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Abstract

There has been a recent surge of interest in cross-
modal pre-training. However, existed approaches pre-train
a one-stream model to learn joint vision-language repre-
sentation, which suffers from calculation explosion when
conducting cross-modal retrieval. In this work, we pro-
pose the Contrastive Cross-Modal Knowledge Sharing Pre-
training (COOKIE) method to learn universal text-image
representations. There are two key designs in it, one is
the weight-sharing transformer on top of the visual and
textual encoders to align text and image semantically, the
other is three kinds of contrastive learning designed for
sharing knowledge between different modalities. Cross-
modal knowledge sharing greatly promotes the learning
of unimodal representation. Experiments on multi-modal
matching tasks including cross-modal retrieval, text match-
ing, and image retrieval show the effectiveness and effi-
ciency of our pre-training framework. Our COOKIE fine-
tuned on cross-modal datasets MSCOCO, Flickr30K, and
MSRVTT achieves new state-of-the-art results while using
only 3/1000 inference time comparing to one-stream mod-
els. There are also 5.7% and 3.9% improvements in the
task of image retrieval and text matching. Source code will
be available at https://github.com/kywen1119/COOKIE.

1. Introduction
Cross-modal pre-training has significantly advanced the

progress of representation learning in vision-language field.
It aims at narrowing the heterogeneous gap between vision
and language [27, 11, 30]. Recent vision-language pre-
training(VLP) methods utilize large-scale image-text pairs
to learn the unified representation of visual and textual in-
puts, which greatly improve the performance of V+L tasks
such as cross-modal retrieval [19, 48, 12], image captioning
[46, 15] and visual question answering [2, 1]. In this pa-
per we focus on multi-modal retrieval tasks including cross-
modal retrieval (image-text matching and video-text match-
ing) and single-modal matching (text matching and image
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Figure 1: Illustration of cross-modal knowledge sharing.
Images with similar semantics are sometimes different in
structure, subject, background, and style, which leads to in-
accurate matching. By matching with the semantics of the
corresponding texts, the distance of their embeddings in the
common space is narrowed.

retrieval).
Humans do not perceive the world with just one sense.

It is the same for model pre-training: simply using single-
modal supervision seems not enough. As illustrated in
Fig. 1, two images having the same semantic meaning could
look totally different. In this case, we need to resort to
cross-modal pre-training. One-stream VLP methods were
recently used for cross-modal pre-training. They use multi-
layer transformers [45] as the joint encoder. The input is the
concatenation of visual tokens and textual tokens. However,
there are two obvious shortcomings for such methods: a)
Two-stage visual feature extraction with Faster R-CNN [41]
is time-consuming and may lose some global information,
as discussed in [48]. b) One-stream methods need to pro-
cess the concatenation of image and text tokens. Such cal-
culation will lead to inference time explosion for retrieval
tasks. Double-stream methods are also commonly used
for cross-modal pre-training. They use a visual path and
a textual path to encode images and texts separately. This
leads to high efficiency but very limited performance for
cross-modal retrieval. There are two obvious constraints: a)
The lack of cross-modal interactions weakens the semantic
alignment of images and texts. b) Simple supervision from
cross-modal contrastive learning(CCL) loses the knowledge
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that the single-modal encoders have learned from the origi-
nal images or texts.

In this work, we propose COOKIE: Contrastive Cross-
Modal Knowledge Sharing Pre-training, a novel framework
designed for multi-modal retrieval tasks. Our COOKIE
framework is able to leverage the advantages of both
one-stream VLP methods and the double-stream methods
while avoiding their aforementioned disadvantages. There
are mainly two designs in our framework: The double-
stream visual semantic embedding structure with weight-
sharing transformer encoder(WS-TE) and the cross-modal
and single-modal contrastive learning methods.

The former design, the double-stream visual semantic
embedding structure with WS-TE, speeds up cross-modal
training and testing while strengthening the semantic align-
ment of images and texts. More specifically, COOKIE is
designed in a double-stream fashion, thus the inference time
explosion caused by one-stream methods is avoided. In the
visual stream, the feature is extracted by ResNet instead
of Faster-RCNN. In this way, we avoid the huge compu-
tation cost while keeping the global visual information. To
address the absence of cross-modal interactions which pre-
vious double-stream methods lack, a weight-sharing trans-
former encoder(WS-TE) is designed to force the model to
pay more attention to tokens with the same semantic mean-
ings, which guarantees refined vision-language alignment.

