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Abstract

Graphs play an important role in cross-modal image-text
understanding as they characterize the intrinsic structure
which is robust and crucial for the measurement of cross-
modal similarity. In this work, we propose a Wasserstein
Coupled Graph Learning (WCGL) method to deal with the
cross-modal retrieval task. First, graphs are constructed
according to two input cross-modal samples separately, and
passed through the corresponding graph encoders to ex-
tract robust features. Then, a Wasserstein coupled dictio-
nary, containing multiple pairs of counterpart graph keys
with each key corresponding to one modality, is constructed
for further feature learning. Based on this dictionary, the
input graphs can be transformed into the dictionary space
to facilitate the similarity measurement through a Wasser-
stein Graph Embedding (WGE) process. The WGE could
capture the graph correlation between the input and each
corresponding key through optimal transport, and hence
well characterize the inter-graph structural relationship.
To further achieve discriminant graph learning, we specifi-
cally define a Wasserstein discriminant loss on the coupled
graph keys to make the intra-class (counterpart) keys more
compact and inter-class (non-counterpart) keys more dis-
persed, which further promotes the final cross-modal re-
trieval task. Experimental results demonstrate the effective-
ness and state-of-the-art performance.

1. Introduction

Cross-modal retrieval is a long-standing challenge in
multimedia, and has drawn increasing attention due to its
wide applications which bring great convenience to peo-

*Yun Wang and Tong Zhang have equal contribution.
"The corresponding author.

ple’s daily life. For instance, someone may need to search
for some images that match a piece of text. However, it
would be rather labor-consuming and tedious to manually
browse those massive images on the Internet. For this is-
sue, the cross-modal (e.g. across vision and text) retrieval
technique would effectively accomplish the search of those
specific images meeting the criteria, and hence significantly
improve the work efficiency. Therefore, it’s quite necessary
and meaningful to investigate the cross-modal retrieval.

This work mainly focuses on the retrieval across vision
(videos or images) and text. Currently, some related tasks
have been investigated such as video description [3] and
video/image query and answer (Q & A) [44]. For these
tasks, some methods focused on either learning the appear-
ance features from images or capturing dynamics among
sequential frames/texts first, then bridging images/videos
and texts by measuring their representation similarity. In
this process, sophisticated models with powerful feature
learning ability were employed, including ResNet [13],
gated recurrent unit (GRU) [4], and long-short term mem-
ory (LSTM) [15]. Although notable progress is achieved,
however, the intrinsic structure of each modal, such as the
interaction between entities in images, is not well exploited.

To facilitate the structure modeling in cross-modal tasks,
datasets such as the Real-world Scene Graph dataset [20]
and Moviegraphs [46] were built with annotated graphs of
both vision (videos/images) and text provided. Specifically,
a Graph Wasserstein Correlation analysis (GWCA) [53]
method was proposed on Moviegraphs dataset by integrat-
ing the graph signal filtering with metric learning in Wasser-
stein space (W-space). Although considerable success was
achieved based on the Wasserstein metric (W-metric), there
were still some critical issues to be tackled. On one hand,
GWCA didn’t achieve discriminant learning on graphs as
it only considered the intra-class compactness between the

1813



matched pair of cross-modal graphs. However, for the
cross-modal heterogeneous graphs, considering their inter-
class dispersion is also crucial for the similarity measure-
ment; on the other hand, GWCA had a shallow archi-
tecture that limited the feature learning ability to handle
the graph diversity of different modalities. And it could
be hardly extended to a deep architecture due to the in-
volved computation-consuming singular value decomposi-
tion (SVD). Besides, to achieve discriminant deep learning
on graphs in W-space is rather challenging, which quite dif-
fers from the conventional Wasserstein analysis method [9].
Generally, two critical problems need to be solved: i) High
complexity exists in computing inter-class and intra-class
scatters, e¢.g. the explicit calculation on mean and covari-
ance of graphs are rather difficult in W-metric space; ii)
The minibatch-based processing of deep learning architec-
tures makes it difficult to access the global covariance of all
samples within one class or across different ones.

