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Abstract

Most recent approaches for online action detection tend
to apply Recurrent Neural Network (RNN) to capture long-
range temporal structure. However, RNN suffers from non-
parallelism and gradient vanishing, hence it is hard to
be optimized. In this paper, we propose a new encoder-
decoder framework based on Transformers, named OadTR,
to tackle these problems. The encoder attached with a task
token aims to capture the relationships and global inter-
actions between historical observations. The decoder ex-
tracts auxiliary information by aggregating anticipated fu-
ture clip representations. Therefore, OadTR can recognize
current actions by encoding historical information and pre-
dicting future context simultaneously. We extensively eval-
uate the proposed OadTR on three challenging datasets:
HDD, TVSeries, and THUMOSI4. The experimental re-
sults show that OadTR achieves higher training and infer-
ence speeds than current RNN based approaches, and sig-
nificantly outperforms the state-of-the-art methods in terms
of both mAP and mcAP. Code is available at https:
//github.com/wangxiangl230/0adTR.

1. Introduction

The purpose of online action detection is to correctly
identify ongoing actions from streaming videos without any
access to the future. Recently, this task has received increas-
ing attention due to its great potential of diverse applica-
tion prospects in real life, such as autonomous driving [24],
video surveillance [45], anomaly detection [37,38], etc. The
crucial challenge of this task is that we need to detect the
actions at the moment that video frames arrive with inade-
quate observations. To solve the problem, it is important to
learn the long-range temporal dependencies.
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Figure 1: Comparison between OadTR and the state-of-
the-art online action detection methods (i.e., TRN [54] and
IDN [15]): (a) Comparison of the training speeds; (b) Com-
parison of the inference speeds; (c) Comparison of the per-
formance on the challenge THUMOS 14 dataset.

Current approaches tend to apply RNN to model the tem-
poral dependencies and have achieved impressive improve-
ments [11, 13, 15, 16,28, 54]. Typically, Information Dis-
crimination Network (IDN) [15] designs a RNN like ar-
chitecture to encode long-term historical information, and
then conduct action recognition at current moment. How-
ever, RNN like architectures have the problems of non-
parallelism and gradient vanishing [33, 39]. Thus it is hard
to optimize the architectures, which may result in an unsat-
isfactory performance. This is a challenging problem for
current approaches, but much less effort has been paid to
solve it. To further improve the performance, we need to
design a new efficient and easily-optimized framework. For
this purpose, we propose to apply Transformers [48]. Trans-
formers possess the strong power of long-range temporal
modeling by the self-attention module, and have achieved
remarkable performance in both natural language process-
ing [12,48,57] and various vision tasks [14, 58]. Existing
works have proved that Transformers have a better conver-
gence than RNN architectures [23, 26], and they are also
computationally efficient. The above properties of Trans-
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formers can naturally provide alternative scheme for the on-
line action detection task.

The above observations motivate this work. In partic-
ular, we propose a carefully designed framework, termed
OadTR, by introducing the power of Transformers to the
online action detection task, as illustrated in Figure 2. The
proposed OadTR is an encoder-decoder architecture which
can simultaneously learn long-range historical relationships
and future information to classify current action. The first
step is to extract clip-level feature sequence from a given
video by a standard CNN. We then embed a task token to the
clip-level feature sequence and input them to the encoder
module. By this means, the output of the task token can en-
code the global temporal relationships among the historical
observations. In contrast, the decoder is designed to predict
the actions that may take place in the future moments. Fi-
nally, we concatenate the outputs of both the task token and
decoder to detect the online actions. We compare OadTR
with other RNN based approaches in Figure 1, which shows
that the proposed OadTR is both efficient and effective. To
further demonstrate the effectiveness of OadTR, we conduct
a large number of experiments on three public datasets, in-
cluding HDD [41], TVSeries [10], and THUMOS14 [22],
and achieve significant improvements in terms of both mAP
and mcAP metrics.