Secondly, our COOKIE is optimized by three kinds
of contrastive learning: cross-modal contrastive learning,
single-modal visual contrastive learning(VCL) and textual
contrastive learning(TCL). Compared with single-modal
methods [51, 17, 49], cross-modal contrastive pre-training
shares knowledge of pre-trained image encoders and text
encoders, e.g. ResNet and BERT. An explanation of cross-
modal knowledge sharing can be seen in Fig. 1. The two
pictures have the same semantic meaning “a person is wait-
ing with luggage”, but are quite different due to camera
angle and background. With the help of cross-modal con-
trastive learning, the image embeddings are drawn closer
to each other by the lead of text embeddings. Meanwhile,
we don’t expect the single-modal encoders to lose too much
information learned from large-scale unimodal pretraining.
Thus, VCL and TCL are added to maintain the single-
modal knowledge learned from original images and texts.
Our single-modal objectives differ from structure preserv-
ing losses [47, 43]. By manually searching for positive
within-modal pairs, they promote the alignment of cross-
modal semantics. While our design is much simpler and
more effective due to automatically generated pairs. Fur-
ther, our VCL and TCL also allow the visual and textual
encoder to retain the ability to capture within-modal simi-
larity, which helps single-modal retrieval tasks.

To summarize, we make the following contributions.

• We propose a new cross-modal pre-training paradigm

COOKIE. With specially designed weight-sharing
transformer encoder(WS-TE), COOKIE provides both
efficiency from its double-stream structure and compa-
rable effectiveness of one-stream methods.

• Three pre-training objectives including cross-modal
contrastive learning(CCL) and single-modal con-
trastive learning(VCL and TCL) are designed for
cross-modal knowledge sharing which promotes
multi-modal retrieval.

• The proposed COOKIE outperforms previous methods
on multi-modal matching tasks including image-text
matching, video-text matching, text matching and im-
age retrieval. Specifically, our COOKIE achieves com-
parable results with sota method Oscar [30] using only
3/1000 inference time on Flickr30K and MSCOCO.
COOKIE increases R@1 of MSRVTT from 16.0 to
20.0. For single-modal matching tasks, our model has
3.9% and 5.7% performance gains on text matching
and image retrieval respectively.

2. Related Work
2.1. Multi-modal retrieval and matching

Multi-modal retrieval and matching tasks include cross-
modal matching and single-modal retrieval and matching.
In this paper we mainly discuss four of them: image-text
matching, video-text matching, image retrieval and text
matching, which can furthest prove the effectiveness and ef-
ficiency of our pre-training framework. Initially, CCA [44]
creates a paradigm for cross-modal retrieval, that is, to map
images and texts to a common subspace and measure their
similarity. Recently Faghri et al. [19] proposed a hinge-
based hard triplet loss, which acts as a baseline for later
methods. SCAN [25] utilizes object detection methods like
Faster R-CNN [41] to extract regional visual features. Im-
age retrieval requires finding the most relevant images given
the image query [18]. Semantic text similarity(STS) [5] is a
classic text matching task, aiming to measure the similarity
of two given sentences.

2.2. Cross-modal pre-training

Inspired by single-modal self-supervised pre-training,
like visual contrastive learning [8, 9, 10] and textual masked
language modeling [39, 17], cross-modal encoders can also
be pre-trained with large-scale image-text pairs for better
performance, which can be divided into two kinds. Inputs
are usually visual regional features and word embeddings.
One kind of them [34] applies two transformers for images
and texts and one unified transformer in a later stage, while
the other kind directly takes the concatenation of region fea-
tures and word embeddings as input and process it with one
deep transformer. Our method doesn’t belong to them. For
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Figure 2: An overview of the proposed COOKIE. It consists of two paths, the visual path and the textual path. The visual
path contains a CNN to extract the patch features, a text-aligned visual transformer and a weight-sharing transformer. The
textual path has a BERT encoder and the same weight-sharing transformer. We design three contrastive learning objectives.

retrieval efficiency, we directly use the raw images and sen-
tences as input and process them in a two-stream way with
one weight-sharing transformer.

2.3. Contrastive Learning

We conduct three kinds of contrastive learning: vi-
sual contrastive learning(VCL), textual contrastive learn-
ing(TCL) and cross-modal contrastive learning(CCL). Con-
trastive learning plays an important part in representation
learning as well as content-based retrieval. For VCL, the
goal is to minimize the distance between learned represen-
tations of the raw image and the augmented image, as in
[8, 9, 36, 10]. Wu et al. [49] proved the effectiveness of
TCL based on BERT [17]. CCL learns the common sub-
space of visual and textual modalities as discussed in Sec-
tion 3.2. For example, researchers [29, 52] utilize CCL to
do single-modal or multi-modal understanding and genera-
tion tasks. All of them are carefully designed for efficient
and effective multi-modal retrieval and matching tasks.