To tackle all the issues aforementioned, we propose a
deep graph neural network framework named Wasserstein
Coupled Graph Learning (WCGL) for the cross-modal re-
trieval task. For the input graphs from two modalities, a
coupled graph dictionary is constructed as the reference set
to learn discriminative representation while avoiding ex-
plicit statistic computation on the mean and covariance of
graph samples. In the coupled dictionary, two parts of keys
are contained where each key in one part is a graph cor-
responding to one modality while has a counterpart key in
the other part. With the coupled graph dictionary, the input
graphs can be transformed into the dictionary space through
a proposed Wasserstein graph embedding (WGE) process
by calculating the graph correlation with respect to the cor-
responding graph keys. During this process, the coupled
dictionary serves as a bridge to transform the cross-modal
graphs into the succinct Euclidean subspace. Specifically,
the graph correlation is measured in W-space through the
regularized W-metric with optimal transport (OT) matrices.
Based on the W-metric, the Wasserstein graph embedding
would be advantageous in characterizing the graph struc-
tural information, and hence achieves better graph feature
learning. To learn more discriminative features, the cou-
pled graph dictionary is designed to be dynamically up-
dated during training. Specifically, in the constrain of a
maximum Wasserstein discriminant loss (WD-loss), i.e. ra-
tio of inter-class (non-counterpart keys) versus intra-class
(counterpart keys) W-distance, the encoded dictionary keys
are optimized to preserve intra-class compactness and inter-
class dispersion, which would better facilitate the cross-
modal similarity measurement. Finally, we construct a
fully end-to-end training network which contains the graph
encoding, Wasserstein graph embedding, and discriminant
graph learning. We test the WCGL on four cross-modal re-
trieval datasets, including Real-world Scene Graphs [20],

Flickr30K [39], MSCOCO [28], Moviegraphs [46], and the
experimental results demonstrate its effectiveness.
To summarize, the contributions are three-fold:

* We propose a novel Wasserstein Coupled Graph
Learning framework to alleviate the diversity of cross-
modal data. In this framework, a coupled graph dic-
tionary is introduced to project cross-modal data into a
common dictionary space, where the dictionary learn-
ing is performed through W-metric. To the best of our
knowledge, this is the first work that performs the cou-
pled graph dictionary learning on graphs in W-space,
and uses it to deal with the cross-modal retrieval task.

e We propose the discriminant learning on both graphs
and the coupled dictionary to learn better representa-
tion ability, where the WD-loss in Wasserstein space
is specifically imposed on counterpart/non-counterpart
keys in the coupled dictionary.

e We verify the effectiveness of our method and re-
port the state-of-the-art results on the Real-world
Scene Graph [20], Flickr30K [39], MSCOCO [28] and
Moviegraphs [46] datasets.

2. Related Work

In this section, we first review those previous works
about cross-modal understanding, then introduce works re-
lated to graph learning and coupled dictionary learning.

Cross-modal Understanding. Various relevant works
have been proposed to deal with cross-modal learning tasks,
and we mainly review them across videos [7, 31, 36] or
images [26, 27, 17] and text. For those works about video-
text retrieval, Xu [50] obtained a sentence-level vector and a
video vector by aggregating vectorized subject-verb-object
triplets and mean pooling over frame-level features, respec-
tively, and then projected them into a joint space. Yu [52]
utilized LSTM to encode video and text representation, and
then applied a bilinear layer to explore their interactions.
Recently, Vicol et al [46] proposed a new Moviegraphs
dataset for retrieving videos and texts with graphs, which
also shows the effectiveness of graphs to describe the im-
portant structural information in videos and texts. For the
image-text understanding, Chen [3] performed the sentence
generation and image retrieval to find the bi-directional
mapping between images and their textual descriptions.
Li [27] introduced a reasoning model to generate a visual
representation which captures main objects and semantic of
a scene.

Graph Learning. In recent years, graph neural net-
works (GNN5s) are given more attention in the field of ar-
tificial intelligence [34, 16, 19]. Specifically, graph con-
volutional neural networks (GCNNSs) aim to model non-
gridded graph data that are flexible in structures. Inspired
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Figure 1. The architecture of our WCGL. We take the retrieval task across image and text as an example. Three main learning processes
are involved in the WCGL framework: graph encoding, Wasserstein graph embedding, and discriminant graph learning. Given two cross-
modal input samples, i.e. an image and a text sample, two corresponding graphs are first generated. Also, a coupled dictionary containing
two parts of counterpart graph keys is constructed. For these input graphs and graph keys, corresponding graph encoders are constructed
to extract robust feature representation. More details could be found in Section 3.2. Based on the coupled dictionary, Wasserstein graph
embedding is performed to transform the input graphs into the dictionary space (Section 3.3), where W-metric is employed to measure the
correlation between the input graphs and the corresponding graph keys. Moreover, the discriminant graph learning is performed to preserve
the intra-class (counterpart keys) compactness and inter-class (non-counterpart keys) dispersion of the coupled dictionary during training.
Finally, the coupled graph dictionary is dynamically optimized together with graph encoders. More details can be found in the main body.

