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Abstract

Accurately describing and detecting 2D and 3D key-
points is crucial to establishing correspondences across im-
ages and point clouds. Despite a plethora of learning-
based 2D or 3D local feature descriptors and detectors
having been proposed, the derivation of a shared descrip-
tor and joint keypoint detector that directly matches pix-
els and points remains under-explored by the community.
This work takes the initiative to establish fine-grained cor-
respondences between 2D images and 3D point clouds.
In order to directly match pixels and points, a dual fully-
convolutional framework is presented that maps 2D and 3D
inputs into a shared latent representation space to simul-
taneously describe and detect keypoints. Furthermore, an
ultra-wide reception mechanism and a novel loss function
are designed to mitigate the intrinsic information variations
between pixel and point local regions. Extensive experimen-
tal results demonstrate that our framework shows competi-
tive performance in fine-grained matching between images
and point clouds and achieves state-of-the-art results for the
task of indoor visual localization. Our source code is avail-
able at https://github.com/BingCS/P2-Net.

1. Introduction

Establishing accurate pixel- and point- level matches
across images and point clouds, respectively, is a funda-
mental computer vision task that is crucial for a multitude
of applications, such as Simultaneous Localization And
Mapping [34], Structure-from-Motion [44], pose estimation
[35], 3D reconstruction [25], and visual localization [42].

A typical pipeline of most methods is to first recover the
3D structure given an image sequence [24, 41], and subse-
quently perform matching between pixels and points based
on 2D to 3D reprojected features. Such features will be ho-
mogeneous as points in the reconstructed 3D model inherit
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Figure 1: Examples of 2D-3D matches obtained by the
P2-Net. The proposed method can directly establish corre-
spondences across images and point clouds by the jointly
learned feature description and detection.

the descriptors from corresponding pixels of the image se-
quence. However, this two-step procedure requires accu-
rate 3D reconstruction, which is not always feasible to be
achieved, e.g., under challenging illumination or large view-
point changes. More critically, this approach treats RGB
images as first-class citizens, and discounts the equivalence
of sensors capable of directly capturing 3D point clouds,
e.g., LIDAR, imaging RADAR and depth cameras. These
factors motivate us to consider a unified approach to pixel
and point matching, where an open question can be posed:
how to directly establish correspondences between pixels in
2D images and points in 3D point clouds, and vice-versa?
This is inherently challenging as 2D images capture scene
appearance, whereas 3D point clouds encode structure.

To this end, we formulate a new task of direct 2D pixel
and 3D point matching (cf. Fig. 1) without any auxiliary
steps (e.g., reconstruction). This task is undoubtedly chal-
lenging for existing conventional and learning-based ap-
proaches, which fail to bridge the gap between 2D and 3D
representations as separately extracted 2D and 3D local fea-
tures are distinct and do not share a common embedding.
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Some recent works [20, 39] attempt to associate descriptors
from different domains by mapping 2D and 3D inputs onto
a shared latent space. However, they construct patch-wise
descriptors, leading to coarse-grained matching results only.

Even if fine-grained and accurate descriptors can be suc-
cessfully obtained, direct pixel and point correspondences
are still very difficult to establish. First, 2D and 3D key-
points are extracted based on distinct strategies - what leads
to a good match in 2D (e.g., flat, visually distinct area such
as a poster), does not necessarily correspond to what makes
a strong match in 3D (e.g., a poorly illuminated corner of
the room). Additionally, because of the sparsity of point
clouds, the local feature for a point can be mapped to (or
from) many pixel features taken from pixels that are spa-
tially close to the point, increasing the matching ambiguity.
Second, due to the large discrepancy between 2D and 3D
data property and inflexible optimization manner, existing
descriptor loss formulations [18, 31, 2] for either 2D or 3D
local feature description do not guarantee convergence in
this new context. Moreover, their detector designs only fo-
cus on penalizing the confounding descriptors from a safe
region, incurring sub-optimal matching results in practice.

To tackle all these challenges, we propose a dual fully-
convolutional framework, named Pixel and Point Network
(P2-Net), which is able to simultaneously achieve feature
description and detection between 2D and 3D views. Fur-
thermore, an ultra-wide reception mechanism is equipped
when extracting descriptors to tackle the intrinsic informa-
tion variations between pixel and point local regions. To
optimize the network, we then design P2-Loss, consisting
of two components: 1) a circle-guided descriptor loss in
combination with a full sampling strategy, allowing to ro-
bustly learn distinctive descriptors by optimizing positive
and negative matches in a self-paced manner; 2) a batch-
hard detector loss, which additionally seeks for the re-
peatability of detections by encouraging the difference be-
tween the positive and globally hardest negative matches.
Overall, our contributions are as follows:

1. We propose a joint learning framework with an ultra-
wide reception mechanism for simultaneous 2D and
3D local features description and detection to achieve
direct pixel and point matching.

2. We design a novel loss, composed of a circle-guided
descriptor loss and a batch-hard detector loss, to ro-
bustly learn distinctive descriptors whilst explicitly
guiding accurate detections for both pixels and points.