3. Pre-Training
In this section, we detail our contrastive cross-modal

knowledge sharing pre-training for vision-language repre-
sentation. In Section 3.1, we describe the model architec-
ture which consists of an image encoder, a text encoder,
a text-aligned visual transformer encoder and a weight-
sharing transformer encoder. In Section 3.2, we intro-
duce cross-modal contrastive pre-training aiming at cross-
modal alignment and knowledge transferring. In Section

3.3, single-modal contrastive pre-training is detailed.

3.1. Overall Structure

Our structure is shown in Fig. 2. Previous vision-
language pre-training methods [34, 11, 30] take the con-
catenation of image regional features extracted by Faster R-
CNN [41] and textual word embeddings as input and pro-
cess it with transformer-based models [17]. Different from
them, we directly use ResNet [21, 35] and BERT [17] to
process images and texts separately. To be specific, given
an image-text pair (V,C), the goal is to learn the individ-
ual embedding I⃗ and T⃗ , which can be used for multi-modal
retrieval.

Visual Representation Learning We directly use ResNet
for visual feature extraction. Previous VLP methods uti-
lize bottom-up and top-down(BUTD) attention to extract re-
gional features, which results in the two-stage training and
inference process. Our end-to-end way guarantees the ef-
ficiency and takes more global features into account than
BUTD methods. We remove the last fully-connected layer
of ResNet [21] or ResNeXt [35] and flat the output fea-
ture before pooling, which results in visual patch features
v = {v1, v2, ..., vn} ∈ RDV , where n is the patch number
and DV is the visual feature dimension. A fully-connected
layer is followed. To learn the relative positions of features
in the image, we add position embeddings. The output vi-
sual features are v̂ = {v̂1, v̂2, ..., v̂n} ∈ RD.

v̂i = viWV + bV + pi, (1)
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where WV ∈ RDV ×D, bV , pi ∈ RD. WV and bV are the
FC parameters and pi is the position embedding for patch i.

Textual Representation Learning We take the output of
the last layer of the pre-trained BERT-base model [17] as
the text features. The textual features are denoted as t =
{t1, t2, ..., tm} ∈ RDT , where m is the number of words
and DT is the dimension of word feature. An FC encodes
word features into the same space with image features. The
output textual features are FT = {fT1

, fT2
, ..., fTm

} ∈ RD.

fTi
= tiWT + bT + sT , (2)

where WT ∈ RDT×D, bT ∈ RD in Eq. 2 are the FC param-
eters. Same as [22], we add a textual semantic embedding
vector sT to the features.

Text-Aligned Visual Transformer Since the convolution
used in CNN is a local operator while the transformer layer
used in BERT is a global operator, visual features extracted
from CNNs could have different distribution from textual
features. To align the distribution of visual features and
textual features, we add a text-aligned visual transformer
encoder(TAV-TE). TAV-TE provides a global attention cal-
culation for the image side. The transformer encoder(TE)
in this paper follows the standard definition [45]. We add a
visual semantic embedding vector sV to the features.

FV = TETAV (v̂) + sV . (3)

Weight-Sharing Transformer To prompt images and
texts to focus on the same semantics, we add a weight-
sharing transformer encoder(WS-TE) on top of the network.
WS-TE contains a multi-head self-attention process and a
feed-forward network, which makes input tokens pay more
attention to the salient areas. Originally in CNNs, sharing
weights between convolution kernels not only reduces pa-
rameters but also enables translation equivariant [26]. That
is, the network extracts the same features no matter how the
image translates. Similarly for images and texts, parame-
ter sharing enables the self-attention layer to give close at-
tention values for analogous semantics of images and texts.
As our goal is to align visual and textual representations, if
the similar semantics of images and texts are given greater
weights, the final representation will also be better aligned.

I⃗ = Pooling(TEWS(FV )), T⃗ = Pooling(TEWS(FT )).
(4)

3.2. Cross-Modal Contrastive Learning

Cross-modal contrastive learning plays a key role in
cross-modal retrieval. It learns a common subspace for
images and texts where they are semantically aligned. At
the same time, such a learning process enables cross-modal

knowledge transferring, namely from image to language un-
derstanding and vice versa.

The image and text encoders together with weight-
shared TE are optimized with InfoNCE loss [36], which is
widely used in contrastive learning. For Li2t, the positive
sample is the matched text and the negative samples are the
remaining texts in the mini batch. For Lt2i, vice versa.