by the success of the standard CNN [24], various graph
convolution operations have been explored, yielding mul-
tiple graph CNN variants [37, 6], including graph convo-
lutional network (GCN) [21], PATCHY-SAN (referred to
as PSCN) [37], Diffusion-convolutional neural networks
(DCNN) [1], NgramCNN [33], and GWCA [53].

Coupled Dictionary Learning. In 2012, Yang et
al. [51] proposed a coupled dictionary training method for
single-image super-resolution based on patchwise sparse re-
covery. Then, various coupled dictionary learning (CDL)
methods were proposed [18] in many fields, including
the semi-CDL method [49] to conduct photo-sketch syn-
thesis, the Semi-Supervised CDL method for Person Re-
identification [32], and the CDL learning with Large-
Margin Structure Inference [54] for Search-Based Depth
Estimation. Besides, a generalized CDL method [35] was
proposed and applied to the cross-modal matching task.

Our method differs from all these methods above from
two main aspects: (1) Our WCGL framework conducts
graph learning with a coupled graph dictionary in W-space,
where each key in the dictionary is a graph rather than a
point vector; (2) Our WCGL conducts discriminant learning
based on the coupled graph keys by defining a WD-loss.

3. The Proposed Method

In this section, we will first give an overview of the pro-
posed WCGL model, then describe the learning processes
in the proposed framework in detail.

3.1. Overview

Fig. 1 shows the whole architecture of our WCGL frame-
work. Generally, the proposed model consists of three main
learning processes, i.e. graph encoding, Wasserstein graph
embedding, and discriminant graph learning. For the cross-
modal retrieval task, the inputs of the WCGL model are
two graphs constructed from samples of different modali-
ties. Then, the WCGL model aims to predict the similar-
ity between these two input heterogeneous graphs. Con-
sidering the inter-modal diversity, a coupled graph dictio-
nary is constructed to encode those input graphs into more
succinct vectors through the WGE. This dictionary contains
two parts of coupled graph keys where each part is used to
model the input samples of one certain modality. Based
on the WGE, the input graphs of different modalities are
both transformed into the dictionary space to facilitate the
similarity measurement. Specifically, in this process, the
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graph correlation between one input graph and the corre-
sponding graph keys is calculated through W-metric, which
well captures the graph structural information. In the train-
ing process, the coupled graph keys will be dynamically up-
dated. To further learn discriminative features, the discrim-
inant graph learning is proposed by specifically defining a
maximum WD-loss which maximizes the ratio of inter-class
versus intra-class W-distance. Finally, the whole architec-
ture could be optimized in an end-to-end training model.

3.2. Graph Encoding

For given graphs, we use the graph encoder to learn ro-
bust features from them. To construct the graph encoder,
we employ the effective and widely used GCNs [21], and
stack them to obtain the powerful ability of learning graph
topology. Formally, taking fo(-) of two-layer GCNs as an
example, the graph encoding for the input graph denoted as
G = (V, A, X) can be written as:

fo(X, A, ®) = o(AReLU(AXW)Wy). (1)

In this equation, V € {1--- ,N}, A € R¥V*N and X €
RN 4 denote the node set, the adjacent matrix and the fea-
ture matrix, respectively. o(-) is a non-linear activation
function such as the softmax. N,d are the node number
and the feature dimensionality, respectively. ® denotes the
parameter set and Wy, W1 € & are two weighting matrices
for feature projection. Specifically, a little different from the
standard GCN, here A = A + I. According to [42], from
the view of spectral filtering, similar learning effects can be
achieved no matter whether Laplacian normalization is per-
formed because the adjacent matrix and its Laplacian norm
have the same eigenvectors. Besides, for simplification, we
omit the bias variables in Eqn. (1).