3. We conduct extensive experiments and ablation stud-
ies, demonstrating the practicability of the proposed
framework and the generalization ability of the new
loss, and providing the intuition behind our choices.

To the best of our knowledge, this is the first joint learn-
ing framework to handle 2D and 3D local features descrip-
tion and detection for direct pixel and point matching.

2. Related Work
2.1. 2D Local Features Description and Detection

Previous learning-based methods in 2D domain sim-
ply replaced the descriptor [50, 51, 30, 19, 38] or detec-
tor [43, 59, 4] with a learnable alternative. Recently, ap-
proaches to joint description and detection of 2D local fea-
tures have attracted increased attention. LIFT [57] is the
first, fully learning-based architecture to achieve this by re-
building the main processing steps of SIFT with neural net-
works. Inspired by LIFT, SuperPoint [16] additionally tack-
les keypoint detection as a supervised task with labelled
synthetic data before description, followed by being ex-
tended to an unsupervised version [13]. Differently, DELF
[36] and LF-Net [37] exploit an attention mechanism and
an asymmetric gradient back-propagation scheme, respec-
tively, to enable unsupervised learning. Unlike previous
research that separately learns the descriptor and detector,
D2-Net [18] designs a joint optimization framework based
on non-maximal-suppression. To further encourage key-
points to be reliable and repeatable, R2D2 [40] proposes
a listwise ranking loss based on differentiable average pre-
cision. Meanwhile, deformable convolution is introduced
in ASLFeat [31] for the same purpose.

2.2. 3D Local Features Description and Detection
Most prior work in the 3D domain has focused on the

learning of descriptors. Instead of directly processing 3D
data, early attempts [46, 60] instead extract a representa-
tion from multi-view images for 3D keypoint description.
In contrast, 3DMatch [58] and PerfectMatch [23] construct
descriptors by converting 3D patches into a voxel grid of
truncated distance function values and smoothed density
value representations, respectively. Ppf-Net and its exten-
sion [14, 15] directly operate on unordered point sets to de-
scribe 3D keypoints. However, such methods require point
cloud patches as input, resulting in an efficiency problem.
This constraint severely limits its practicability, especially
when fine-grained applications are needed. Besides these,
dense feature description with a fully convolutional setting
is proposed in FCGF [12]. For the detector learning, USIP
[27] utilizes a probabilistic chamfer loss to detect and local-
ize keypoints in an unsupervised manner. Motivated by this,
3DFeat-Net [56] is the first attempt for 3D keypoints joint
description and detection on point patches, which is then
improved by D3Feat [2] to process full-frame point sets.
2.3. 2D-3D Local Features Description

Unlike the well-researched area of learning descriptors
in either a single 2D or 3D domain, little attention has
been paid on the learning of 2D-3D feature description.
A 2D-3D descriptor is generated for object-level retrieval
task by directly binding the hand-crafted 3D descriptor to
a learned image descriptor [29]. Similarly, 3DTNet [54]
learns distinctive 3D descriptors for 3D patches with auxil-
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Figure 2: An overview of the proposed P2-Net framework. Our architecture is a two-branch fully convolutional network
for the simultaneous 2D and 3D feature description (A) and keypoint detection (B). Such a network is jointly optimized with
a descriptor loss Ldesc enforcing the similarity of corresponding representations as well as a detector loss Ldet encouraging
higher detection scores for discriminative correspondences.

iary 2D features extracted from 2D patches. Recently, both
2D3DMatch-Net [20] and LCD [39] propose to learn de-
scriptors that allow direct matching across 2D and 3D local
patches for retrieval problems. However, all these meth-
ods are patch-based, which are not applicable in real usages
requiring high-resolution outputs. In contrast, we aim to ex-
tract per-point descriptors and detect keypoint locations in
a single forward pass for efficient usage.

3. Pixel and Point Matching
In this section, we firstly introduce the architecture of

the proposed P2-Net in detail, including joint feature de-
scription and keypoint detection [18]. Next, we present our
designed P2-Loss, composed of a circle-guided descriptor
loss and a batch-hard detector loss. Finally, implementation
details for both training and testing stages are provided.

3.1. P2-Net Architecture
Feature Description. The first step of our method is to
obtain a 3D feature map F I ∈ RH×W×C from image I
and a 2D feature map FP ∈ RZ×C from point cloud P ,
where H×W is the spatial resolution of the image, Z is the
number of points and C is the dimension of the descriptors.
Thus, the descriptor d associated with the pixelX and point
Y can be denoted as dX and dY , respectively,

dX = F IX , dY = FPY , d ∈ RC . (1)

After being L2-normalized to unit length, these descriptors
can be readily compared between images and point clouds
to establish correspondences using the cosine similarity as
a metric. During training, the descriptors will be optimized
so that a pixel and point pair in the scene produces similar
descriptors, even when the image or point cloud contains
strong changes or noise. For clarity, we still use d to repre-
sent its normalized form in the following text.