Summarily, we make the following three contributions:

e To the best of our knowledge, we are the first to bring
Transformers into online action detection task and pro-
pose a new framework, i.e., OadTR;

e We specially design the encoder and decoder of
OadTR which can aggregate long-range historical in-
formation and future anticipations to improve online
action detection;

e We conduct extensive experiments, and the results
demonstrate the proposed OadTR significantly outper-
forms state-of-the-art methods. The massive and com-
prehensive ablation studies can further dissect the un-
dergoing properties of OadTR.

2. Related Work

In this section, we will review the related methods of our
approach as follows:

Online Action Detection. Given a live video stream, online
action detection aims to identify the actions that are taking
place, even if only part of the actions can be observed. De
Geest et al. [10] explicitly introduced online action detec-
tion task for the first time and proposed TVSeries dataset.
After that, they also proposed a two-stream feedback net-
work with LSTM [20] to model temporal structure [11].
RED [16] designs a Reinforced Encoder-Decoder network

and a module to encourage making the right decisions as
early as possible. Several recent methods [!7, 44] focus
on detecting action starts and minimizing the time delay
of identifying the start point of an action. IDN [15] di-
rectly manipulates the GRU cell [8] to model the relations
between past information and an ongoing action. Inspired
by that humans often identify current actions by consider-
ing the future [9], TRN [54] uses LSTM to predict future
information recursively and combine it with past observa-
tions to identify actions. In this paper, we also introduce
future information to assist in identifying current actions,
but in parallel. Note that the aforementioned methods adopt
RNN to model input action sequences, which are inefficient
and lack of interaction between features, resulting in poor
modeling capabilities for long-term dependence.

Temporal Action Detection. The goal of temporal action
detection is to locate the start time points and end time
points of all action instances in the untrimmed video. One-
stage methods [27, 31, 50] draw on the SSD [35] method
in object detection and design end-to-end action detection
networks with multi-layer feature pyramid structures. Two-
stage methods [7, 53] adopt the Faster-RCNN [42] archi-
tecture, including proposal generation subnet and proposal
classification subnet. Most recent methods focus on gener-
ating high-quality temporal action proposals. These meth-
ods [2,29,30,32,40,51,55] usually locate temporal bound-
aries with high probabilities, then combine these boundaries
as proposals and retrieve proposals by evaluating the confi-
dence of whether a proposal contains an action within its
region. However, the above approaches assume the entire
input video can be observed, which is not available in the
online task.

Transformers. Since the success of the Transformer-based

models in the natural language processing field [12,48,57],
there are many attempts to explore the feasibility of Trans-
formers in vision tasks. DETR [5] and its variants [58,61]

effectively remove the need for many hand-designed com-
ponents like non-maximum suppression procedures and an-
chor generation by adopting Transformers. ViT [14] divides
an image into 16 X 16 patches and feeds them into a standard
Transformer’s encoder. There are also some attempts in se-
mantic segmentation [52, 59], lane shape prediction [34],
video frame synthesis [36], efc. To the best of our knowl-
edge, we are the first to introduce Transformers into the on-
line action detection task. In particular, unlike the origi-
nal auto-regressive Transformer, OadTR adopts a non-auto-
regressive Transformer to generate sequences in parallel to
improve efficiency.

3. Methodology

In this section, we will first introduce the problem defi-
nition and then present the proposed OadTR detailedly.
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Figure 2: Illustration of the proposed Online Action Detection TRansformer (OadTR). Given an input streaming video
VvV ={ ft}?:_T, a task token is attached to the visual features output by the feature extraction network. Then the token
feature sequence is input into the standard Transformer’s encoder to model long-range historical temporal dependencies.
Afterward, the decoder of OadTR anticipates the future context information in parallel. Finally, the predicted future context
are involved in classifying the current action. Note that OadTR, including the encoder and decoder, is an end-to-end parallel

framework.

3.1. Problem description

Given a video stream that may contain multiple actions,
the goal of the task is to identify the actions currently taking
place in real-time. We denote V = { ft}(t):—T as the input
streaming video, which needs to classify the current frame
chunk fo. We use y( to represent the action category of
the current frame chunk fy, and yo € {0, 1,...,C'}, where
C is the total number of the action categories and index 0
denotes the background category.