LInfoNCE(q, k) =

− 1

N

N∑
i=1

log
exp(q · k+/τ)

exp(q · k+/τ) +
∑N−1

j=1 exp(q · k−/τ)
,

(5)

Li2t = LInfoNCE(I⃗ , T⃗ ), (6)

Lt2i = LInfoNCE(T⃗ , I⃗). (7)

Here N is the size of mini batch. + and − refer to the
positive sample and the negative sample respectively. τ is a
temperature hyper-parameter.

3.3. Single Modal Contrastive Learning

Cross-modal contrastive learning promotes knowledge
sharing between image encoder and text encoder. However,
we don’t expect the encoder to lose too much information
learned from single-modal data. Thus we design visual con-
trastive learning and textual contrastive learning to maintain
the single-modal encoder’s ability to process its own modal
data.

Visual Contrastive Learning Image self-supervised
learning can effectively improve the deep neural network’s
ability to understand images [8, 9, 10]. In our framework,
we utilize visual contrastive learning to enhance the image
encoder’s understanding of images while accepting knowl-
edge from text. Two augmentations of the raw image act as
the input and the goal is to draw the two learned representa-
tions closer. Specifically, we directly minimize the distance
between the positive pairs while maximizing the distance of
the negative pairs. Given a raw image V , the image encoder
together with the weight-sharing TE is denoted as EV . We
optimize the visual InfoNCE loss.

I⃗1 = EV (augv1(V )), I⃗2 = EV (augv2(V )), (8)

Li = LInfoNCE(I⃗1, I⃗2), (9)

where augv(·) denotes image augmentation. For our
method, the image augmentation includes randomly crop-
ping, flipping, color jitter, gaussian blur and color dropping.
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Methods
Image-to-Text Text-to-Image Image-to-Text Text-to-Image

1K Test Set 5K Test Set
R@1 R@5 R@10 R@1 R@5 R@10 Rsum R@1 R@5 R@10 R@1 R@5 R@10 Rsum

Double-Stream Methods
VSE++ 64.6 90.0 95.7 52.0 84.3 92.0 478.6 41.3 71.1 81.2 30.3 59.4 72.4 355.7
DSRAN∗ 80.6 96.7 98.7 64.5 90.8 95.8 527.1 57.9 85.3 92.0 41.7 72.7 82.8 432.4
GPOR101 78.0 95.8 98.5 62.6 90.6 96.0 521.5 56.2 83.7 90.9 40.8 70.6 81.5 423.7
GPOX101∗ 85.6 98.0 99.4 73.1 94.3 97.7 548.1 68.1 90.2 95.2 52.7 80.2 88.3 474.8

One-Stream Pre-training Methods

Pixel-BERTX152 84.9 97.7 99.3 71.6 93.7 97.4 544.6 63.6 87.5 93.6 50.1 77.6 86.2 458.6
Uniterb - - - - - - - 63.3 87.0 93.1 48.4 76.7 85.9 454.4
Uniterl - - - - - - - 66.6 89.4 94.3 51.7 78.4 86.9 467.3
Oscarb 88.4 99.1 99.8 75.7 95.2 98.3 556.6 70.0 91.1 95.5 54.0 80.0 88.5 479.1

Double-Stream Pre-training Methods

COOKIER101 81.3 96.2 98.7 67.5 91.5 96.1 531.3 61.7 86.7 92.3 46.6 75.2 84.1 446.6
COOKIEX101 87.3 98.1 99.6 73.5 94.0 97.5 550.0 69.2 89.6 94.4 52.4 79.6 87.1 472.3
COOKIEX101∗ 88.4 98.5 99.8 75.2 94.7 97.5 554.1 71.6 90.9 95.4 54.5 81.0 88.2 481.6

Table 1: Results on image-text matching task with MS-COCO dataset. We record results on both 1K and 5K test set. Here
R101, X101 and X152 refer to ResNet101, ResNeXt101 and ResNeXt152. b and l mean base and large models for Uniter
and Oscar. ∗ represents model ensemble. The best results are in bold, while the suboptimal values are underlined.

