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Abstract

The backbone of traditional CNN classifier is generally
considered as a feature extractor, followed by a linear layer
which performs the classification. We propose a novel loss
function, termed as CAM-loss, to constrain the embedded
feature maps with the class activation maps (CAMs) which
indicate the spatially discriminative regions of an image for
particular categories. CAM-loss drives the backbone to ex-
press the features of target category and suppress the fea-
tures of non-target categories or background, so as to ob-
tain more discriminative feature representations. It can be
simply applied in any CNN architecture with neglectable
additional parameters and calculations. Experimental re-
sults show that CAM-loss is applicable to a variety of net-
work structures and can be combined with mainstream reg-
ularization methods to improve the performance of image
classification. The strong generalization ability of CAM-
loss is validated in the transfer learning and few shot learn-
ing tasks. Based on CAM-loss, we also propose a novel
CAAM-CAM matching knowledge distillation method. This
method directly uses the CAM generated by the teacher net-
work to supervise the CAAM generated by the student net-
work, which effectively improves the accuracy and conver-
gence rate of the student network.

1. Introduction
In the past few years, convolutional neural networks

(CNNs) have achieved excellent performance in many vi-
sual classification tasks. To handle the increasingly com-
plex data, CNNs have continuously been improved with
deeper structures (AlexNet [22], VGGNet [32], ResNet
[14], ResNext [46], DenseNet [18]). However, deep net-
works are prone to overfitting while they get stronger learn-
ing ability. Many researchers have proposed effective reg-
ularization solutions, such as Dropout [33], Weight Decay
[10], Stochastic Depth [19], Mixup [54], Shakedrop [47],
Cutmix [51]. An alternative solution is to design differ-
ent loss functions to obtain more distinguishing feature rep-
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Figure 1. Some examples to illustrate our motivation. A ResNet-
50 model trained on ImageNet is adopted. “GT” represents the
ground truth label. “CE” represents cross entropy loss. “ours” rep-
resents CAM-loss. Black bounding boxes show main differences
between (b) and (c), while white ones show main differences be-
tween (c) and (d).

resentations, which increase intra-class compactness and
inter-class separability. Inspired by such idea, contrastive
loss [12], triplet loss [30], center loss [45] are proposed to
bring in additional constraints on the basis of cross entropy
loss. Unfortunately, they usually dramatically increase the
computational cost. L-Softmax [26] and SM-Softmax [25]
are proposed to modify the original softmax function math-
ematically, leading to potentially larger angular separabil-
ity between feature vectors. Implicit semantic data aug-
mentation (ISDA) loss [41] is proposed to optimize the up-
per bound of expected cross-entropy loss. However, when
adopting the above loss functions, an input image is repre-
sented by a one-dimensional feature vector, which collapses
the spatial information.

In this paper, we propose to construct a novel loss func-
tion by leveraging the class activation maps (CAMs [56])
with rich spatial information. CAM indicates the spatial
discriminative regions to identify a particular category. It
is easily obtained by computing a weighted sum of the fea-
ture maps of the last convolutional layer. In fact, we can
also obtain a class-agnostic activation map (CAAM [2]) by
computing the sum of the feature maps directly, which in-
dicates the spatial distribution of the embedded features. To
describe our motivation visually, in Figure 1 we show some
validation images misclassified by a pre-trained ResNet-
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50 [14] model with cross entropy loss on ImageNet [29].
The CAMs of target categories, CAAMs and output labels
are shown in columns (b), (c), and (e), respectively. A vi-
sual conclusion is that CAAMs generally show larger ac-
tivated areas and richer features than CAMs of target cate-
gories. Unfortunately, the redundant feature representations
(black bounding box areas in column (c)) result in the con-
fidence scores of non-target categories (red labels in col-
umn (e)) exceeding those of target categories (green labels
in column (e)), which lead to misclassification. For exam-
ple, the expression of body makes the model misidentify
an ox as a black bear, and the expression of ears and mane
makes the model misidentify a horse as a dog. Intuitively, if
we constrain CAAMs closer to CAMs of target categories,
features of the target categories will be expressed well and
those of non-target categories will be suppressed simulta-
neously. This effectively enforces intra-class compactness
and inter-class separability.