In WCGL, four different kinds of graphs need to be en-
coded, including the input vision graph G} = (V. AY, XY),
the input text graph G! = (V}, AL, X!), the vision graph
key Q;)’V = (V;.)’V, A]j)’v7 X]j)"v), and the text graph key
g})" = (V;»)’l, A]D’[, XJD’[), respectively, and 7, j denote the
indexes of the graphs. The corresponding graph encoders of
all graphs share the same structure defined in Eqn. (1), but
use different parameters correspondingly. Taking the input
vision graph G as an example, with the parameter ¢V, the
encoded feature denoted as F takes the following form:

F! = fo(X}, A}, ®") = o(A}ReLU (A}X}W})WY).
2)

After graph encoding, the corresponding graph representa-
tion can be obtained, such as FY € RN *@ Ft ¢ RN'xd
corresponding to the input graphs G}, G!. Here, NV, N' are
the node numbers of the input vision and text graphs. The
feature dimensionality after encoding is denoted as d’ and
set to the same for all encoded graphs for simplification.

For the coupled dictionary containing two parts of keys,
assuming each part has K keys, then two corresponding
feature sets of encoded keys can be obtained, denoted as

Dy ’ .
Sy = {FPV,FyY, - [ FR'}(F>Y € RV for the vi-
. Dt D, D, D, Dised’
sion and §; = {F}", Fy',--- [ Fp'} (F;" € RN X4 for
the text. NPV, NP are the node numbers.

3.3. Wasserstein Graph Embedding

The WGE aims to project one input graph into the dic-
tionary space by exploring the correlation between the input
graph and its corresponding keys. As the input and keys are
all graphs, which do not lie in the Euclidean space, the com-
mon metric such as cosine similarity cannot be used to mea-
sure their correlation directly. For this issue, we employ the
W-metric to learn the graph correlation in the W-space [19].
For one input graph, e.g. F?, the correlation is calculated
between it and all the keys in S, = {F}",Fo" ... [ F>'}.
Then, a K-dimensional feature vector z} = [z}, -- , 2)x]
can be obtained for F. Specifically, the W-distance be-
tween two graphs, e.g. FY and F?"’, can be written as:

Zz\’lj = WA(F;,? F]jlv) = <Tz)\]7 Mij>7 3

s.t., TijLyos = 1yv/NY, T 1ne = Lyos /NPY, (4)

where T;; € Rf “N* and (A,B) = tr(ATB). In
Eqn. (3), M,; is the pairwise distance matrix in Euclidean
space, and the element M ;(r, [) in the r-th row and [-th col-
umn calculates the squared Euclidean distance between the
r-th node of F} and /-th node of F]j)’v. Ti‘j is the solution of
an entropy-smoothed optimal transport problem:

T) = argmin A(Tij,MF;,F]nQ—Q(TZ—j). (5)

1) Tij
Here, Q(T;;) = —>,,Ti(r,1)log(Ti;(r,1)) where
T;;(r,1) is the element in the r-th row and {-th column of
T;j. Q(T;;) can be seen as a discrete joint probability dis-
tribution calculating the entropy of T;;. A is a regulariza-
tion coefficient controlling the local information involved in
distance between cross-graph points. Specifically, the opti-
mization in Eqn. (§) can be efficiently solved by Sinkhorn’s
fixed point iterations [5], and the solution can be written as:

T;; = diag(u,;;)K;;diag(v;;)
= W4y 1,1]\}1).v O) Kz’j ® ]_vag;, (6)

where © represents element-wise production, and K,; is
calculated based on the distance matrix M,; with K;; =
e~ Mii_ diag(-) transforms a vector to a diagonal matrix.
In Sinkhorn iterations, u;; and v;; are updated. Taking the
k-th iteration as an example, it can be formulated as:

s Lyoo/NPY 1 /NY
Vij = o et Wi = o )
Kijug; Kijvij
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For the initialization of the update process above, u?j is as-
signed as an all-1 vector 1 yv.

Similar with the calculation of z}, the feature z} for the
i-th input text graph F} can be obtained by following the
corresponding WGE process above.