B. Ultra-wide ReceptionA. Information Variation

Figure 3: To mitigate the intrinsic information variation (A)
between 2D and 3D local regions, an ultra-wide reception
mechanism (B) with progressively doubling dilation values,
up to 16, is applied in the 2D branch of feature description.

As shown in Fig. 2.A, two fully convolutional networks
are exploited to separately perform feature description on
images and point clouds. However, properly associating
pixels with points through descriptors is non-trivial because
of the intrinsic variation in information density between 2D
and 3D local regions (Fig. 3.A). Specifically, the local infor-
mation extracted for a point is typically larger than a pixel
due to the sparsity of point clouds. To address the issue of
association on asymmetrical embeddings and better capture
the local geometry information, we design the 2D extrac-
tor based on an ultra-wide reception mechanism, shown in
Fig. 3.B. For computational efficiency, such a mechanism is
achieved through nine 3× 3 convolutional layers with pro-
gressively doubling dilation values, from 1 to 16. Finally,
a H×W×128 feature map is generated and then its corre-
sponding H×W×1 detection map can be computed. In a
similar vein, we modify KPconv [49] to output a 128D de-
scriptor and a score for each point in the input point cloud.

Keypoint Detection. As illustrated in Fig. 2.B, we de-
termine keypoints by performing a peakiness-softened non-
local-maximum suppression [31] across the spatial and
channel dimensions of a feature map. Given a feature map

16006



X

Y
RP

I P
RI

Yn

Y*

Figure 4: Definitions of pixel-point pairs. In a pair of
image I and point cloud P , X↔Y is a correspondence
(pixel X∈I and point Y ∈P ). From the image perspective,
X↔Yn demonstrates a negative match where Yn lies out-
sideRP (the neighborhood of Y ), denoting a negative point
of X . X↔Y ∗ represents the hardest negative match and
Y ∗ is the hardest negative point of X in the whole point
cloud space. The negative and the hardest negative matches
in the perspective of a point cloud are the opposite.

F ∈ RT×C , where T=H×W for images and T=Z for
point clouds. The requirement for a pixel or point ρt to be
detected by a non-local-maximum suppression is

ρt is a detection ⇐⇒ F ct is a local max in F cRρt
with c = argmax

k
F kt ,

(2)

in which F ct represents the feature response at the position
t and channel c. Rρt denotes the neighborhood of ρt.

During training, the above procedure is softened to be
trainable and density-invariant using peakiness [40]:

αct = softplus(F ct −
1

|Rρt |
∑

ρt′∈Rρt

F ct′) ,

βct = softplus(F ct −
1

C

∑
k

F kt ) ,

(3)

where α and β are the spatial-wise and channel-wise detec-
tion scores, respectively. The final keypoint detection score
of ρt that takes both criteria into account is:

ξρt = max
c

(αctβ
c
t ) . (4)

During testing, pixels or points with top scores will be se-
lected as keypoints for matching.

3.2. P2-Loss Formulation
To make the proposed network describe and detect 2D

and 3D keypoints in a single forward pass, we design a
novel loss that jointly optimizes the description and detec-
tion objectives for both pixels and points, named P2-Loss:

LP2 = Ldesc + λLdet . (5)
It consists of a circle-guided descriptor loss Ldesc that ex-
pects distinctive descriptors to avoid incorrect match as-
signments, a batch-hard detector loss Ldet that encourages
keypoints to be repeatable under viewpoint or illumination
changes, and a balance factor λ between them.

Circle-guided Descriptor Loss. To learn distinctive de-
scriptors, various optimization strategies like hard-triplet
and hard-contrastive losses [18, 31, 2] have been widely
used in 2D or 3D domain. However, these formulations

only focus on hard negative matches, and experimentally
we found that they did not converge in our 2D-3D context.
Inspired by the Circle Loss [47] using weighting factors and
the circular decision boundary, we design a circle-guided
descriptor loss with a full sampling strategy instead of only
considering the hard negative matches, which allows self-
paced optimization and avoids convergence ambiguity.

Given a correspondence X↔Y between image I and
point cloud P in Fig. 4, we can define a positive cosine
similarity sp for corresponding descriptors dX and dY as:

sp = dXdY =
∑
c

dcXd
c
Y , (6)

From the view of image, we fully sample negative pairs
X↔Yn and define a negative cosine similarity set sIn for
all negative descriptor pairs dX and dY 1,··· ,j

n
as:

sIn =
{
dXdY 1

n
, · · · , dXdY jn

}
, s.t. ‖Y jn − Y ‖2>RP , (7)

where Y jn denotes a negative sample of pixel X lying out-
side RP which is the safe radius of point Y . The circle-
guided descriptor loss of the image part is then derived as:

LIdesc =
1

|C|
∑
i

log
[
1 + eη

i
p(1−m−s

i
p)

∑
j

eη
j
n(s

I
j
i
n −m)

]
, (8)

in which C is the set of correspondences between image
I and point cloud P used for optimization in each step,

ηip=ζ(1+m-sip) and ηjn=ζ(sI
j
i
n +m) represent weighting fac-

tors with a scale factor ζ that expect sip>1-m and sI
j
i
n <m

in a self-paced manner. With that said, the margin m con-

trols the radius of the circular decision boundary at (sI
j
i
n -

0)2+(sip-1)2=2m2. The reverse loss LPdesc for point cloud
P is calculated in the same way for a total circle-guided
descriptor loss Ldesc = 1

2 (L
I
desc + LPdesc).