Based on the above inspiration, we construct a new loss
function, termed as CAM-loss, by minimizing the distance
between the CAAM and the CAM of target category for
each training image. CAM-loss drives the backbone to learn
more discriminative feature representations from a spatial
perspective. We train another ResNet-50 model with CAM-
loss, and show CAAMs and output labels of the same im-
ages in Figure 1 (d) and (f). It shows that CAAMs pro-
duced by CAM-loss are usually cleaner than those produced
by cross entropy loss (comparing column (c) with column
(d)). Some features of non-target categories are suppressed
(white bounding box areas in column (d)), which greatly
improves the accuracy of labels (comparing column (e) with
column (f)). In fact, extensive experiments show that CAM-
loss effectively improves the performances of various clas-
sification models.

As an independent loss module, CAM-loss can also be
combined with the mainstream regularization methods to
improve their performances. Furthermore, we verify the
strong generalization ability of CAM-loss in transfer learn-
ing and few shot learning tasks. CAM-loss particularly
boosts the baseline method by 7.04% (1-shot) and 4.75%
(5-shot) on CUB [38], 2.78% (1-shot) and 1.68% (5-shot)
on Mini-ImageNet [37] in the setting of few shot learning.
This is attributed to the key role of CAM-loss in reducing
the negative effect of image background.

In the traditional teacher-student knowledge distillation
framework, the existing methods all use a certain type of
teacher knowledge to supervise the same type of student
knowledge, such as soft target [15], hints [28], attention
map [52], relationship between samples [27] or layers [49].
Inspired by CAM-loss, we propose a different idea to match
different types of knowledge between teacher and student,
that is, to directly supervise the CAAMs generated by the
student network with the CAMs generated by the teacher

network. We call it CAAM-CAM matching (CCM) knowl-
edge distillation. The experimental results show that CCM
can effectively improve the accuracy and convergence rate
of the student network.

The main contributions of our work are:
• We propose a novel loss function CAM-loss from

the perspective of spatial information. It can effec-
tively improve the classification performance of vari-
ous CNN models with neglectable additional param-
eters and calculations, and easily be combined with
the mainstream regularization methods to achieve the
state-of-the-art on CIFAR-100 and ImageNet.

• CAM-loss shows strong generalization capability in
transfer learning and few shot learning tasks. In par-
ticular, CAM-loss significantly improves the perfor-
mance of few shot image classification.

• We propose a novel knowledge distillation method
named CAAM-CAM matching, which matches differ-
ent types of knowledge between teacher (CAMs) and
student (CAAMs), and improves the accuracy and con-
vergence rate of the student network simultaneously.

2. Related work

2.1. Class Activation Map

Generating class activation maps (CAMs [56]) with
CNN classification models plays an important role in com-
puter vision. Grad-CAM [31] and Grad-CAM++ [3] gen-
eralize CAM [56], so that CAMs can be obtained in any
CNN-based classification models. The CAM technique de-
rived from the classification network has been widely used
for other weakly supervised visual tasks, such as localiza-
tion [2, 48], detection [39, 43, 55], segmentation [1, 23, 44].

In image classification tasks, CAM is usually used as a
visualization technique, but few researchers treat it as some-
thing that can be fed back into training [8, 11, 34]. [8] in-
troduced a complicated multi-branch structure consisting
of an attention mechanism, an attention branch (based on
CAM), and a perception branch. [11] used dual image in-
put and two-branch structure to do the attention consistency
(based on CAM). These two methods rely on complex net-
work structures and result in additional computation cost.
In contrast, CAM-loss directly introduces the distance con-
straint between CAAM and CAM, both of which are gen-
erated in the normal training process of the classification
model. Our method is very clean, direct, low-cost but ef-
fective. [34] proposed to suppress the features of negative
categories by minimizing the CAMs of top-k negative cat-
egories or constraining them with a uniform spatial distri-
bution. Compared with [34], CAM-loss suppresses more
extensive non-target regions such as the background. Fur-
thermore, because the CAM of the target category and those
of the non-target categories may overlap in some regions,
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CAM-loss can better avoid the risk of simultaneously sup-
pressing the features of the target category.