3.2. OadTR

To explore the potential benefits of the Transformer, we
introduce the power of self-attention into the online ac-
tion detection task. In this section, we present OadTR, a
encoder-decoder conformation. OadTR adopts an attention
mechanism to capture long-range contextual information in
the temporal dimension of features. The schematic diagram
of OadTR is shown in Figure 2.

3.2.1 Encoder

Given a streaming video V' = { ft}?sz, the feature ex-
tractor [49] extracts a 1D feature sequence by collapsing
the spatial dimensions. Then an additional linear projection
layer further maps each vectorized frame chunk feature into
a D-dimensional feature space and F' = {token;})_ . €

R(T+1*D denotes the resulting token sequence.
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Figure 3: Comparison of similarity distribution between the
classification features (i.e., features before sending to clas-
sifier) and the input features sequence F. Note that w/o task
token: the output classification features correspond to the
token of the fy input; w/ task token: the output classifica-
tion features correspond to the task token.

In the encoder, we extend a learnable
tokencass € RP to the embedded feature sequence
F and get the combined token feature sequence

F = S’tack({tokent}ngT Jtokencass) € RIT2)xD,
Note that token;qss is used to learn global discriminative
features related to the online action detection task. In-
tuitively, if there is no tokency,ss here, the final feature
representation obtained by other tokens will inevitably be
biased towards this specified token as a whole, and thus
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cannot be used to represent this learning task (i.e., w/o task
token in Figure 3). In contrast, the semantic embedding
of tokeng,ss can be obtained by adaptively interacting
with other tokens in the encoder, which is more suitable for
feature representations (i.e., w/ task token in Figure 3). We
will further confirm the necessity of tokenqss in Sec 4.3.

Since there is no frame order information in the encoder,
we need to embed position encoding additionally. Posi-
tion encoding can take two forms: sinusoidal inputs and
trainable embeddings. We add position encoding E,,; €
R(T+2)xD to the token sequence (i.e., element-wise addi-
tion) to retain positional information:

Xo = F+ Epos (1)

In this way, positional information can be kept despite the
orderless self-attention.

Multi-head self-attention (MSA) is the core compo-
nent of the Transformer. Intuitively, the idea behind self-
attention is that each token can interact with other tokens
and can learn to gather useful semantic information more ef-
fectively, which is very suitable for capturing long-range de-
pendencies. We compute the dot products of the query with
all keys and apply a softmax function to obtain the weights
on the values. Generally, the formula for self-attention is
defined as:

X' = Norm(Xp) )

Attention(Qy; Ky Vi) = soft (QiKiT>V 3)
ention(Q;; K;; V;) = softmax f
Vdy

H; = Attention(Q;; Ki; Vi) (4)

where Q; = X'W{, K; = X'WFand V; = X'W are lin-
ear layers applied on input sequence, and W¢, W¥ WV ¢

l

R ﬁ Note that queries, keys, and values are all vec-
tors, and Njeqq is the number of heads. %k is a scaling
factor, and dj, is typically set to D. The scaling factor can
make the training more stable and accelerate convergence.
Subsequently, the outputs of heads Hy, Ho, ..., Hy,,,,, are
concatenated and feed into a linear layer. The formula is as
follows:

IA{ = Stack (HlaH27 "'7Hthad)Wd S R(T+2)><D (5)

where W is a linear projection. Multi-head self-attention
allows the encoder to focus on multiple different patterns,
which is beneficial to improve the robustness and capacity
of the encoder.

Subsequently, it is followed by a two-layered feed-
forward network (FFN) with GELU [19] activations. Mean-
while, layernorm [ 1] and residual connections [ 8] are also
applied. The final multiple formulas can be expressed as:

H = MSA(Norm(Xy)) (6)

m'y = H + Xo (7)
my, = FFN (Norm(m/,,_1)) +m/pn_1 (8)
m’, = MSA(Norm(my,_1)) + mp_1 9)

where n = 1,2,..., N, N is the number of encoding lay-
ers and my € R(T+2)*D denotes the final output feature
representations of the encoder. For the convenience of ex-
planation, we use mi2**" € RP to signify the output repre-
sentation of the encoder corresponding to the task token.