Batch-hard Detector Loss. In the case of detection, key-
points should be sufficiently distinctive to be repeatably de-
tected. Achieving this objective, however, faces two prac-
tical challenges: 1) the ultra-wide reception mechanism in
feature description may leave spatially close pixels possess-
ing very similar descriptors; 2) the full sampling strategy
in our descriptor loss is only effective to negative matches
outside a safe region. Both of them will reduce the distinc-
tiveness of keypoints and thus cause erroneous assignments.
To this end, we design a batch-hard detector loss with ap-
plying hardest-in-batch strategy [33] on the whole image or
point cloud space but not on a specific area, encouraging
optimal distinctiveness and repeatability.

Similar to the hardest negative match X↔Y ∗ in Fig. 4,
Y ∗i is determined by argmaxY li 6=Yi(dY li dXi) and denotes
the hardest negative point of Xi in the whole point cloud
space. In extension to X∗i , we can thus define the hard-
est negative similarity sin∗ as max(dXidY ∗i , dYidX∗i ). Ad-
ditionally, ξXi and ξYi are the soft detection scores at pixel
Xi and point Yi, respectively. With above definitions, we
then formualte the batch-hard detector loss as:
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Ldet =
∑
i∈C

ξXiξYi∑
q∈C

ξXqξYq
(sin∗ − sip), (9)

Intuitively, such a detector loss seeks for higher detection
scores for more discriminative correspondences. Specifi-
cally, Ldet expects ξXi and ξYi to be high if sin∗<s

i
p. More-

over, the more discriminative correspondences, with a lower
value of (sin∗ − sip), are encouraged to possess higher rela-
tive detection scores and vice-versa.

3.3. Implementation Details

Training. We implement our approach with PyTorch. Dur-
ing the training, we use a batch size of 1 and all image-
point cloud pairs with more than 128 pixel-point correspon-
dences. For the sake of computational efficiency, |C|=128
correspondences are randomly sampled from each pair to
optimize in each step. We set the balance factor λ=1, the
margin m=0.2, scale factor ζ=10, image neighbour RI=12
pixels, point cloud neighbour RP=0.015 m. Finally, we
train the network with the ADAM solver and use an initial
learning rate of 10−4 with exponential decay1.

Testing. During testing, we exploit the hard selection strat-
egy demonstrated in Eq. 2 rather than soft selection to mask
detections that are spatially too close. Additionally, the
SIFT-like edge elimination is applied for image keypoints
detection. For evaluation, we select the top-K keypoints
corresponding to the detection scores calculated in Eq. 4.

4. Experiments
We first demonstrate the effectiveness of proposed P2-

Net on the direct pixel and point matching task, and then
evaluate it on a downstream task, namely visual localiza-
tion. Furthermore, we examine the generalization ability
of our designed P2-Loss in single 2D and 3D domains, by
comparing with the state-of-the-art methods in both image
matching and point cloud registration tasks respectively. Fi-
nally, we investigate the effect of the loss selection.

4.1. Image and Point Cloud Matching

To achieve fine-grained image and point cloud match-
ing, a dataset of image and point cloud pairs annotated with
pixel and point correspondences is required. To the best of
our knowledge, there is no publicly available dataset with
such correspondence labels. To address this issue, we an-
notated the 2D-3D correspondence labels1 on existing 3D
datasets containing RGB-D scans. Specifically, the 2D-
3D correspondences of our dataset are generated on the
7Scenes dataset [21, 45], consisting of seven indoor scenes
with 46 RGB-D sequences recorded under various camera
motion status and different conditions (e.g., motion blur),
perceptual aliasing and textureless features in the room.

1Please refer to the supplementary material for more details.

These conditions are widely known to be challenging for
both image and point cloud matching.

4.1.1 Evaluation on Feature Matching
We adopt the same data splitting strategy for the 7Scenes
dataset as in [21, 45] to prepare the training and testing set.
Specifically, 18 sequences are selected for testing, which
contain partially overlapped image and point cloud pairs,
and the ground-truth transformation matrices.