2.2. Loss function

The cross entropy loss is widely used in CNNs due to
its simplicity and probabilistic interpretation. Despite its
popularity, it does not explicitly encourage the intra-class
compactness and inter-class separability. One solution route
is to add an additional loss term to assist the cross en-
tropy loss. The contrastive loss [12] was proposed to si-
multaneously minimize the distances between positive im-
age pairs and enlarge the distances between negative image
pairs. Similarly, the triplet loss [30] was proposed to ap-
ply a similar strategy to image triplets rather than image
pairs. The center loss [45] was proposed to minimize the
euclidean distance between the feature vector and the corre-
sponding class centroid. A major drawback of these losses
is the expensive calculation on image pairs or triplets ex-
plosion, class centroids update. Another solution route is
to modify the softmax cross entropy loss. L-Softmax [26],
SM-Softmax [25] and AM-Softmax [40] were proposed to
introduce some margin parameters into the softmax func-
tion. ISDA [41] was proposed to optimize the upper bound
of expected cross-entropy loss. However, in these methods,
images are represented by one-dimensional feature vectors,
which do not include any spatial information.

Different from the previous methods, CAM-loss utilizes
the spatial information of self-generated CAMs to constrain
the feature maps, which drives the backbone of CNN to
learn more spatially discriminative feature representations.
It has notable visual interpretability, and requires little addi-
tional computation. These advantages make it suitable for a
wide range of application scenarios.

2.3. Knowledge distillation

A vanilla knowledge distillation (KD [15]) proposed to
transfer some knowledge of a strong capacity teacher model
to a compact student model by minimizing the Kullback-
Leibler divergence between the soft targets of two mod-
els. Since then, there have been works exploring variants
of knowledge distillation. Fitnets [28] proposed to trans-
fer the knowledge using not only final outputs but also
intermediate ones. AT [52] proposed an attention-based
method to match the activation-based and gradient-based
spatial attention maps. FSP [49] proposed to compute the
Gram matrix of features across layers for knowledge trans-
fer. CCKD [27] proposed to transfer the correlation be-
tween instances. Existing methods all use a certain type
of teacher knowledge to supervise the same type of student
knowledge. Different from them, we first propose a new
idea to match different types of knowledge between teacher
and student, which can effectively improve the accuracy and
convergence rate of the student network simultaneously.

3. Method
In this section, we first formally define and describe the

proposed CAM-loss, then analyze the choice of the hy-
per parameters, finally introduce and explain CAAM-CAM
matching knowledge distillation.

3.1. Definition of CAM-loss

Based on the procedure of generating CAMs in [56], we
present how to get the CAM, CAAM, and CAM-loss in a
CNN-based architecture as shown in Figure 2. Note that
we can also use the generalized methods Grad-CAM [31]
or Grad-CAM++ [3] to replace the method of CAM [56].
The only difference is that, due to the calculation of gradi-
ents, Grad-CAM [31] or Grad-CAM++ [3] will increase the
computational cost. In the paper, the method of CAM [56]
is chosen for the convenience of description and reduction
of experiment cost. The formal description is shown below.

For a given image, the last convolutional layer outputs
some units of feature map. Let fk(x, y) represents the acti-
vation of unit k at spatial location (x, y). Then, for unit k
of height H and width W , the result of performing global
average pooling, Fk = 1

H×W

∑
x,y fk(x, y). Thus, for a

given class i, the input to the softmax, zi =
∑

k w
i
kFk,

where wi
k is the weight corresponding to class i for unit k.

Essentially, wi
k indicates the importance of Fk for class i.

Finally the output of the softmax for class i, pi is given by
e(zi)∑
j e(zj)

. By plugging Fk = 1
H×W

∑
x,y fk(x, y) into the

class score zi, we obtain

zi =
1

H ×W

∑
k

wi
k

∑
x,y

fk(x, y)

=
1

H ×W

∑
x,y

∑
k

wi
kfk(x, y).

(1)

We define CAMi as the class activation map for class i,
where each spatial element is given by

CAMi(x, y) =
∑
k

wi
kfk(x, y). (2)

Thus, zi = 1
H×W

∑
x,y CAMi(x, y), where CAMi(x, y)

directly indicates the importance of the activation at spatial
location (x, y) leading to the image belonging to class i.