3.2.2 Decoder

When a person is watching a movie, he will not only re-
member the past, but also make predictions about what will
happen in the near future [3]. Consequently, the decoder of
OadTR makes use of the observation of past information to
predict the actions that will occur in the near future, so as to
better learn more discriminative features.

Prediction query Q; € RY’ ,i=1,2,..., ¢, is also learn-
able, where D’ is the number of query channels. The dif-
ference with the original Transformer [48] is that our de-
coder decodes the ¢, prediction queries in parallel at each
decoding layer. The decoder is allowed to utilize semantic
information from the encoder through the encoder-decoder
cross-attention mechanism.

Here, we use Q; € RD/,Z' =1,2,...,{4 to represent the
sequence output after the decoder.

3.2.3 Training

In OadTR, we mainly use the encoder to identify the cur-
rent frame chunk fj, and the decoder to predict the coming
future. At the same time, the prediction results are used as
auxiliary information to better recognize the action.

For the classification task of the current frame chunk,
we first concatenate the task-related features in the encoder
with the pooled predicted features in the decoder. Then the
resulting features go through a full connection layer and a
softmax operation for action classification:

Q = Avg-pool(Q1, Qz, -, Qs,) (10)
po = softmax(Concat[mig*e", @]W() 11

where W, represents full connection layer parameters for
classification, and py € RE+1,

In addition to the estimated current action, OadTR also
outputs predicted features for the next ¢4 time steps. Since
future information is available during offline training, in or-
der to ensure that a good feature expression is learned, we
also conduct supervised training on future prediction fea-
tures:

P = softmax(Q;W.),i = 1,2, ... 4y (12)
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Method ‘ Reference Input ‘ mAP (%)
CNN [10] ECCV’16 22.7
LSTM [41] CVPR’18 23.8
ED [16] BMVC’17 Sensors 27.4
TRN [54] ICCV’19 29.2
OadTR - 29.8

Table 1: Comparison between our OadTR and other state-
of-the-art online action detection methods on the HDD [41]
dataset in terms of mAP (%).

Method ‘ Reference ‘ Input ‘ mcAP (%)
RED [16] BMVC’17 79.2
TRN [54] ICCV’19 83.7
IDN [15] CVPR"20 TSN-Anet 84.7
0OadTR - 854
"IDN[I5] | CVPR20 | eniv.. ... | 861
0adTR ) TSN-Kinetics 872
Table 2: Comparison between our OadTR and other

state-of-the-art online action detection methods on the
TVSeries [10] dataset in terms of mcAP (%). Note that we
use the same two-stream features for fair comparison.

Method Reference Setting mAP (%)
CNN [47] ICLR’15 34.7
CNN [46] NIPS’ 14 36.2
LRCN [13] CVPR’15 Offline 39.3
MultiLSTM [56] ICV’18 41.3
CDC [43] CVPR’17 444
RED [16] BMVC’17 453
TRN [54] ICCV’'19 Online 47.2
IDN [15] CVPR’20 (TSN-Anet) 50.0
OadTR - 58.3
IDN[I5] © ~ ~ T [ CVPR20 | ~ Online | 603
OadTR - (TSN-Kinetics) 65.2

Table 3: Performance comparison on the THUMOS 14 [22]
dataset in terms of mAP (%). OadTR, IDN [15], TRN [54],
and RED [16] use the same two-stream features.

Therefore, the final joint training loss is:
La

Loss = CE(po,y0) + A Y _CE(p:,5:)  (13)
i=1
where CE is the cross entropy loss, y; is the actual action
category for the next step ¢ and A is a balance coefficient,
set to 0.5 in the experiment.

4. Experiments

In this section, we evaluate the proposed OadTR on three
benchmark datasets: HDD [41], TVSeries [10], and THU-
MOS14 [22] for online action detection. First, we compare
the results between our OadTR and start-of-the-art methods.
Then, we conduct more detailed ablation studies to evaluate
the effectiveness of OadTR.