Evaluation metrics. To comprehensively evaluate the per-
formance of our proposed P2-Net and P2-Loss on fine-
grained image and point cloud matching, five metrics
widely used in previous image or point cloud matching
tasks [31, 18, 3, 27, 58, 17, 2] are adopted: 1) Feature
Matching Recall, the percentage of image and point cloud
pairs with the inlier ratio above a threshold (τ1 = 0.5); 2)
Inlier Ratio, the percentage of correct pixel-point matches
over all possible matches, where a correct match is accepted
if the distance between the pixel and point pair is below a
threshold (τ2 = 4.5cm) under its ground truth transforma-
tion; 3) Keypoint Repeatability, the percentage of repeat-
able keypoints over all detected keypoints, where a key-
point in the image is considered repeatable if its distance
to the nearest keypoint in the point cloud is less than a
threshold (τ3 = 2cm) under the true transformation; 4) Re-
call, the percentage of correct matches over all ground truth
matches; 5) Registration Recall, the percentage of image
and point cloud pairs with the estimated transformation er-
ror smaller than a threshold (RMSE< 5cm)1.

Comparisons on descriptors and networks. To study the
effects of descriptors, we report the results of 1) traditional
SIFT and SIFT3D descriptors; 2) P2-Net trained with the
D2-Net loss (P2[D2 Triplet]) [18] and 3) P2-Net trained
with the D3Feat loss (P2[D3 Contrastive]) [2]. Besides,
to demonstrate the superiority of the 2D branch in P2-Net,
we replace it with 4) the R2D2 network (P2[R2D2]) [40]
and 5) the ASL network (P2[ASL]) [31]. Other training or
testing settings are the same with the proposed architecture
trained with our proposed loss (P2[Full]) for a fair com-
parison. Among them, both P2[R2D2] and P2[Full] adopt
L2-Net-style [50] 2D feature extractors but the latter is im-
proved by our ultra-wide reception mechanism.

As shown in Tab. 1, traditional descriptors fail to be
matched, as hand-designed 2D and 3D descriptors are het-
erogeneous. Both P2[D2 Triplet] and P2[D3 Contrastive]
are not able to guarantee convergence on the pixel-
point matching task. However, when adopting our loss,
P2[R2D2] and P2[ASL] models not only converge but also
present promising performance in most scenes, except the
challenging Stairs scene, due to the intrinsic feature extrac-
tor limitation of R2D2 and ASL. Moreover, the comparison
between P2[R2D2] and P2[Full] also demonstrates the ef-
fectiveness of the ultra-wide reception mechanism. Overall,
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# Scenes Chess Fire Heads Office Pumpkin Kitchen Stairs
Feature Matching Recall

SIFT + SIFT3D Not Match
P2[D2 Triplet] Not Converge
P2[D3 Contrastive] Not Converge
P2[R2D2] 95.1 97.3 100 89.4 91.1 88.7 16.2
P2[ASL] 95.3 96.0 100 34.3 41.6 47.5 11.9
P2[w/o Det] 93.0 97.0 99.1 73.8 61.5 43.8 15.0
P2[Mixed] 92.5 96.0 99.7 74.6 52.2 69.0 15.8
P2[D2 Det] 100 99.7 100 93.6 98.4 94.0 74.3
P2[D3 Det] 99.0 99.7 100 83.8 68.0 78.4 17.8
P2[Rand] 100 99.6 99.8 90.8 83.2 82.5 14.3
P2[Full] 100 100 100 97.3 98.5 96.3 88.8

Registration Recall
P2[R2D2] 81.0 78.5 73.1 79.7 75.6 77.1 60.8
P2[ASL] 70.5 66.0 63.4 52.9 41.6 48.0 38.2
P2[w/o Det] 68.0 64.5 53.8 59.6 48.4 56.1 42.3
P2[Mixed] 72.5 66.5 20.9 59.1 53.2 63.5 25.6
P2[D2 Det] 86.0 75.5 74.2 70.8 80.0 74.3 78.3
P2[D3 Det] 80.5 70.0 81.7 76.3 65.5 70.6 70.9
P2[Rand] 86.5 81.5 82.6 78.9 75.5 77.2 74.3
P2[Full] 87.0 82.4 84.5 83.4 88.7 82.7 82.6

Keypoint Repeatability
P2[R2D2] 36.6 40.3 45.2 33.4 30.3 32.1 33.1
P2[ASL] 18.7 19.2 33.8 13.8 12.9 15.5 11.9
P2[w/o Det] 17.4 17.8 37.0 18.2 16.0 15.7 17.7
P2[Mixed] 23.3 26.6 26.0 30.0 29.9 31.3 24.7
P2[D2 Det] 41.7 39.8 40.6 34.8 32.7 31.6 34.9
P2[D3 Det] 24.9 21.8 38.1 24.5 19.6 23.8 21.8
P2[Rand] 36.1 37.0 46.1 33.5 30.4 32.2 36.1
P2[Full] 50.4 47.1 50.2 38.0 45.2 38.3 48.1