3.4. Discriminant Graph Learning

To effectively promote the cross-modal retrieval task, our
WCGL model aims to possess two expected properties, i.e.
the discriminability of the learned features and the discrimi-
nant learning on encoded dictionary keys. To learn discrimi-
native features, a supervised learning objective is adopted to
guide the network optimization. For the discriminant learn-
ing on encoded dictionary keys, the distribution of encoded
keys is expected to be compact within each pair of counter-
part keys while dispersed across non-counterpart pairs.

For the purposes above, we propose two parts of losses to
guide the whole architecture’s optimization cooperatively,
including the triplet loss £, and WD-loss E,,. Then, the
total loss of the whole architecture can be formulated as:

E=FE— ﬁE'w» 3

where [3 is a trade-off parameter between F; and F,,.

Graph Discriminant Learning. For the input pairs of
cross-modal samples, both positive (matched) and negative
(mis-matched) pairs are sampled at each mini-batch. Then,
E is formulated as following:

E; (zzvzz) - Z[’V - 3(zz7zz) + 3(2:722)]

: ©
+Z 7‘; z> z +q(zzvzz)]

where 2}, 2} are negatives, [z], = max(z,0), and s(-) is
the cosine similarity measurement of vision and text. The
similarity in positive pairs should higher than in negative
pairs by a margin -y, otherwise the loss may be created.

Dictionary Discriminant Learning. Based on the
two encoded parts of the dictionary denoted as S, =
{F>V FDY, .- F2V and S, = {FYLFYY, - F2'1, the
WD-loss E,, takes the following form:

K
D1 JE[L,K],j>i vm(l ])W/\(FDVaF ")

Soiey Tk, )W (FRY, FRY)
s.t. TQI = argmin A(T,, M,;) — Q(T\,). (11)

Ew =

, (10)

In above equations, T;\,l is the transport matrix imposing
weights on the distance of the two keys from S, and S, re-
spectively, My is a W-distance matrix whose each element
measures the W-distance between the corresponding pair of
graph keys from S, and S, respectively.

To optimize the whole architecture, we use the back-
propagation to adjust the parameters involved in both the
graph encoders corresponding to input graphs and WGE.
However, for the parameters of graph encoders for the dic-
tionary keys, i.e. @ and ®, the momentum update strat-
egy, which is widely used in previous works [12, 41, 40],
is employed. The reason is explained in [12] that rapidly
changing encoders may reduce the dictionary representa-
tions’ consistency and lead to poor result. For this issue,
the momentum update mechanism [12] could make the dic-
tionary encoders to evolve more smoothly to obtain better
encoded features. Formally, taking the parameters of two
encoders corresponding to the vision, i.e. ®' and ®P, as
an example, the update process has the following form:

PPV - mdPY + (1 —m)dY, (12)

where m means a momentum coefficient. Similarly, we can
also update P! with the momentum mechanism above.

4. Experiments

In this section, we will first introduce the four used
datasets [20, 39, 28, 46] and implementation details, then
show the comparison results on the datasets, and finally an-
alyze our model by conducting ablation experiments.

4.1. Datasets and Protocols

The Image-text Datasets. The Real-world Scene
Graphs datasets [20] contains 5,000 images with 5,000
human-annotated scene graphs that describe these images
in detail. Each image can be described by three elements
named object, attribute, and relationship. For the cross-
modal task, graphs are first constructed from images and
texts, then one modality is alternately used to retrieve the
other based on these graphs. For the performance evalua-
tion, we follow the same protocol in [20] that 4,000 images
are used for training and 1,000 for testing.

Flickr30K [39] contains 31,000 images and 155,000 cap-
tions. Following the same protocol [29, 48, 30], for the
Flickr30K, we use 29,000 images, 1,000 images and 1,000
images for training, validation and testing, respectively.

For the benchmark MSCOCO [28] which contains
123,287 images and 616,435 captions, it is split into
113,287 training, 5,000 validation and 5,000 testing images.
The performance is calculated by 5-folds of testing images.

The Video-text Dataset. The Moviegraphs dataset [46]
contains 51 movies in total. Each movie is attached with the
corresponding textual description. These movies and texts
are split into 7,637 corresponding video and text samples.
We use the graphs generated from video and text samples
to retrieve each other, which is more challenging compared
with the protocol in Moviegraphs [46] that uses the anno-
tated graph. We divide the 7,637 clips into 5,050 training
clips, 1,060 validation clips, and 1,527 testing clips.
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Table 1. The comparison results on the Flickr30K and MSCOCO datasets.