4.1. Dataset and setup

HDD. This dataset includes approximately 104 hours of
driving actions collected in the San Francisco Bay Area, and
there are a total of 11 action categories. The dataset consists

of 137 sections and provides various non-visual sensors col-
lected by the vehicle’s controller area network bus. We use
100 sections for training and 37 sections for evaluation.
TVSeries. TVSeries contains six popular TV series, about
150 minutes for each, about 16 hours in total. The dataset
totally includes 30 actions, and every action occurs at least
50 times in the dataset. TVSeries contains many uncon-
strained perspectives and a wide variety of backgrounds.
THUMOS14. This dataset has 1010 validation videos and
1574 testing videos with 20 classes. For the online action
detection task, there are 200 validation videos and 213 test-
ing videos labeled with temporal annotations. As in the pre-
vious works [15, 54], we train our model on the validation
set and evaluate on the test set.

Implementation details. For feature extractor, following
previous works [15, 16, 54], we adopt the two-stream net-
work [49] (3072-dimensions) pre-trained on ActivityNet
v1.3 [4] (TSN-Anet), where spatial and temporal sub-
networks adopt ResNet-200 [18] and BN-Inception [21]
separately. For fair quantitative comparison with [15],
we also conduct experiments with the same TSN fea-
tures (4096-dimensions) pre-trained on Kinetics [6] (TSN-
Kinetics).

In terms of training, we implement our proposed OadTR
in PyTorch and conduct all experiments with Nvidia V100
graphics cards. Without those bells and whistles, we use
Adam [25] for optimization, the batch size is set to 128, the
learning rate is set to 0.0001, and weight decay is 0.0005.
Unless otherwise specified, we set T' to 31 for HDD dataset
and 63 for both TVSeries and THUMOS 14 dataset.

Evaluation metric. To evaluate the performance of
0adTR, following the previous methods [10, 15, 16,54], we
report per-frame mean Average Precision (mAP) on HDD
and THUMOS14 dataset, and per-frame mean calibrated
Average Precision [10] (mcAP) on TVSeries. The mAP is
widely used, which needs to average the average precision
(AP) of each action class. The calibrated Average Precision
(cAP) can be formulated as:

TP

cPrec = TP+ EE r (14)
_ Y_pcPrec(k) x I(k)
CAP = s7p (15)

where I (k) is equal to 1 if frame K is a TP. The coefficient
w 18 the ratio between negative and positive frames.

4.2. Compared with state-of-the-art methods

To evaluate the performance, we compare our proposed

OadTR and other state-of-the-art methods [15, 16, 54] on
HDD, TVSeries, and THUMOS14 datasets. Noted that we
use the same network parameter settings (e.g., N = 3,

M = b5) when comparing different datasets. As illus-
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Portion of action
Method 0%-10% 10%-20% 20%-30% 30%-40% 40%-50% 50%-60% 60%-70% 70%-80% 80%-90% 90%-100%
CNN [10] 61.0 61.0 61.2 61.1 61.2 61.2 61.3 61.5 61.4 61.5
LSTM [10] 63.3 64.5 64.5 64.3 65.0 64.7 64.4 64.4 64.4 64.3
FV-SVM [10] 67.0 68.4 69.9 71.3 73.0 74.0 75.0 75.4 76.5 76.8
TRN [54] 78.8 79.6 80.4 81.0 81.6 81.9 82.3 82.7 82.9 83.3
IDN [15] 80.6 81.1 81.9 82.3 82.6 82.8 82.6 82.9 83.0 83.9
0OadTR 79.5 83.9 86.4 85.4 86.4 87.9 87.3 87.3 85.9 84.6
"IDN (Kinetics) [15] | 817 ~ ~ 819  ~ ~ 831 ~ 89 ~ 82 ~ 82 ~ 82 =~ 8.0 83 = 8.6
0OadTR (Kinetics) 81.2 84.9 87.4 87.7 88.2 89.9 88.9 88.8 87.6 86.7

Table 4: Performance comparison for different portions of actions on the TVSeries dataset in terms of mcAP (%). Note that
the corresponding portions of actions are only used to compute mcAP after detecting current actions on all frame chunks in

an online manner.