Furthermore, we define CAAM as the class-agnostic ac-
tivation map for the input image. Each spatial element of
CAAM is given by

CAAM(x, y) =
∑
k

fk(x, y). (3)

To drive CAAM close to CAMi, we define Lcam to mea-
sure the distance between CAAM and CAMi. After the
same min-max normalization of CAAM and CAMi, we get
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Figure 2. How to get the CAM, CAAM and CAM-loss in a CNN framework. CAM is a weighted sum of the feature maps of the last
convolutional layer. CAAM is the sum of the feature maps directly. CAM-loss is the combination of Lcam and Lce

CAAM
′

and CAM
′

i, and then use any pixel space distance
to measure Lcam. In this paper, we simply choose l1 dis-
tance (l2 could be used as well). So, the formal expression
of Lcam is given by

Lcam =
1

H ×W

∑
x,y

∥∥∥CAAM
′
(x, y)−CAM

′
i(x, y)

∥∥∥
l1

. (4)

Of course, the cross entropy (CE) loss Lce is still necessary
and defined as follow:

Lce = −log
e(zi)∑
j e

(zj)
. (5)

When updating parameters of backbone, the two loss terms
should be well combined as follow

CAM-loss = αLcam + Lce, (6)

where α represents the combine ratio.
The training process is summarized in algorithm 1. Note

that Lce is used to update W while CAM-loss is used to up-
date θ. The purpose is to eliminate the correlation between
W and Lcam, which may cause W to approach a all one
vector, resulting in an illusory decline of CAM-loss.

3.2. Choice of α

How to choose α is an open question. Intuitively, CAMs
obtained in the headmost epochs are too discrete to guide
the CAAMs, while CAMs obtained in the latter epochs are
more effective for guiding. So, we consider α as a simple
step function formally described as follows

α =

{
0, x < t
c, x ⩾ t

, (7)

Algorithm 1 Training process with CAM-loss
Initialization: the parameters of backbone θ; the parame-

ters of the following full connection layer W ;
Optimization:
1: for number of training iterations do
2: Calculate CAAM and CAM;
3: Update W with ▽WLce;
4: Update θ with ▽θCAM-loss
5: return optimal parameters θ∗ and W ∗

where t is the jump point (or start epoch). It means that
Lcam will be added to Lce from the tth epoch. We simply set
c = 1 to analyze the relationship between the value of t and
the error rate as shown in the left part of Figure 3. It shows
that the best t is 30. Further analysis, we find that the train
error and test error are approximately less than 50% at the
30th epoch. At the moment, CAMs already have obvious
target category features. In this sense, adaptively setting the
value of t as the epoch when training accuracy exceeds 50%
is a simple but smart choice.

With the position of the start epoch t fixed, we analyze
the effect of the size of c on the error rate as shown in the
right part of Figure 3. It shows that the improvement of er-
ror rate is maximal when c = 3. In fact, the choice of the
optimal α is related to the dataset and the number of train-
ing epoch. α can also be any other function or a kind of
probability distribution. It is difficult to traverse all possi-
bilities, but we can always beat the baseline with a simple
selection strategy as shown in Figure 3.
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Figure 3. Ablation of t (left) and c (right). We conduct an im-
age classification experiment on CIFAR-100 with ResNet-56. The
baseline adopts the cross entropy loss while our method adopts
CAM-loss. The experimental setting can be seen in Sec. 4.2

3.3. CAAM-CAM matching

The classical knowledge distillation (KD [15]) lets a
weak student mimic a strong teacher’s behavior by mini-
mizing the Kullback-Leibler divergence of their soft targets.
The formal description is shown below.

Given a vector of logits z as the output of a deep model
(or the input to the softmax), such that zi is the logit for
the class i, and then the probability pi that the input im-
age belongs to the class i can be estimated by a softmax
function, pi = e(zi)∑

j e(zj)
. A temperature factor τ is in-

troduced to control the importance of each soft target as
pτi = e(zi/τ)∑

j e(zj/τ) , where a higher temperature produces a

softer probability distribution over classes. The distillation
loss term of KD [15] is

Lkd =
1

n

n∑
i=1

τ2(pτtilogpτti − pτtilogpτsi), (8)

where pτsi and pτti represent the soft targets pτi of the stu-
dent and teacher respectively. n is the number of classes.