Recall
P2[R2D2] 28.5 26.7 24.7 25.0 24.6 26.4 16.0
P2[ASL] 28.8 26.3 16.5 21.7 21.4 23.8 13.8
P2[w/o Det] 29.1 26.9 23.1 25.3 22.0 23.8 14.4
P2[Mixed] 30.1 26.2 25.2 24.5 24.1 26.9 15.1
P2[D2 Det] 30.3 28.9 26.1 27.0 29.6 28.7 17.7
P2[D3 Det] 31.8 31.1 26.4 26.6 25.6 27.5 17.1
P2[Rand] 31.4 30.8 25.7 29.5 28.0 30.6 17.6
P2[Full] 32.7 33.7 26.6 30.6 29.6 32.3 20.1

Inlier Ratio
P2[R2D2] 65.5 66.5 69.8 54.0 54.5 55.3 38.5
P2[ASL] 55.9 60.8 64.9 44.7 45.7 47.6 34.2
P2[w/o Det] 52.7 56.3 71.0 46.1 47.3 49.9 36.2
P2[Mixed] 51.5 55.2 67.4 52.1 50.1 56.7 35.1
P2[D2 Det] 68.2 72.2 74.9 58.0 61.4 59.3 42.9
P2[D3 Det] 61.1 64.6 75.4 51.3 47.6 51.8 37.9
P2[Rand] 58.5 61.4 76.2 53.2 50.0 53.4 40.4
P2[Full] 73.9 76.0 77.4 60.3 60.8 65.2 45.2

Table 1: Comparisons on the 7Scenes dataset [21, 45].
Evaluation metrics are reported within given thresholds.

our P2[Full] performs consistently better regarding all eval-
uation metrics, outperforming all competitive methods by a
large margin on all scenes.

Comparisons on detectors. In order to demonstrate
the importance of jointly learning the detector and de-
scriptor, we report the results of P2-Net trained with our
circle-guided descriptor loss and :1) without a detector but
with randomly sampled keypoints during inference (P2[w/o
Det]); 2) without a detector but with conventional SIFT and
SIFT3D keypoints (P2[Mixed]); 3) with the original D2-
Net detector (P2[D2 Det]) [18]; 4) with the D3Feat detector
(P2[D3 Det]) [2]; 5) with our batch-hard detector loss but
using randomly sampled keypoints for testing (P2[Rand])

to indicate the superiority of our proposed detector.
As can be seen from Tab. 1, when a detector is not jointly

trained with entire model, P2[w/o Det] shows the worst
performance on all evaluation metrics and scenes. Such
indicators are slightly improved by P2[Mixed] after intro-
ducing traditional detectors. Nevertheless, when the pro-
posed detector is used, P2[Rand] achieves better results than
P2[Mixed]. These results conclusively indicate that a joint
learning with detector is also advantageous to strengthen-
ing the descriptor learning itself. Similar improvements
can also be observed in both P2[D2 Det] and P2[D3 Det].
Clearly, our P2[Full] is able to maintain a competitive
matching quality in terms of all evaluation metrics, if our
loss is fully enabled. It is worth mentioning that, partic-
ularly in the scene of Stairs, P2[Full] is the only method
that achieves outstanding matching performance on all met-
rics. In contrast, most of the other competing methods fail
due to the highly repetitive texture in this challenging sce-
nario. It indicates that the keypoints are robustly detected
and matched even under challenging condition, which is a
desired property for reliable keypoints to possess2.

Qualitative results. Fig. 1 shows the top-1000 de-
tected keypoints for images and point clouds from different
scenes. Detected pixels from images (left, green) and de-
tected points from point cloud (right, red) are displayed on
Chess and Stairs. For clarity, we randomly highlight some
of good matches (blue, orange) to enable better demonstra-
tion of the correspondence relations. As can be seen, by
our proposed descriptors, such detected pixels and points
are directly and robustly associated, which is essential for
real-world downstream applications (e.g., cross-domain in-
formation retrieval and localization tasks). Moreover, as our
network is jointly trained with the detector, the association
is able to bypass regions that cannot be accurately matched,
such as the repetitive patterns. More specifically, our de-
tectors mainly focus on the geometrically meaningful areas
(e.g., object corners and edges) rather than the feature-less
regions (e.g., floors, screens and tabletops), and thus show
better consistency over environmental changes2.

4.1.2 Application on Visual Localization
To further illustrate the practical usage of P2-Net, we per-
form a downstream task of visual localization [52, 28] on
the 7Scenes dataset. The key localization challenge here
lies in the fine-grained matching between pixels and points
under significant motion blur, perceptual aliasing and tex-
tureless patterns. We evaluate our method against the 2D
feature matching based [48, 55] and scene coordinate re-
gression pipelines [6, 32, 5, 7, 55, 28]. Note that existing
baselines are only able to localize queried images in 3D
maps, while our method is not limited by this but can local-
ize reverse queries from 3D to 2D as well. The following

2Please refer to the supplementary material for additional results.
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Figure 5: Comparisons on visual localization. Percentage
of estimated camera poses falling within (5cm, 5°).