Dataset Flickr30K MSCOCO
Method Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@l1 R@5 R@10 | R@l R@5 R@l10 | R@l R@5 R@I0| R@l R@5 R@I0
DSPE [47] 40.3 68.9 79.9 29.7  60.1 72.1 50.1  79.7 89.2 39.6 752 86.9
VSE++ [8] 529 79.1 87.2 39.6 69.6 795 64.7 - 95.9 52.0 - 92.0
GXN [11] 56.8 - 89.6 | 415 - 80.1 68.5 - 97.9 56.6 - 94.5
SCAN [26] 67.4 90.3 95.8 | 48.6 777 85.2 727 94.8 98.4 58.8 88.4 948
BFAN [29] 68.1 914 - 50.8 784 - 749 952 - 594 884 -
GOT [2] 70.9  92.8 95.5 50.7  78.7 86.2 - - - - - -
SGM [48] 71.8 91.7 95.5 535 79.6 86.5 734 938 97.8 575 873 94.3
GSMN(dense) [30] | 72.6  93.5 96.8 53.7 80.0 87.0 | 747 953 98.2 60.3  88.5 94.6
WCGL 748 933 968 | 548 806 875 | 754 955 986 | 60.8 893 953
Table 2. The comparison results on the Real-word Scene Graph and Moviegraphs datasets.
Dataset Real-word Scene Graph Moviegraphs
Method Image-to-Text Text-to-Image Video-to-Text Text-to-Video
R@]l R@5 R@l10 | R@l R@5 R@Il0 | R@l R@5 R@10 | R@l R@5 R@I10
PCA-cos 0.20 1.30 3.40 0.70  2.10 3.80 0.00 0.50 0.80 0.10 3.39 543
CCA-cos [45] | 269 445 60.9 16.2  42.1 61.5 6.20 20.7 27.0 790 21.2 30.1
SG-obj [25] - - - 1.3 26.0 34.7 - - - - - -
GCN [21] 174 472 64.0 15.6 441 61.4 7.30 19.1 26.5 790 17.6 24.0
GWCA [53] 29.6  46.0 61.9 209 46.6 61.7 740 202 27.1 840 23.6 28.8
WCGL 333 487 64.1 21.5 46.8 63.3 920 225 29.5 10.7 222 30.8

4.2. Graph Generation

To achieve comprehensive and fair comparison, we
strictly follow the baselines to construct nodes and edges
for vision/text graphs on four datasets. Below, we introduce
them formally. For more details, please refer to the base-
lines, SG-obj [20], GSMN(dense) [30] and GWCA [53].

Real-world Scene Graphs. We construct image and text
graphs following the setup of “SG-obj” method [20]. For an
image, we use R-CNN [10] to detect related objects. Each
detected object is regarded as a node, and the corresponding
object potentials are used as the feature description. For the
corresponding text, we search the words related to the ob-
ject nodes and extract their feature through the GloVe [38].
For both image and text graphs, we construct edges based
on the information provided by this dataset.

Flickr30K and MSCOCO. The graph generation man-
ners of the Flickr30K and MSCOCO datasets are the same.
Following the methods [26, 29, 30], given an image [, NV
salient regions are detected by Faster-RCNN which is pre-
trained on Visual Genome [23], and then are feed into the
pretrained ResNet-101 [14] to extract features. For each
word of a context 7', we employ a bi-directional GRU [43]
to integrate forward and backward contextual information.
Finally, we can obtain word representation by averaging
both directional hidden states. For edges of an image graph,

we use the polar coordinate to model the spatial relation of
regions. Meanwhile, the textual graph is a fully-connected
graph which is consistent with GSMN(dense) model [30].
Moviegraphs. According to the method in [46, 53],
the video and text graphs contain the character and attribute
nodes, where the attribute includes the age, gender and emo-
tion states. For an video graph, we first detect the faces
of actors in each clip, and assign their names based on the
IMDb gallery images. Also based on the detected faces, we
train different classifiers to predict the attributes of age, gen-
der and emotion states. Then, all these kinds of nodes, e.g.
names and emotion states with discrete states, are encoded
into one-hot vectors and are further adjusted to the same
length to form the video graph. For the text description, we
first search the character and attribute related words, and
extract their feature through GloVe [38]. For both types of
graphs, we take the cosine similarity as the weight of edges.