AT [52] proposes to match the attention maps between
two different models. Using only the CAMs generated by
the last convolutional layer, the distillation loss term of AT
[52] can be simplified as follows

Lat =
∥∥∥CAM

′

si − CAM
′

ti

∥∥∥
l1
, (9)

where CAM
′

si and CAM
′

ti represent the normalized CAM
of the student and teacher to the target class i respectively.
l1 distance is used instead of l2 to keep consistent.

Different from AT [52], CAAM-CAM matching (CCM)
adopts the normalized CAM of the target category gener-
ated by the teacher to constrain the normalized CAAM gen-
erated by the student. The CCM distillation loss term is

Lccm =
∥∥∥CAAM

′

s − CAM
′

ti

∥∥∥
l1
, (10)

where CAAM
′

s represents the normalized CAAM of the
student. It’s easy to find the difference between Eq. (9)

and Eq. (10) is that CAAM
′

s replaces CAM
′

si. Further, Eq.
(10) can be transformed as follows

Lccm =
∥∥∥CAAM

′
s − CAM

′
ti

∥∥∥
l1

⩽
∥∥∥CAAM

′
s − CAM

′
si

∥∥∥
l1

+
∥∥∥CAM

′
si − CAM

′
ti

∥∥∥
l1

= Lcam + Lat.

(11)

Eq. (11) states that Lcam+Lat is the upper bound of Lccm.
In other words, CCM can be approximated as adding CAM-
loss to the student network on the basis of AT [52]. Because
CAM-loss can independently improve the performance of
the student network, it is reasonable to infer that CCM can
obtain better performance than AT [52].

In practical application, like AT [52], CCM also needs
to combine the cross entropy loss term and soft target loss
term to achieve the best performance. The loss function is

L = βLce + (1− β)Lkd + γLccm, (12)

where β and γ represent the combine ratio. Because
the teacher is a well-trained network that generates good
CAMs, the optimization of β and γ can be done directly
by linear search, without considering the influence of epoch
like α in Sec.3.2.

4. Experiments
In this section, we first introduce the datasets in our ex-

periments (Sec. 4.1). Then we evaluate the performance
of CAM-loss in image classification tasks (Sec. 4.2), in-
cluding application to various networks, combination with
mainstream regularization methods, and comparison with
different loss functions. We also verify the generalization
ability of CAM-loss in transfer learning and few shot learn-
ing tasks (Sec. 4.3, 4.4). Finally, we apply CAAM-CAM
matching method to knowledge distillation tasks (Sec. 4.5).

4.1. Datasets

CIFAR-10 and CIFAR-100 [21]. The CIFAR-10 and
CIFAR-100 comprise 32 × 32 pixel RGB images with 10
and 100 classes, containing 50,000 training and 10,000 test
images. We follow the standard augmentation in [17]. That
is, the training images are padded 4 pixels, and then ran-
domly cropped to 32×32 combined with random horizontal
flipping. The original 32× 32 images are used for testing.

ImageNet-1K [5] and Mini-ImageNet [37]. The
ImageNet-1K contains 1.2 million training and 50,000 vali-
dation images of 1000 classes. The Mini-ImageNet consists
of a subset of 100 classes from the ImageNet and contains
600 images for each class. We adopt the same augmenta-
tion strategy as [51] and apply a center cropping in testing.
In the few shot learning task, following [24], we randomly
split Mini-ImageNet [37] dataset into 64 base, 16 valida-
tion, and 20 novel classes.
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CIFAR-100 ImageNet
Model top 1 Model top 1
ResNet-56 [14] 28.80 ResNet-50 [14] 23.68
ResNet-56 [14] + CAM-loss 27.34 ResNet-50 [14] + CAM-loss 22.98
Wide-ResNet-28-10 [53] 18.37 ResNet-101 [14] 22.30
Wide-ResNet-28-10 [53] + CAM-loss 17.49 ResNet-101 [14] + CAM-loss 21.73
ResNext-29, 8×64d [46] 18.01 ResNext-50, 4×32d [46] 22.42
ResNext-29, 8×64d [46] + CAM-loss 17.24 ResNext-50, 4×32d [46] + CAM-loss 21.91
DenseNet-bc-190-40 [18] 17.67 ResNext-101, 8×32d [46] 21.04
DenseNet-bc-190-40 [18] + CAM-loss 16.98 ResNext-101, 8×32d [46] + CAM-loss 20.45

Table 1. Applicability of CAM-loss to different network structures. Top 1 error rate (%) is adopted, and results of CAM-loss are bold-faced.