experiments are conducted to show the uniqueness of our
method: 1) recovering the camera pose of a query image in
a given 3D map (P2[3D Map]) and 2) recovering the pose
of a query point cloud in a given 2D map (P2[2D Map]).
Evaluation protocols. We follow the same evaluation
pipeline used in [42, 48, 55]. This pipeline typically
takes input as query images and a 3D point cloud submap
(e.g., retrieved by NetVLAD [1]), and utilizes traditional
hand-crafted or pre-trained deep descriptors to establish the
matches between pixels and points. Such matches are then
taken as the input of PnP with RANSAC [5] to recover the
final camera pose. Here, we adopt the same setting in [55]
to construct the 2D or 3D submaps that cover a range up
to 49.6 cm. Recall that our goal is to evaluate the effects
of matching quality for visual localization, we therefore
assume the submap has been retrieved and focus more on
comparing the distinctiveness of keypoints. During testing,
we select the top 10, 000 detected pixels and points to gen-
erate matches for camera pose estimation.
Results. We follow [48, 55] to evaluate models on 1

10
testing frames. The localization accuracy is measured in
terms of percentage of predicted poses falling within the
threshold of (5cm, 5°). As shown in Fig. 5, when match-
ing 2D features against 3D map, our P2[3D Map] (68.8%),
outperforms InLoc [48] and SAMatch [55] by 2.6% and
5%, respectively, where the conventional feature matching
approach are used to localize query images. Moreover,
our P2[3D Map] presents better results than most of the
scene coordinated based methods such as RF1 [6], RF2[32],
DSAC [5] and SANet [55]. DSAC∗ [8] and HSC-Net [28]
still show better performance than ours, because they are
trained for individual scene specifically and use individual
models for testing. In contrast, we directly use the single
model trained from P2[Full] in Sec. 4.1.1, which is scene
agnostic. In the unique application scenario that local-
izes 3D queries in a 2D map, our P2[2D Map] also shows
promising performance, reaching 65.1%. However, other
baselines are not capable of realizing this inverse matching.

4.2. Matching under Single Domains

SP D2-Net [18] ASLFeat [31]
[16] Triplet Ours Contra Ours

Illum
HEstimation 0.877 0.818 0.857 0.919 0.915
Precision 0.629 0.650 0.664 0.774 0.787
Recall 0.565 0.564 0.560 0.696 0.726

View
HEstimation 0.651 0.553 0.581 0.542 0.598
Precision 0.595 0.564 0.576 0.708 0.740
Recall 0.446 0.382 0.413 0.583 0.625

Table 2: Comparisons on HPatches [3]. HEstimation, Pre-
cision and Recall are calculated at the threshold of 3 pixels.
The best score among methods is underlined and the better
one between losses is in bold.

In this experiment, we demonstrate how our novel pro-
posed P2-Loss formulation can greatly improve the perfor-
mance of state-of-the-art 2D and 3D matching networks.

4.2.1 Image Matching
In the image matching experiment, we use the HPatches
dataset [3], which has been widely adopted to evaluate the
quality of image matching [33, 16, 40, 30, 51, 38, 53]. Fol-
lowing D2-Net [18] and ASLFeat [31], we exclude 8 high-
resolution sequences, leaving 52 and 56 sequences with illu-
mination or viewpoint variations, respectively. For a precise
reproduction, we directly use the open source code of two
state-of-the-art joint description and detection of local fea-
tures methods, ASLFeat and D2-Net, replacing their losses
with ours. SuperPoint (SP) [16] is also a powerful approach
to image matching. However, it resorts to interest point pre-
training and self-labelling that need synthetic shapes and
homographic adaptation, which are very difficult to be di-
rectly adopted with our loss. Despite this, we still report
the 2D matching results by SuperPoint in Tab. 2 to better
present the enhancements on other baselines. Particularly,
we keep the same evaluation settings as the original papers
for both training and testing.

Results on the HPatches. Here, three metrics [38] are
used: 1) Homography estimation (HEstimation), the per-
centage of correct homography estimation between an im-
age pair; 2) Precision, the ratio of correct matches over pos-
sible matches; 3) Recall, the percentage of correct predicted
matches over all ground truth matches. As illustrated in Tab.
2, when using our loss, clear improvements (up to 3.9%)
under illumination variations can be seen in almost all met-
rics. The only exception happens for D2-Net on Recall and
ASLFeat on HEstimation where our loss is only negligibly
inferior. On the other side, the performance gain from our
method can be observed on all metrics under view varia-
tions. This gain ranges from 1.2% to 5.6%. Our proposed
optimization strategy shows more significant improvements
under view changes than illumination changes.