Textual Contrastive Learning For texts, self-supervised
learning always consists of masked language model-
ing(MLM) [17] instead of contrastive learning. However,
Wu et al. [49] proved the effectiveness of contrastive learn-
ing in sentence representation learning. In our model, ran-
domly masking, substituting, deleting are used for textual
augmentation. Such random operations can enhance the ro-
bustness of the model. The text encoder retains attention
to the semantic features of the sentence while accepting the
knowledge from the image. Same for images, we optimize
the text encoder together with weight-sharing TE(denoted
as ET ) with InfoNCE loss. Given a raw sentence C,

T⃗1 = ET (augt1(C)), T⃗2 = ET (augt2(C)), (10)

Lt = LInfoNCE(T⃗1, T⃗2), (11)

Here augt(·) in Eq. 10 denotes text augmentation.
The overall pre-training objective of COOKIE is defined

below.

LPre−training = Li2t + Lt2i + Li + Lt. (12)

4. Experiments
4.1. Pre-training Configurations

Pre-training Corpus For our COOKIE, we use the pub-
lic available image-text datasets Conceptual-Captions(CC)

[42], SBU captions [37], MSCOCO [31], Flickr30K [38],
VQA2.0 [20] and GQA [23]. This results in the total size of
3.9 million images and 5.9 million image-text pairs.

Implementations We select ResNet50, ResNet101 [21]
or ResNeXt101 [35] as the image encoder and BERT-base
[17] as the text encoder. All images are reshaped to 512 ×
512, if not otherwise specified. The dimensions of output
features of the image encoder and text encoder DV and DT

are 2048 and 768, respectively. The dimension of the cross-
modal space D is set to 1024. The number of image patches
n is 16 × 16 = 256 while the number of words m is set to
50. The weight-sharing TE has 2 layers and the TAV-TE
has 1 layer. The intermediate size and multi-head number
are set to 1024 and 8.

We pre-train the model with AdamW [33] for two stages.
During the first stage, for stability, the model is merely
trained with Li2t and Lt2i for 30 epochs with the batch
size set to 576. At the second stage, we use the full
LPre−training to supervise the training for 10 epochs with
the batch size set to 288. The learning rate is 2e-5 initially
and decays by 10 times after half of the total epochs for each
stage. It is noticed that LR for ResNeXt101 is one-tenth of
the global LR. Experiments are conducted with Tensorflow
v2.2 on 48 Tesla V100 GPUs.

4.2. Downstream Matching Tasks

Our COOKIE is designed for multi-modal matching
tasks including image-text matching, video-text matching,
text matching and content based image retrieval. All these
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Methods Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@10 Rsum

Double-Stream Methods
VSE++ 52.9 80.5 87.2 39.6 70.1 79.5 409.8
DSRAN∗ 80.5 95.5 97.9 59.2 86.0 91.9 511.0
GPOR101 77.9 93.7 97.4 57.5 83.4 90.2 500.2
GPOX101∗ 88.7 98.9 99.8 76.1 94.5 97.1 555.1

One-Stream Pre-training Methods

Pixel-BERTX152 87.0 98.9 99.5 71.5 92.1 95.8 544.8
Uniterb 85.9 97.1 98.8 72.5 92.4 96.1 542.8
Uniterl 87.3 98.0 99.2 75.6 94.1 96.7 550.9

Double-Stream Pre-training Methods

COOKIER101 84.7 96.9 98.3 68.3 91.1 95.2 534.5
COOKIEX101 89.0 98.9 99.8 75.6 94.5 97.1 554.9
COOKIEX101∗ 89.0 98.9 99.7 75.6 94.6 97.2 555.3

Table 2: Results on image-text matching task with
Flickr30K dataset.

Methods Video-to-Text Text-to-Video
R@1 R@5 R@10 R@1 R@5 R@10 Rsum

VSE++ 14.4 34.1 45.6 8.3 24.0 34.1 160.5
HGR 15.0 36.7 48.8 9.2 26.2 36.5 172.4
GPO 16.0 38.6 50.2 8.7 25.3 35.9 174.7
COOKIE(mean) 19.4 40.7 51.5 9.8 27.6 38.6 187.6
COOKIE(gpo) 20.0 42.0 54.9 9.8 28.3 39.6 194.6

Table 3: Results on video-text matching task with MSRVTT
dataset. Here mean refers to mean pooling and gpo means
the same pooling strategy with GPO [6].

tasks ask the quality of the learned representation as well as
the inference speed, which are well addressed by our pre-
training. All tasks use BERT-base [17] as the text encoder.
The statistics of the downstream datasets and implementa-
tion details for finetuning on downstream tasks can be seen
in Appendix.