# Method mAP (%) # Method mcAP (%) # Method mAP (%)
LSTM [41] 23.8 LSTM [15] 80.9 LSTM [15] 46.3
Encoder-only (Baseline) 28.7 Encoder-only (Baseline) 84.8 Encoder-only (Baseline) 55.8
Baseline + TT 29.0 Baseline + TT 85.0 Baseline + TT 56.9
Baseline + DE 29.2 Baseline + DE 85.1 Baseline + DE 56.7
Baseline + TT + DE (OadTR) 29.8 Baseline + TT + DE (OadTR) 854 Baseline + TT + DE (OadTR) 58.3

(a) Ablation study of the effectiveness of
our proposed components on the HDD

(b) Ablation study of the effectiveness of
our proposed components on the TV Series

(c) Ablation study of the effectiveness of
our proposed components on the THU-

dataset. dataset. MOS14 dataset.

# Position encoding | mAP (%) # Head mAP (%) # Dim mAP (%) # Generalization m(c)AP (%)

No Position 28.8 Head =1 57.4 Dim = 128 56.4 Vanilla Transformer (HDD) 29.8

Fixed Position 29.3 Head =2 57.7 Dim =256 57.1 Sparse Transformer (HDD) 29.6

Learned Position 29.8 Head =4 58.3 Dim =512 57.3 Vanilla Transformer (TVSeries) 85.4
Head =8 57.7 Dim = 1024 58.3 Sparse Transformer (TV Series) 85.0
Head = 16 57.8 Dim = 1536 57.7 Vanilla Transformer (THUMOS14) 58.3
Head =32 57.4 Dim = 2048 57.6 Sparse Transformer (THUMOS14) 58.1

(d) Ablation study of different (e) Ablation study of (f) Ablation study of the (g) Generalization evalation. The results indicate
position encoding manners on the head number on the query dimensions on the the generalization and superiority of our model

the HDD dataset. THUMOS 14 dataset.

THUMOS 14 dataset.

design.

Table 5: Ablation studies.

trated in Table 1, our OadTR achieves state-of-the-art per-
formance and improves mAP from 29.2% to 29.8% on the
HDD dataset, demonstrating that our OadTR can achieve
an overall performance promotion of online action detec-
tion. It could be attributed to that our OadTR introduces
Transformers to obtain global historical information and the
future context efficiently.

Table 2 compares recent online action detection meth-
ods on the TVSeries dataset. To ensure a fair comparison,
we adopt the same video features. The results signify that
our OadTR can achieve good performance in the case of
different video feature inputs. The reason for the better re-
sults of TSN-Kinetics may be that the categories of Kinetics
are more diverse and contains much common generalizable
presentations.

As shown in Table 3, we also conduct a comprehensive
comparison on the THUMOS14 dataset. Specifically, per-
formance is improved by 8.3% (50.0% vs. 58.3% ) under
TSN-Anet feature input and 4.9% (60.3% vs. 65.2% ) un-
der TSN-Kinetics feature input. The above results indicate
the effectiveness of our proposed OadTR.

When only a fraction of each action is considered, we
compared OadTR with previous methods. Table 4 shows
that our OadTR significantly outperforms state-of-the-art
methods [15, 54] at most time stages. Specifically, this in-
dicates the superiority of OadTR in recognizing actions at
early stages as well as all stages. It could be attributed to
the ability of our OadTR to efficiently model temporal de-
pendencies.

4.3. Ablation studies

To facilitate our analysis of the model, we take the en-
coder without task token as our baseline. We further con-
duct detailed ablation studies to evaluate different compo-
nents of the proposed framework, include the following:
Encoder-only (Baseline): We adopt the encoder in the orig-
inal Transformer [48] and apply it directly to the online ac-
tion detection task. Note that compared with our OadTR’s
encoder, the task token is missing, and the classifier is ap-
plied to the last output representation (i.e., corresponding to
fo) of the Transformer’s encoder.