4.2.2 Point Cloud Registration

In terms of 3D domain, we use the 3DMatch [58], a popu-
lar indoor dataset for point cloud matching and registration
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FCGF [12] D3Feat [2] D3 Ours
Reg FMR IR Reg FMR IR Reg FMR Inlier

Kitchen 0.93

\ \

0.97 0.97 0.34 0.98 0.99 0.46
Home 1 0.91 0.90 0.99 0.45 0.92 1.00 0.59
Home 2 0.71 0.72 0.91 0.43 0.73 0.93 0.55
Hotel 1 0.91 0.95 0.98 0.39 0.98 1.00 0.53
Hotel 2 0.87 0.87 0.95 0.37 0.91 0.97 0.49
Hotel 3 0.69 0.80 0.96 0.47 0.81 1.00 0.56
StudyRoom 0.75 0.83 0.95 0.37 0.86 0.96 0.56
MIT Lab 0.80 0.69 0.92 0.42 0.84 0.97 0.54
Average 0.82 0.95 0.54 0.84 0.95 0.41 0.88 0.98 0.54

Table 3: Comparisons on 3DMatch [58]. Reg, FMR and
IR are evaluated at the threshold of 0.2 m, 5% and 0.1 m.

[26, 15, 23, 12, 11, 22, 10]. We follow the same evaluation
protocols in [58] to prepare the training and testing data, 54
scenes for training and the remaining 8 scenes for testing.
As D3Feat [2] is the only work which jointly detects and
describes 3D local features, we replace its loss with ours
for comparison. To better demonstrate the improvements,
the results from FCGF [12] are also included.
Results on the 3DMatch. We report the performance on
three evaluation metrics: 1) Registration Recall (Reg), 2)
Inlier Ratio (IR), and 3) Feature Matching Recall (FMR).
As illustrated in Tab. 3, when our P2-Loss is adopted
(D3 Ours), a 4% and a 3% improvements (compared with
D3Feat) can be seen on Reg and FMR, respectively. In con-
trast, there is only 2% and 0% respective difference between
FCGF and D3Feat. In particular, as for Inlier Ratio, our loss
demonstrates better robustness, outperforming D3Feat by
13%, comparable to FCGF. Overall, P2-Loss consistently
achieves the best performance in terms of all metrics.

4.3. The Impact of Descriptor Loss
Finally, we come to analyse the impacts of loss choices

on homogeneous (2D↔2D or 3D↔3D) and heterogeneous
(2D↔3D) feature matching. From the detector loss formu-
lation in Eq. 9, we can see that its optimization tightly de-
pends on the descriptor. Therefore, we conduct a compre-
hensive study on three predominant metric learning losses
for descriptor optimization and aim to answer: why is the
circle-guided descriptor loss best suited for feature match-
ing? To this end, we track the difference between the
positive similarity dp and the most negative similarity dn∗
(max(dn)) with various loss formulations and architectures.

Fig. 6 (left) shows that, in single/homogeneous 2D or
3D domains, both D2-Net and D3Feat can gradually learn
distinctive descriptors. D2-Net consistently ensures con-
vergence, regardless of the choice of loss, while D3Feat
fails when hard-triplet loss is selected. This is consistent
with the conclusion in [2]. In the cross-domain image and
point cloud matching (Fig. 6 (right), we compare differ-
ent losses and 2D feature extractors. This overwhelmingly
demonstrates that neither hard-triplet nor hard-contrastive
loss can converge in any framework (ASL, R2D2 or P2-

Figure 6: The difference between the positive similarity dp
and the most negative similarity dn∗ over time with different
networks and losses. Left: single-domain matching; Right:
cross-domain matching.

Net). Both triplet and contrastive losses are inflexible, be-
cause the penalty strength for each similarity is restricted to
be equal. Moreover, their decision boundaries are parallel to
dp=dn, which causes ambiguous convergence [9, 33]. How-
ever, our loss enables all architectures to converge, showing
promising trends towards learning distinctive descriptors.
Thanks to the introduction of circular decision boundary,
the proposed descriptor loss assigns different gradients to
the similarities, promoting more robust convergence [47].

Interestingly, we can observe that the distinctiveness of
descriptors initially is inverted for heterogeneous matching,
unlike homogeneous matching. As pixel and point descrip-
tors are initially disparate, their similarity can be extremely
low for both positive and negative matches in the initial
phase3. In such case, the Abs(gradients), ranging between
[0, 1], with respect to dp and dn almost approach 1 and 0
[47], respectively. Because of the sharp gradient difference,
the loss minimization in network training will tend to over-
emphasize the optimization of dp while sacrificing the de-
scriptor distinctiveness. As dp increases, our loss reduces its
gradient and thus enforces a gradually strengthened penalty
on dn, encouraging the distinctiveness between dp and dn.

5. Conclusions
In this work, we propose P2-Net, a dual and fully-

convolutional framework in combination with an ultra-wide
reception mechanism to jointly describe and detect 2D and
3D local features for direct matching between pixels and
points. Moreover, a novel loss function, P2-Loss that con-
sists of a circle-guided descriptor loss and a batch-hard de-
tector loss, is designed to explicitly guide the network to
learn distinctive descriptors and detect repeatable keypoints
for both pixels and points. Extensive experiments on pixel
and point matching, visual localization, image matching
and point cloud registration not only show the effectiveness
and practicability of our P2-Net but also demonstrate the
generalization ability and superiority of our P2-Loss.

3Please refer to the supplementary material for more analysis.
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