Image-Text Matching Image-text matching(ITM) is a
fundamental task in cross-modal representation learning,
which requires semantic consistency of visual and textual
representations. ITM includes image-to-text retrieval and
text-to-image retrieval. Same as traditional double-stream
methods [19, 28, 48], a hinged hard triplet loss super-
vises the fine-tuning process. We conduct experiments on
two widely used datasets MSCOCO [31] and Flickr30K
[38] and use the same train-dev-test split with [24]. We
record recall at K (R@K) together with Rsum. ResNet101
[21] and ResNeXt101 [35] are used. We compare our
COOKIE with double-stream methods without pre-training
[19, 48, 6] as well as one-stream methods with pre-training
[22, 11, 30]. Results can be seen in Table 1 and Table 2.

Methods STS12 STS13 STS14 STS15 STS16 STSB

BERT 28.8 50.8 43.9 57.6 58.7 46.1
RoBERTa 47.4 37.5 47.9 55.1 57.6 71.9
MACD - - - - - 71.8
CLEAR 49.0 48.9 57.4 63.6 65.6 72.5
COOKIE 63.2 68.0 68.0 72.4 68.1 75.3

(a) Results on STS task. Mean values of Pearson and Spear-
man are recorded.

Methods MSCOCO NUS-WIDE

16bit 32bit 64bit 16bit 32bit 64bit

HashNet 0.745 0.773 0.788 0.757 0.775 0.790
DCH 0.759 0.801 0.825 0.773 0.795 0.818
CSQ 0.796 0.838 0.861 0.810 0.825 0.839
COOKIE 0.811 0.884 0.910 0.822 0.852 0.855

(b) Results on image retrieval task with MSCOCO and
NUSWIDE datasets.

Table 4: Experimental results for single-modal matching
tasks including (a) text matching and (b) image retrieval.

Video-Text Matching Similar to ITM, video-text match-
ing(VTM) ranks the sentence features by similarity with the
video query or vice versa. We do experiments on MSRVTT
dataset [50]. For fair comparison, we use the same video
features extracted by ResNet152 [21] pre-trained on Ima-
geNet [16]. Thus for VTM no image encoder is used. Con-
ditioned on it, we take the output of our pre-trained BERT
as the text features. The final visual and textual representa-
tions I⃗ and T⃗ come from processing the frame and text fea-
tures using a pooling strategy. We use either mean-pooling
or g-pooling [6]. The objective function is the InfoNCE loss
[36]. We use the same split as [7, 6] and compare our results
with them. Results are recorded in Table 3.

Text Matching Text Matching(TM) is a single-modal
matching task regarding only texts. We focus on semantic
text similarity(STS) [5], a classic task to evaluate text repre-
sentation learning by calculating the similarity of two input
sentences. As illustrated in [40], directly computing the co-
sine similarity of two text representations is much more effi-
cient than processing the concatenation of two sentences as
did in [17]. Having two sentence embeddings T⃗1 and T⃗2, we
compute their cosine similarity using the pre-trained mod-
els, which is an unsupervised process. The labels of STS
are decimals in range 0-5. We conduct experiments on the
widely used STS12-16 and STSbenchmark datasets [5] and
report the mean values of Pearson and Spearman metrics.
Results are in Table 4a. We compare with methods only
pre-trained on texts [17, 32, 49] and MACD [14] which is
pre-trained using multi-modal data.

Image Retrieval Image retrieval(IR) has great practi-
cal value in real life [18]. To mostly utilize the knowl-

2213



(a) Pre-training Tasks (b) Weight-sharing & TAV TE (c) Num of Layers of WS-TE

CCL VCL T CL ITM IR TM
526.9 0.861 46.1

✓ 545.4 0.898 72.4
✓ ✓ 547.8 0.909 72.1
✓ ✓ 548.1 0.899 75.1
✓ ✓ ✓ 550.0 0.910 75.3

model ITM
baseline 536.6
FC Layers(w/ weight sharing) 536.8
WS-TE(w/o weight sharing) 541.6
WS-TE(w/ weight sharing) 547.5
WS-TE(w/o weight sharing)+TAV-TE 543.8
WS-TE(w/ weight sharing)+TAV-TE 550.0

w/ pre-training w/o pre-training
num ITM num ITM
0× 536.6 0× 528.7
1× 547.8 1× 534.6
2× 550.0 2× 526.9
4× 539.8 4× 510.4
8× 500.7 8× 250.8