Baseline + TT: We incorporate Baseline and the task token
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Decoder steps (£4)

Dataset Task 2 4 8 16
HDD Online Action Detection 28.3 28.4 29.8 28.8

Action Anticipation 272 262 230 169
TVSeries Online Action Detection 85.3 85.2 854 852

Action Anticipation 81.8 804 77.8 743

Online Action Detection 57.4 57.8 58.3 58.0
THUMOS14 Action Anticipation 53.5 51.0 459 40.7

Table 6: Online action detection and action anticipation
results of our proposed OadTR with decoder steps {3 =
2,4,8,16.

Encoding layers (N, M = 5)

Method Dataset 1 2 3 4 5 6
HDD 28.8 29.0 29.8 29.5 284 284
OadTR TVSeries 854 85,5 854 853 848 85.0

THUMOS14 575 569 583 574 569 56.6

(a) Online action detection results of different encoding layers.
Note that we fixed M = 5 for simplicity.

Decoding layers (M, N = 3)

Method | Dataset 1 2 3 4 5 6
HDD 27.7 28.0 29.5 29.5 29.8 28.6
OadTR TVSeries 848 84.8 852 854 854 855

THUMOS14 57.4 579 569 572 583 56.6

(b) Online action detection results of different decoding layers.
Note that we fixed N = 3 for simplicity.

Table 7: Ablation study of encoding layers [V and decoding
layers M using TSN-Anet features.

(TT) together, which is our OadTR’s encoder. This method
adds a task-related token, and we use ablation experiments
to illustrate the necessity of this token.

Baseline + DE: In this method, we add the decoder (DE) of
the prediction task in OadTR to the baseline method to test
and verify the function of the decoder.

Baseline + TT + DE (OadTR): This is the method we pro-
pose in this paper, adding task token and decoder to the
baseline method together.

In Table 5 (a-c), we report the performance comparison
experiments of the above methods on HDD, TV Series, and
THUMOS 14 datasets. The results of Baseline + TT demon-
strate that using the additional task token is helpful for ac-
tion classification. The results of Baseline + DE explain the
remarkable power of the auxiliary prediction task. When
combined with the above two improvements, our OadTR
(i.e., Baseline + TT + DE) achieves the best results on three
datasets. Specifically, when compared with the baseline
method, our OadTR approach has improved by 1.1%, 0.6%,
and 2.5% on HDD, TVSeries, and THUMOS14 datasets,
respectively.

Importance of position encoding. To demonstrate the im-
portance of using position encoding, we organized some
comparative experiments. As shown in Table 5 (d), position
encoding is necessary, and the learnable position encoding
achieves the best result.

Effect of head number. Multi-head self-attention is a criti-

cal component. Here we study the impact of different head
numbers of the decoder on performance. We can find that
a optimal result is achieved when the number of heads is 4
(Table 5 (e)).

Effect of query dimensions. We conduct experiments to
examine how different query dimensions affect online ac-
tion detection performance. As shown in Tabel 5 (f), when
the number of feature dimensions is relatively small (e.g.,
128), the model capacity is limited and the performance is
relatively poor. As the number of feature dimensions grad-
ually increases, the model capacity increases, and perfor-
mance improves. However, when it exceeds a specific value
(e.g., 1024), over-fitting may occur.

Generalizability. To further investigate the generaliza-
tion of our OadTR for many Transformer variants, we re-
place the standard Transformer [48] with Sparse Trans-
former [00]. As illustrated in Table 5 (g), we can find that
the performance is still good after replacement. Generally,
Sparse Transformer can reduce computational consumption
but leads to a little performance degradation.

Effect of decoder step count. The step size used to predict
the future also has an impact on performance. In Table 6,
we compare four step sizes (i.e., 2, 4, 8, and 16), and the
results denote that steps = 8 achieves the best results on
the three datasets.

Effect of encoding layers N and decoding layers M. To
further study the impact of different encoding and decod-
ing layers on performance, additional experiments are con-
ducted, and results are shown in Table 7. In most cases,
the best results are achieved when N = 3, M = 5. How-
ever, there will also be fluctuations, such as on the TVSeries
dataset.