CIFAR-100 ImageNet
Baseline Model
PyramidNet-200 (alpha=240) [13] top 1 top 5 Baseline Model

ResNet-50 [14] top 1 top 5

CE loss 16.45 3.69 CE loss 23.68 7.05
CAM-loss 15.79 3.28 CAM-loss 22.98 6.52
Cutout [6] 16.53 3.65 Cutout [6] 22.93 6.66
Manifold Mixup [36] 16.14 4.07 Manifold Mixup [36] 22.50 6.21
StochDepth [19] 15.86 3.33 StochDepth [19] 22.46 6.27
DropBlock [9] 15.73 3.26 DropBlock [9] 21.87 5.98
Mixup [54] 15.63 3.99 Mixup [54] 22.58 6.40
Shakedrop [47] 15.08 2.72 - - -
Shakedrop [47] + CAM-loss 14.56 2.56 - - -
Cutmix [51] 14.47 2.97 Cutmix [51] 21.54 5.92
Cutmix [51] + CAM-loss 14.01 2.93 Cutmix [51] + CAM-loss 21.16 5.79
Cutmix + Shakedrop 13.81 2.29 - - -
Cutmix + Shakedrop + CAM-loss 13.49 2.18 - - -

Table 2. Combination with mainstream regularization methods on CIFAR-100 and ImageNet. Top 1 and Top 5 error rate (%) are adopted,
and results of CAM-loss are bold-faced. Baseline results are obtained from [51]

CUB-200-2011 [38] and Stanford Dogs [20]. The bird
dataset contains 5,994 training and 5,794 testing images of
200 classes. The dog dataset contains 12,000 training and
8,580 testing images of 120 classes. For the data augmen-
tation strategy, we rescale the input images to the resolution
of 600× 600, randomly crop a 448× 448 region, and apply
a center cropping in testing. In the few shot learning task,
following [24], we randomly split the bird dataset into 120
base, 30 validation, and 50 novel classes.

4.2. Image Classification

We evaluate the image classification performances
of CAM-loss on three benchmark datasets: CIFAR-10,
CIFAR-100 and ImageNet-1K. On CIFAR datasets, we run
160 epochs with batch size 128, initial learning rate 0.1
and cosine learning rate decay. On ImageNet, we run 120
epochs with batch size 1024, initial learning rate 0.4 (batch
size 512 and learning rate 0.2 for ResNext-101 due to com-
putation limit) and cosine learning rate decay. Specially we
set c = 3 and t = 20 (In fact, due to the robustness of
CAM-loss to hyper parameters, we simply but confidently

adopt the same setting in subsequent experiments).
Apply to various network structures. We per-

form ResNet [14], Wide-ResNet [53], ResNext [46] and
DenseNet [18] keeping all hyper parameters the same as
original papers. Table 1 shows that CAM-loss can be widely
used in a variety of network structures to improve the per-
formances of baselines. Specifically, CAM-loss has brought
0.51-0.70% improvement on ImageNet and 0.69-1.46% im-
provement on CIFAR-100, which are significant under these
large network structures. For further analysis, we focus on
the relationship between the number of epoch and the er-
ror rate as shown in Figure 4. It is observed that the model
trained with CAM-loss achieves higher train error but lower
test error, which proves that CAM-loss has a positive effect
on avoiding overfitting.

Combine with regularization methods. Table 2
shows the evaluation of different regularization methods on
CIFAR-100 and ImageNet following the setup of [51]. We
observe that CAM-loss can be widely combined with the
mainstream regularization methods to improve their perfor-
mances further. Specifically, CAM-loss reduces the top-1
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Figure 4. Error rate vs. epoch with CAM-loss and cross entropy
loss. We conduct an image classification experiment on CIFAR-
100 with a ResNet-56 backbone. The baseline adopts the cross
entropy loss while our method adopts CAM-loss.

error rate of ShakeDrop [47] by 0.52% and CutMix [51]
by 0.46%. Surprisingly, it also reduces the top-1 error rate
of the combination ShakeDrop [47] and CutMix [51] by
0.32%. It means that CAM-loss can further boost the state-
of-the-art regularization methods. There is no conflict be-
tween CAM-loss and most regularization methods, which is
very welcome in practical applications.