(d) Pre-training Corpus (e) Visual Backbones

dataset ITM IR TM
MSCOCO(11w) 530.4 0.895 71.9
Flickr30K(3w) 531.7 0.886 69.5
CC(2.8M) 540.5 0.902 74.4
CC+SBU(3.6M) 544.3 0.905 75.3
CC+SBU+COCO+F30K(4.2M) 547.6 0.910 75.1
CC+SBU+COCO+F30K+VQA+GQA(5.9M) 550.0 0.908 74.9

w/ pre-training w/o pre-training
model ITM IR TM ITM IR TM
ResNet50 526.4 0.910 74.8 512.8 0.861 46.1
ResNet101 531.3 0.911 75.3 516.5 0.872 46.1
ResNeXt101 550.0 0.932 75.0 526.9 0.911 46.1

Table 5: Ablation Experiments. Here CCL, VCL and T CL are cross-modal, visual and textual contrastive learning. ITM,
IR and TM refer to image-text matching, image retrieval and text matching tasks. We record Rsum of MSCOCO 1k test set
for ITM, MAP@5000 of MSCOCO-64bit test set for IR and mean value of Pearson and Spearman of STS-B test set for TM.

edge learned from our pre-training, we do experiments on
MSCOCO [31] and NUS-WIDE [13] datasets which re-
quire more understanding of the semantic meanings of the
entire picture than the matching of key points. We use
CSQ [51], the current sota method on these benchmarks,
as our baseline and substitute the image encoder with our
pre-trained image encoder which contains much more in-
formation learned from cross-modal data. For fair com-
parison, ResNet50 [21] is used and the image size is set to
224. MAP@5000 is recorded. We compare COOKIE with
HashNet [4], DCH [3], and CSQ. Results are in Table 4b.

Performance Comparison with SoTA Our contrastive
cross-modal knowledge sharing pre-training learns univer-
sal multi-modal representations for downstream matching
tasks. Specifically, for cross-modal retrieval, COOKIE sets
new sota results for Flickr30K and MSRVTT and achieves
comparable results on MSCOCO with Oscar [30] consum-
ing only 3/1000 inference time. For image-text matching
task, comparing to traditional double-stream methods in-
cluding GPO [6] with ResNeXt101 [35], our pre-training
structure significantly improves performances, as seen in
Table 1 and Table 2. When compared with two-stage
pre-training methods coupled with Faster R-CNN [41] like
Uniter [11] and Oscar, our COOKIE not only has the advan-
tage of speed, but we also use less pre-training data (5.9M
vs 6.5M&9.6M). Our model also outperforms Pixel-BERT
[22] which uses ResNeXt-152. In Table 3, our image-
text pre-training greatly promotes video-text matching on
MSRVTT dataset, increasing R@1 of V2T from 16.0 to
20.0 and 9.2 to 9.8 for T2V.

As for single-modal matching tasks, COOKIE also sets
new sota results, proving the effectiveness of our cross-
modal knowledge sharing. For text matching, as seen in

Table 4a, there is 3.9% performance gain on STS-B and
more obvious improvements on five datasets for STS12 to
STS16. It is noticed that BERT, RoBERTa and CLEAR are
all trained with mere texts. Our cross-modal pre-training
successfully shares visual semantics with the text encoder.
COOKIE also outperforms MACD [14] which uses similar
cross-modal pre-training. Concurrently for image retrieval,
we obtain 5.7% and 1.9% improvement on MSCOCO-64bit
and NUSWIDE-64bit respectively, as seen in Table 4b.
All the performance growths come from contrastive cross-
modal knowledge sharing.

4.3. Ablation Study

We conduct several ablation studies to explore the per-
formance of COOKIE under various model settings. Re-
sults are in Table 5. For pre-training, the default encoders
are ResNeXt101 [35], BERT-base [17], the TAV-TE and the
2-layer WS-TE. Models are trained with 3 losses using the
full pre-training dataset. For image-text matching(ITM), the
default model setting is the same as the one for pre-training.
For image retrieval(IR) and text matching(TM), the visual
backbone is substituted with ResNet50 and ResNet101 re-
spectively. As VTM is similar to ITM, we select ITM as a
representative of cross-modal retrieval.

Effectiveness of Three Contrastive Losses We propose
three contrastive losses to supervise pre-training. Cross-
modal contrastive learning(CCL) is designed for bridging
the heterogeneous gap between the two modalities, while
visual and textual contrastive learning(VCL & TCL) help
retain the knowledge that the single-modal encoder origi-
nally learned from the respective modality. As seen in Table
5a, ITM benefits more from CCL, while IR and TM rely on
both CCL and single-modal contrastive learning.
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A man in a blue jacket is standing 
in front of a small group of people.

A man in a blue jacket is standing 
in front of a small group of people.

(a) w/o WS-TE (b) w/ WS-TE

Figure 3: Illustration of the effect of weight-sharing trans-
former encoder. With the WS-TE, images and texts concen-
trate on the same semantics.
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Figure 4: Comparison of inference time against Oscar.