Feature aggregation type. We also conduct experiments
to explore different types that aggregate future and current
features. We can notice that Avg-pool is better than Max-
pool (Table 9). The reason may be that the predicted deep
semantic representations of different time steps all have a
specific promotion effect on the current classification. Si-
multaneously, the results of w/o encoder also indicate the
necessity of the encoder to learn discriminative features.

4.4. Action anticipation

In our proposed OadTR, we introduce predicted future
information to identify current actions. To evince the ac-
curacy of our predictions, we also conduct experiments to
compare with other methods. Table 8 demonstrates that
OadTR outperforms the current state-of-the-art method [54]
by a large margin. In particular, the performance of OadTR
is 2.1% higher than TRN [54] on the TVSeries dataset and
7.0% higher on THUMOS14. Furthermore, the perfor-
mance of OadTR can also be further improved when pre-
training on Kinetics.
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Time predicted into the future (seconds)
Method 0.25s 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s Avg
ED [16] 78.5 78.0 76.3 74.6 73.7 72.7 71.7 71.0 74.5
RED [16] 79.2 78.7 717.1 75.5 74.2 73.0 72.0 71.2 75.1
TRN [54] 79.9 78.4 77.1 75.9 74.9 73.9 73.0 72.3 75.7
OadTR 81.9 80.6 79.4 78.2 77.1 76.0 75.2 74.3 71.8
" 0adTR (Kinetics) | 84.1 ~ 82.6 8.3 801 789 ~ 777 ~ 767 757 7191
(a) Results on the TVSeries dataset in terms of mcAP (%).
Time predicted into the future (seconds)
Method 0.25s 0.5s 0.75s 1.0s 1.25s 1.5s 1.75s 2.0s Avg
ED [16] 43.8 40.9 38.7 36.8 34.6 339 32.5 31.6 36.6
RED [16] 453 42.1 39.6 375 35.8 344 332 32.1 375
TRN [54] 45.1 424 40.7 39.1 377 36.4 353 343 38.9
OadTR 50.2 49.3 48.1 46.8 453 43.9 424 41.1 459
" OadTR (Kinetics) | 59.8 585 566 546 526 505 ~ 486 468 535

(b) Results on the THUMOS 14 dataset in terms of mAP (%).
Table 8: Action anticipation results of our OadTR compared to state-of-the-art methods using the same two-stream features.

Settings
Method | Dataset Max-pool Avg-pool w/o encoder
HDD 29.2 29.8 26.1
OadTR | TVSeries 85.1 854 80.8
THUMOS 14 57.9 58.3 535

Table 9: Comparison of different fusion methods and the
necessity of the encoder feature encoding.

IDN
Figure 4: The t-SNE visualization of the classification

OadTR

embedding logits. Different colors correspond to differ-
ent action categories from the THUMOS14 dataset. The
mutual color correspondences include: CliffDiving,

, PoleVault and . Better view in colored PDF.

4.5. Qualitative evaluation

For better analysis, we visualize the classification results
in Figure 4. Obviously, by visualizing all the test samples of
the four action categories, we can observe that our OadTR
has better separability compared with the current state-of-
the-art IDN [15]. Further, we show OadTR’s multi-head at-
tention visualization results in Figure 5, which indicates the
importance of the multi-head design to learn more complex
and comprehensive relations between different neighboring
frame chunks.

5. Conclusion

In this paper, we have proposed a new online action de-
tection framework built upon Transformers, termed OadTR.

o=Wr lrc)
Head 1 o o
o 25
o.25
0.0
Head 3 HEE:
=Drink)
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m
Head 3 - & o3

Figure 5: Attention visualization maps. They indicate how
much attention is paid to parts of the input streaming video.

In contrast to existing RNN based methods that process
the sequence one by one recursively and hard to be opti-
mized, we aim to design a direct end-to-end parallel net-
work. OadTR can recognize current actions by encoding
historical information and predicting future context simul-
taneously. Extensive experiments are conducted and verify
the effectiveness of OadTR. Particularly, OadTR achieves
higher training and inference speeds than current RNN
based approaches, and obtains significantly better perfor-
mance compared to the state-of-the-art methods. In the fu-
ture, we will extend our OadTR model to more tasks such
as action recognition, spatio-temporal action detection, efc.
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