Compare with other loss functions. In order to com-
pare CAM-loss with popular loss functions, we conduct
classification experiments with ResNet-110 [14] and Wide-
ResNet-28-10 [53] on CIFAR-10 and CIFAR-100 following
the settings of [42]. Table 3 shows that CAM-loss outper-
forms all of baseline loss functions. In fact, the routes of
CAM-loss and other loss functions are parallel without con-
flict. They can be used together in an appropriate combine
ratio setting. In particular, we compare NegativeCAM [34]
with CAM-loss. ResNet-56 [14] and ResNet-110 [14] are
adopted on CIFAR-100, and ResNet-50 [14] and ResNet-
101 [14] are adopted on ImageNet. We inherit the loss mod-
ule of Negative-CAM [34] according to the official codes
and reproduce the results by utilizing our baseline mod-
els. Table 4 shows that CAM-loss consistently outperforms
NegativeCAM [34], especially on ImageNet, which means
that CAM-loss is more efficient on complex datasets.

CIFAR-10 CIFAR-100Method ResNet-110 WRN-28-10 ResNet-110 WRN-28-10
CE loss 6.76 3.82 27.68 18.53
center loss [45] 6.38 3.76 26.88 18.50
L-softmax [26] 6.46 3.69 27.03 18.48
SM-softmax [25] 6.49 3.71 26.97 18.40
CAM-loss (ours) 6.29 3.49 26.56 17.87

Table 3. Comparison with other loss functions. Top 1 error rate
(%) is adopted. Results of CAM-loss are bold-faced.

Methods CIFAR-100 ImageNet
ResNet-56 ResNet-110 ResNet-50 ResNet-101

CE loss 28.80 27.68 23.68 22.30
NegativeCAM [34] 27.37 26.76 23.32 22.02
CAM-loss 27.34 26.56 22.98 21.73

Table 4. Comparison with NegativeCAM [34] on CIFAR-100 and
ImageNet. Top 1 error rate (%) is adopted. Results of CAM-loss
are bold-faced.

4.3. Transfer learning

We evaluate the generalization ability of CAM-loss un-
der the setting of transfer learning. A ResNet-50 [14] model
pre-trained with CAM-loss on ImageNet-1K [5], and then
finetune it on CUB [38] and Stanford Dogs [20]. Follow-
ing [7, 35], we finetune the pre-trained model on the train-
ing set for 90 epochs with batch size 8 (CUB) and 16 (Stan-
ford Dogs). SGD optimizer is adopted with an initial learn-
ing rate 0.001 and a cosine learning rate decay. We set
the weight decay as 5 × 10−4 and momentum as 0.9. Ta-
ble 5 shows that CAM-loss improves the baseline by 1.1%
and 0.7% on CUB [38] and Stanford Dogs [20]. It con-
firms that CAM-loss has stronger classification capability
on novel dataset compared with the cross entropy loss.

Dataset CE loss CAM-loss
CUB [38] 85.6 86.7
Stanford Dogs [20] 83.9 84.6

Table 5. Accuracies of fine-grained classification tasks under the
setting of transfer learning. Top 1 accuracy (%) is adopted. Results
of CAM-loss are bold-faced.

4.4. Few shot learning

Due to limited data on novel classes, few shot learn-
ing relies heavily on the generalization ability of models
trained on the base classes. The mainstream few shot image
classification methods are evaluated and compared in [4],
in which Baseline++ is verified with the competitive clas-
sification performance and generalization capability. For
simplicity, we add CAM-loss to the Baseline++ method to
evaluate the performance improvements under three sce-
narios: (1) general object recognition, (2) fine-grained im-
age classification, (3) cross-domain adaptation (using Mini-
ImageNet [37] as base classes and the 50 validation and 50
novel classes from CUB [38]). We adopt the same setting
as [4] except for the hyper parameters of CAM-loss.