Transformer Encoders Two special transformer en-
coders are applied. Text-aligned-visual transformer
encoder(TAV-TE) transfers visual features’ distribution be-
fore the weight-sharing transformer encoder(WS-TE). WS-
TE is a crucial module that ensures the image and text pay
attention to the same semantics. These two designs are both
crucial to cross-modal alignment, as seen in Table 5b.
Depth of WS-TE A critical point for designing the trans-
former encoder is the depth of it. Thus we explore the op-
timal number of layers of WS-TE in Table 5c for better at-
tention. Without pre-training, the best number is 1. The
pre-training stage enables deeper network, resulting in the
best number of 2. As the WS-TE is trained from scratch,
size of pre-training data determines the max depth of the
network. For the image-text data we have, the depth of 2
layers may currently be a bottleneck.
Size of Pre-training Corpus The size of image-text pairs
plays a key role in cross-modal pre-training [30]. Uniter
[11] utilizes 9.6M pairs and Oscar uses 6.5M . We record
results on three tasks with different sizes of pre-training cor-
pus in Table 5d. It is noticed that VQA and GQA datasets
are composed of image-question pairs, which leads to lit-
tle improvement. And the growth of data size can’t bring
significant improvement in single-modal tasks.

Different Visual Backbones To prove the robustness of
our COOKIE, we substitute the visual backbones with or
without pre-training. In Table 5e, as expected, the stronger

the visual backbone, the stronger COOKIE is for ITM and
IR. However for TM, better visual encoders don’t bring per-
formance gain. We infer it’s because if the visual encoder
is too powerful, the text encoder will lose too much origi-
nal information. For texts, we only use BERT-base model
due to the limitation of computing resources. We leave the
pre-training with BERT-Large model for future work.

4.4. Analysis

Analysis of Weight-Sharing Transformer We design a
weight-sharing transformer encoder(WS-TE) at the end of
the network. Although images and texts have cross-modal
heterogeneous gap, the process of weight-sharing attention
constrains the two paths to focus on the tokens with the
same semantics. We visualize the attention learned by the
WS-TE in Figure 3. Same as [28, 48], considering the final
representation should pay more attention to salient objects
in the images or texts, we compute similarities of the final
representation I⃗ or T⃗ between the tokens after the WS-TE.
In this way, every area has a similarity score with the fi-
nal representation. Then we rank the scores and the areas
with higher ranks are marked brighter in the figures. We
mark the top-5 words for texts. As we can see from the fig-
ure, without WS-TE(the figure on left), the image and the
sentence pay attention to different semantics. In the text,
“man”, “jacket” and “people” are salient, while in the im-
age, more attention is given to irrelevant “flag” and “table”.
With the WS-TE(the figure on right), images and texts are
prone to emphasize the same semantics, which are “man”
and “group of people”.

Analysis of Inference Time COOKIE is a two-stream
method without cross-modal interaction, thus it greatly
speeds up the task of image-text retrieval. We conduct
experiments on Flickr30K test set and record the infer-
ence time(feature extraction plus similarity computing). As
shown in Fig. 4, one-stream methods like Oscar [30] have a
O(n2) time complexity against O(n) of our model.

5. Conclusion

In this paper, we propose a new Crontrastive Cross-
Modal Knowledge Sharing Pre-training(COOKIE) to learn
universal separate vision and language representations for
downstream matching tasks. We design a weight-sharing
transformer encoder to better align visual and textual se-
mantics and pre-train the model with cross-modal con-
trastive learning together with single-modal contrastive
learning using 5.9M image-text pairs. COOKIE sets new
state-of-the-art results on single-modal matching tasks and
at the same time reaches comparable results on cross-modal
retrieval with only 3/1000 inference time.

2215



References
[1] Peter Anderson, Xiaodong He, Chris Buehler, Damien

Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and
visual question answering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
6077–6086, 2018.

[2] Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C Lawrence Zitnick, and Devi Parikh.
Vqa: Visual question answering. In Proceedings of the IEEE
international conference on computer vision, pages 2425–
2433, 2015.

[3] Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang.
Deep cauchy hashing for hamming space retrieval. In Pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1229–1237, 2018.

[4] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S
Yu. Hashnet: Deep learning to hash by continuation. In Pro-
ceedings of the IEEE international conference on computer
vision, pages 5608–5617, 2017.

[5] Daniel Cer, Mona Diab, Eneko Agirre, Iñigo Lopez-Gazpio,
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