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Abstract

We propose a novel approach that integrates under-
parameterized RANSAC (UPRANSAC) with Hough Trans-
form to detect vanishing points (VPs) from un-calibrated
monocular images. In our algorithm, the UPRANSAC
chooses one hypothetical inlier in a sample set to find a
portion of the VP’s degrees of freedom, which is followed
by a highly reliable brute-force voting scheme (1-D Hough
Transform) to find the VP’s remaining degrees of freedom
along the extension line of the hypothetical inlier. Our ap-
proach is able to sequentially find a series of VPs by re-
peatedly removing inliers of any detected VPs from minimal
sample sets until the stop criterion is reached. Compared
to traditional RANSAC that selects 2 edges as a hypotheti-
cal inlier pair to fit a model of VP hypothesis and requires
hitting a pair of inliners, the UPRANSAC has a higher like-
lihood to hit one inliner and is more reliable in VP de-
tection. Meanwhile, the tremendously scaled-down voting
space with the requirement of only 1 parameter for pro-
cessing significantly increased the performance efficiency
of Hough Transform in our scheme. Testing results with
well-known benchmark datasets show that the detection ac-
curacies of our approach were higher or on par with the
SOTA while running in deeply real-time zone.

1. Introduction

A set of parallel lines in 3-D space converge in image
plane to a common point called vanishing point (VP) which
is equivalent to the infinity of the set of parallel lines in
the original world frame. VP contains important informa-
tion for perspective projection transformation. The coordi-
nates of a VP fully determine the direction in 3-D space of
the set of parallel lines that converge to the VP. Moreover,
VPs formed by multiple sets of co-plane parallel lines are
collinear. The line that passes these VPs is called a vanish-
ing line, which solely determines the plane containing the

very sets of parallel lines. A triplet of mutually orthogonal
VPs can be used to derive the internal as well as external
parameters of the camera [6]. A special and also important
type of vanishing line is the horizon line, a virtual line pass-
ing a set of horizontal vanishing points. In man-made en-
vironment, a type of vanishing point called zenith (or nadir
when the position is below the image center) is formed by
lines perpendicular to horizontal plane in the real world .

VP detection is of relevance in camera calibration
( [6], [7], [18], and [1]), 3-D reconstruction ( [25], [37]),
virtual reality [30], robot navigation [15] and scene tracking
[8] and vehicle automatic driving [16]. Consequently, VP
detection is an important research topic in computer vision.
The location of a VP in the image plane is determined by
relative positions and directions of a set of parallel lines dis-
played in the camera frame. The process of detecting a VP
is essentially to search in the image plane for the common
intersection of a set of VP’s inlier edges (line segments)
that are projections of the set of parallel line segments in
the original 3-D space. Due to background noise and im-
age distortion, inlier edges of a valid VP generally do not
exactly converge to a single point and instead they intersect
with each other in a bounded region, whose centroid is re-
garded as a VP nonetheless.

1.1. Related Works

Having long been considered an important research topic
in computer vision, VP detection remains a challenging is-
sue that is still far from being perfectly resolved.

Robust in noise environment, Hough Transform (HT)
[12] was among the first to be used in VP detection. The ob-
stacle of applying HT to VP detection is that HT only works
in a bounded parameter space whereas the image plane is
unbounded. To overcome this obstacle, [28] divided the im-
age plane into 3 bounded subspaces in which the cascaded
2-D Hough Transform was then conducted. For calibrated
images with known focal length, Barnard [3] mapped the
image plane into the Gaussian sphere and conducted HT in
the latter space. Later, improvements on [3] were proposed
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by [24]) and [20]. Overall, the accuracy of HT is subject to
discretization effect of Hough cells sampled inside the 2-D
parameter space and the corresponding computational com-
plexity is generally high in order to maintain satisfactory
detection accuracy, which is proportional to the number of
cells sampled over the entire 2-D space.