Table 6 shows that under the standard 5-way 1-shot and
5-shot protocols, CAM-loss averagely boosts Baseline++
by 7.04% and 4.75% on CUB [38], 2.78% and 1.68% on
Mini-ImageNet [37]. The cross-domain result of Base-
line++ is also significantly improved by 2.75%. As far as
we know, our results of few shot classification on CUB [38]
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Method Mini-ImageNet CUB Mini→CUB
1-shot 5-shot 1-shot 5-shot 5-shot

Baseline++ [4] 52.18 75.86 67.08 84.19 65.88
Baseline++ [4] + CAM-loss 54.80 77.54 74.12 88.93 68.63

Table 6. Accuracies of few shot classification tasks. Mini→CUB represents the cross-domain. Results of CAM-loss are bold-faced.

Setup Teacher Student baseline KD [15] AT [52] CCM
(a) WRN-28-4 [53] WRN-16-4 [53] 23.14 21.93 21.77 21.46
(b) WRN-28-4 [53] WRN-28-2 [53] 25.40 23.12 22.82 22.50
(c) WRN-28-4 [53] WRN-16-2 [53] 27.94 26.05 25.85 25.45
(d) WRN-28-4 [53] Resnet-56 [14] 28.80 27.11 26.98 26.48
(e) PyramidNet-200 [13] WRN-28-4 [53] 20.97 20.08 20.22 19.93

Table 7. Performance of various knowledge distillation setups on CIFAR-100. ’WRN’ denotes Wide-ResNet for short. Baseline denotes
the top 1 error rate (%) of the student network. Results of CCM method are bold-faced.

has been very competitive with the state-of-the-art in induc-
tive inference setting.

Why does CAM-loss perform so well in few shot image
classification tasks? [16, 50] has repeatedly confirmed that
the features of background bring great troubles to few shot
image classification. A 5-shot learning example is shown
in Figure 5, where the features of yellow grass and green
grass are misleading. In query set, the lion samples with
yellow grass are misclassified as dog while the dog samples
with green grass are misclassified as lion. CAM-loss is an
effective method to suppress the expression of background
features. That is very helpful to reduce the negative effect
of background in few shot image classification tasks, espe-
cially in the fine-grained few shot image classification.

Support Set Query Set

“Lion”

“African Hunting Dog”

Classified as “Dog”

(due to “yellow grass”)

Classified as “Lion”

(due to “green grass”)

Figure 5. Negative effects of background in few shot image classi-
fication. [50]

4.5. Knowledge distillation

We conduct knowledge distillation experiments on
CIFAR-100 [21], and choose KD [15] and AT [52] as the
baseline methods. For KD [15], we set the hyper param-
eter temperature as 4 and combine ratio of loss terms as
0.5. For AT [52], we choose the best strategy that is to set
(β)lce+(1−β)lkd+γlat as loss function where lat adopts l2
distance, β is set as 0.5 and γ is set as 10. For CCM, we set
β as 0.5, γ as 1 following Eq. (10) and (12). For general-

ity of the experiments, we adpoted various teacher/student
pairs with the same depth (WRN-28-4/WRN-28-2), dif-
ferent depth (WRN-28-4/WRN-16-2, WRN-28-4/WRN-
16-4), different type (WRN-28-4/ResNet-56, PyramidNet-
200/WRN-28-4). Table 7 shows that CCM consistently
outperforms the two baseline methods. Further thinking,
CAM-loss can also be seen as a self-distillation strategy,
that is, the supervision information comes from the network
itself rather than the teacher network.

5. Conclusion

In this paper, we have proposed a novel loss function
CAM-loss to boost the performance of CNN classification
models. Essentially, it constrains the feature maps with
the spatial information from CAMs. A model trained with
CAM-loss is inclined to express the features of target cat-
egory and suppress those of non-target categories, which
is effective to enforce intra-class compactness and inter-
class separability. As an independent loss function, it can
be easily combined with mainstream regularization meth-
ods to improve their performance in image classification
tasks. Strong generalization capability makes it outstanding
in transfer learning and few shot learning tasks. Based on
CAM-loss, we also propose a novel CCM knowledge distil-
lation method, which matches different knowledge between
teacher and student. In future, we will study the applica-
tions of CAM-loss to more generic visual tasks.
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