4.3. Implementation Details

Parameter Setting. The parameter setting is the same
on all the used datasets. For the detailed architecture of our
WCGL framework, we use the one-layer GCN as the graph
encoders, which transform the feature dimension of the in-
put graphs to 128. For the graph dictionary, the number of
keys corresponding to one modality is set to 12. Besides, the
regularization coefficient A for calculating the OT matrix in
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Eqn. (3) and the trade-off parameter (3 in Eqn. (8) are set to
1 and 0.01, respectively. The batch size is 64. During train-
ing, most parameters are optimized with Adam optimizer
for 60 epochs with the weight decay of 10~* and the learn-
ing rate of 0.001, except those ones in the momentum graph
encoders for graph keys. The graph encoders for graph keys
are updated according to Eqn. (12) through the momentum
strategy with the coefficient m of 0.999 as used in [12].
Dictionary Construction. For the coupled dictionary
containing two parts of graph keys, each part is initial-
ized by randomly selecting a fixed number of constructed
graph samples of the corresponding modality. Specifically,
to guarantee the counterpart relationship of the keys in the
coupled dictionary, the pair of graph keys from different
parts should come from the matched video/image and text
samples. Moreover, the counterpart relationship can be pre-
served during training with the constraint of the WD-loss.

4.4. Experiment Results

We compare the WCGL framework with multiple kinds
of methods. For Flickr30K and MSCOCO datasets, the
baselines include: (1) DSPE [47] and VSE++ [8] learning
global correspondence between image-text; (2) region-word
correspondence-learning methods, including GXN [11],
BFAN [26], GOT [2], SGM [48] and GSMN [30]. For
the Real-word Scene Graph and Moviegraphs datasets, the
baseline methods can be divided into: (1) the learning meth-
ods in Euclidean space, including the Principal Component
Analysis (PCA)-cos (cosine similarity), Canonical Correla-
tion Analysis (CCA) [45]-cos, and the SG-obj using condi-
tional random field (CRF) [25]; (2) the graph learning meth-
ods including GCN [21] and GWCA [53]. The results using
the metric of Recall@1, 5, 10 (R@1, 5, 10) are shown in Ta-
ble 1 and Table 2. We have the following observations:

(1) For the Flickr30K and MSCOCO datasets, methods
based on global image-text correspondence generally
perform worse than the other baseline methods. The
reason may be that the former ignores detailed structral
information. Noteworthy, GOT [2] only uses W-metric
directly for graph matching, which may not be a good
solution for the diversity of cross-modal data.

(2) For the Real-word Scene Graph and Moviegraphs
datasets, in general, the learning methods in Euclidean
space achieve relatively low performance while CCA
achieves relatively high performance among them,
which may be because it additionally considers the
correlation between those cross-modal samples. More-
over, GWCA achieves the better performance than the
others. It would be advantageous in jointly exploiting
the graph topological structure and measuring the 2t"
W-distance (based on the calculation of the mean and
covariance of cross-graph nodes) between graphs.

(3) Our WCGL achieves the best performance in almost
all the cases comparing to the other methods. The per-
formance gain of the proposed WCGL over GWCA
and GSMN(dense) verifies the effectiveness of the pro-
posed joint graph and dictionary discriminant learning.

4.5. Ablation Study

It is meaningful to make clear how the modules or pa-
rameter setting influence the performance of cross-modal
the retrieval task. For this purpose, we conduct several ad-
ditional experiments to dissect our framework on the Real-
word Scene Graph dataset by Text-to-Image.

Table 3. The results of the ablation study by Text-to-Image on the
Real-world Sence Graph.

| Method | R@1 R@5 R@IO |

One-layer GCN | 15.6 44.1 61.4
WCGL_No-WD | 18.0 432 600
WCGL 215 468 63.3

Table 4. The results of different dictionary strategies on Flickr30K.

