

GMPQ 24.7 413.5 67.2 69.2 1.8

Faster R-CNN & ResNet18
Full-precision 47.4 22534.8 − 74.5 −

HAQ 8.3 342.5 65.8 73.5 38.9

HAQ-C 8.5 337.9 66.7 70.7 4.1

EdMIPS 9.3 361.7 62.3 72.3 16.6

EdMIPS-C 8.7 348.8 64.6 69.8 0.4

GMPQ 6.4 337.9 66.7 73.9 0.5

HAQ 8.0 303.7 74.2 73.2 35.2

HAQ-C 7.6 310.4 72.6 70.4 5.2

EdMIPS 18.7 348.8 71.1 71.8 18.1

EdMIPS-C 7.4 299.3 75.3 69.2 0.4

GMPQ 6.2 286.3 78.7 73.4 0.5

RQ [31] and mixed-precision networks including ALQ
[38], HAWQ [9], EdMIPS [3], HAQ [50], BP-NAS [56],
HMQ [13] and DQ [47] on ImageNet for image classifica-
tion and on PASCAL VOC for object detection. We also
provide the performance of full-precision models for refer-
ence. The accuracy-complexity trade-offs of baselines are
copied from their original papers or obtained by our imple-
mentation with the officially released code, and the search
cost was evaluated by re-running the compared methods.
We searched the optimal quantization policy on CIFAR-10
for the deployment on ImageNet and PASCAL VOC.

Results on ImageNet: Table 1 illustrates the com-
parison of storage and computational cost, the compres-
sion ratio of BOPs, the top-1 and top-5 accuracy and
the search cost across different architectures and mixed-
precision quantization methods. HAQ-C and EdMIPS-
C demonstrate that we leveraged HAQ and EdMIPS that
searched the quantization policy on CIFAR-10 and eval-
uated the obtained quantization policy on ImageNet. By
comparing the accuracy-complexity trade-off with the base-
line methods for different architectures, we conclude that
our GMPQ achieves the competitive accuracy-complexity
trade-off under various resource constraint with significant-
ly reduced search cost. Meanwhile, we also searched the
quantization policy on CIFAR-10 directly using HAQ and

EdMIPS. Although the search cost is reduced sizably, the
accuracy-complexity trade-off is far from the optimal across
various resource constraint, which indicates the lack of gen-
eralization ability for the quantization policy obtained by
the conventional methods. Our GMPQ preserves the at-
tribution rank consistency during the quantization policy
search with acceptable computational overhead, and en-
ables the mixed-precision quantization searched on small
datasets to generalize to largescale datasets. For the mixed-
precision quantization method EdMIPS, the search cost re-
duction is more obvious for ResNet50 since the heavy ar-
chitecture requires more training epochs to converge when
trained on largescale datasets.

Results on PASCAL VOC: We employed the SSD de-
tection framework with VGG16 architecture and Faster R-
CNN detector with ResNet18 backbone to evaluate our
GMPQ on object detection. Table 2 shows the results
of various mixed-precision networks. Compared with the
accuracy-complexity trade-off searched on PASCAL VOC
by the state-of-the-art methods, our GMPQ acquired the
competitive results with significantly reduced search cost on
both detection frameworks and backbones. Moreover, di-
rectly compressing the networks with the quantization pol-
icy searched by HAQ and EdMIPS on CIFAR-10 degrades
the performance significantly. Since the mixed-precision
networks are required to be pretrained on ImageNet, the
search cost decrease on PASCAL VOC is more sizable than
that on ImageNet. Because the two-stage detector Faster R-
CNN has stronger discriminative power for accurate attribu-
tion generation, the accuracy-complexity trade-off is more
optimal compared with the one-stage detector.

5. Conclusion

In this paper, we have proposed a generalizable mixed-
quantization method called GMPQ for efficient inference.
The presented GMPQ searches the quantization policy on
small datasets with attribution rank preservation, so that the
acquired quantization strategy can be generalized to achieve
the optimal accuracy-complexity trade-off on largescale
datasets with significant search cost reduction. Extensive
experiments depict the superiority of GMPQ compared with
the state-of-the-art methods.
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