Image-to-Text Text-to-Image
R@] R@5 R@10|R@] R@5 R@10
WCGL_single | 70.0 91.2 94.7 |52.7 794 86.6
WCGL_coupled| 71.1 92.6 95.8 |53.0 79.7 87.0

WCGL 74.8 93.3 96.8 |54.8 80.6 87.5

Method

The effectiveness of the coupled dictionary. We simply
remove the coupled dictionary module to evaluate its effec-
tiveness. This operation actually results in a one-layer GCN
and the performance could be found in Table 3. The per-
formance gap may come from the fact that the coupled dic-
tionary captures the structural correlation between graphs,
which can not be well modeled by GCNs. In addition, we
also compare different dictionary strategies [22] in Table 4.
As it is shown, our WCGL achieves the best performance.
Specifically, WCGL _single means to use a single and fixed
common dictionary while WCGL_coupled means to use the
fixed coupled dictionary to learn graph embeddings.

The influence of the layer number of GCNs in the
graph encoders. To quantify the influence of the layer
number, we vary it in the range {0,1,2,3,4}. Specifically,
the layer number of 0 means that we use two projection lay-
ers instead of GCNs to learn the features of nodes. As it is
shown in Fig. 2(a), one-layer GCN achieves the best results,
while stacking more layers of GCNs actually degrades the
performance. The reason may be that the repeating node
aggregation of GCN in more layers causes the over-smooth
problem and makes the nodes less distinguished.
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Figure 2. Evaluating the influence of the number of GCN layers (a), the number of keys in each part of the dictionary (b), the regularization
coefficient A (c), and the trade-off coefficient 8 for the WD-loss (d) on the Real-word Scene Graph dataset by Text-to-Image.
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Figure 3. The visualization of cross-key W-distances of the dictio-
nary. (a) and (b) show the cross-key W-distances of the dictionary
before and after optimization, respectively.

The influence of the key number of each part in the
dictionary. We tune the key number in the range of {4, 8,
12, 16, 32} to see how the performance varies accordingly.
The result is shown in Fig. 2(b). Generally, in the range
of [0, 12], more keys lead to higher performance, which is
reasonable as more keys bring better feature representation
ability. However, excessive graph keys may on the contrary
degrade the performance of the WCGL model, as too much
redundancy would be led into the embedding in the dictio-
nary space, and then influence the similarity measurement.

The evaluation of regularization coefficient )\ in
Eqn. (5). The value of the regularization coefficient X is
tuned in the range of {0, 0.1, 0.5, 1, 5, 10, 100}, and the
according results are shown in Fig. 2(c). It can be seen that
relatively small performance fluctuation exists when X is
less than 1. However, the performance degrades obviously
when A is further increased to 10. This is because A controls
local information between the points across two graphs. For
too large values of A, the OT would become little sensitive
to the local correlation between the input graph and the cor-
responding keys, which would decrease the performance.

The evaluation of the WD-loss. To evaluate the
WD-loss, we first remove it from the WCGL framework
(WCGL_No_WD in Table 3). As Table 3 shows, the per-
formance degrades obviously after removing the WD-loss.
Furthermore, we additionally set the range of 3 as {0, 0.01,
0.1, 0.5, 1, 5, 10} (please see Fig. 2(d)). With an appropri-

ate value (about the range of (0, 0.01]), the WD-loss could
generally further promote the performance. However, a too
large value of the trade-off coefficient 5 sharply degrades
the performance. The reason may be that the large value of
B leads to an imbalance and a large bias during the training,
which reduces the discriminability of the graph and keys
representation (please see Eqn. (8)). Additionally, we visu-
alize the cross-key W-distances before and after optimiza-
tion. As shown in Fig. 3, WD-loss can endow intra-class
compactness and inter-class dispersion, where the distances
between coupled keys are near zero.

5. Conclusion

In this paper, a deep WCGL framework was proposed
for cross-modal retrieval task. Considering the difficulty
of the discriminant analysis in W-space, as well as the
diversity of cross-modal data, a coupled graph dictionary
was constructed as the reference set to avoid calculating
statistics on the mean and covariance of graphs. Based
on the constructed dictionary, the cross-modal graphs can
be transformed into the dictionary space through the pro-
posed WGE, which better facilitates the cross-modal simi-
larity calculation. To learn more discriminative features, the
coupled dictionary was made to be dynamically updated in
the training process. Moreover, the discriminant learning
on the coupled dictionary was performed by introducing the
WD-loss, which constrains the intra-class compactness and
inter-class dispersion. We evaluated the proposed model on
four public cross-modal retrieval datasets, and dissected the
framework with ablation analysis. The experimental results
verified the effectiveness of our framework.
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