Like HT, RANSAC [11] has also been widely explored
for VP detection. Unlike HT, RANSAC does not require the
partitioning of the parameter space and can directly work
in the image plane. RANSAC is particularly suitable for
VP detection in man-made environments where a substan-
tial share of the input edges are inliers of a few and often
mutually orthogonal VPs (see [22]). The most promising
RANSAC-based scheme was proposed by Tardif [26] which
randomly selects up to 500 minimal sample sets of edge pair
from a set of input edges and further fits the input edges
to the hypothesis of all-inlier pair using J-Linkage to find
the pairs with satisfactory consensus. To further improve
accuracy of Tardif’s algorithm, [27] ran the J-Linkage sev-
eral times after different random initializations whereas [34]
adopted a much larger sample set size. In more limited
settings where inliers of the orthogonal VPs are dominant
in the input edges, a RANSAC hypothesis set could even
be expanded to 3 edges belonging to a triplet of orthog-
onal VPs [21] or 4 edges belonging to 2 or 3 orthogonal
VPs [33]. For calibrated images, [19] proposed to use
the focal-length-dependent equivalent sphere, which is sim-
ilar to Gaussian sphere, to conduct real-time VP detection
through RANSAC.

Recently, neural network has been explored for VP de-
tection. Neural network approaches generally favor the data
representation on the Gaussian sphere (see [3]), which is
a bounded space ideal for neural-network-based VP detec-
tion. [35] proposed a scheme that uses global image context
extracted via a deep convolutional neural network (CNN)
on Gaussian sphere to address horizontal and zenith VP de-
tection. [36] proposed Hough-Transform-based conic con-
volution operator to evaluate a set of VP candidates sampled
from Gaussian sphere. [13] combined CNN and RANSAC
that makes use of Gaussian sphere represntation arising
from an inverse gnomonic projection of edge lines. [14] pro-
prosed a neural network conditioned on multi-model-based
sequential RANSAC to perform different types of model
fitting including VPs estimation, line-fitting, etc. [23] com-
bined Hough Transform with neural network to address the
issue of VP detection in documental images.

Apart from the aforementioned methods, other ap-
proaches have also been proposed for VP detection. An-
tunes et al. [1] proposed a global algorithm using a local
message passing approach to solve VP detection as a multi-
model fitting problem, which showed comparable detection
accuracy to [26]; [17] resorted to PClines dual spaces [10]
to perform VP detection; [4] proposed a mathematically

guaranteed globally optimal manner which inherently en-
force the VP orthogonality.

1.2. Contribution

In finding 2 degrees of freedom of a VP, the existing
RANSAC ( [26]) requires 2 hypothetical VP inliers to fit
a VP model. For an image whose edge set contains a large
number of VP outliers, the number of sample sets required
to hit an all-inlier (outlier-free) minimal set with reasonable
probability grows exponentially large.

To reduce the number of the sample sets without sacrific-
ing reliability, we propose UPRANSAC in which a sample
set only contains a single hypothetical VP inlier (HVPI).
With UPRANSAC fixing only part of the degrees of free-
dom (DOF) of a VP, its remaining DOF is later recovered
by a reliable brute-force voting scheme (1-D HT conducted
along the extension line of the HVPI). In performing HT,
the whole Hough space consists of the extension lines of
all of the selected HVPIs with each line being regarded as a
Hough subspace. Each subspace is further partitioned into a
set of Hough cells of approximately equal probability. After
voting, an VP is detected by searching for the HVPI own-
ing the optimal consensus, which is defined as the HVPI
whose associated subspace owns the peak cell across the
whole Hough space. Our approach detects multiple VPs se-
quentially by removing HVPIs of the detected VP from the
minimal sample sets (and removing from the Hough space
the subspaces associated with these HVPIs) and repeating
until the stop criteria (e.g. the number of detected VPs is
above a certain threshold or the vote count of the peak cell
across the whose Hough space is below a prescribed thresh-
old) are reached.

So, our major contribution in this paper is proposing a
real-time VP detector that integrates RANSAC and HT,2
traditionally mutually exclusive techniques, with each of
them recovering part of a VP’s 2 DOFs. This novel ap-
proach brings 3 immediate benefits: 1) the number of sam-
ple sets needed to fit a VP model is substantially smaller
than a fully-parameterized RANSAC (ours: 100 versus
[34]: up to 3,000); 2) the Hough space that consists of mul-
tiple 1-D subspaces is easier to handle than the 2-D space
(usually Gaussian sphere) used by typical HT approaches;
3) Votes are cast by image edges rather than edge pairs
(see [3], [20], [24], [28]), and voting is conducted more
concisely in 1-D space (extension line of a HVPI) instead
of 2-D space, leading to significant drop of computational
cost.

As a VP can he anywhere along the extension line of
an HVPI, our another contribution is proposing a scheme
to map the extension line of an HVPI, an unbounded space
apparently not partitionable, into a bounded space (an an-
gle space) which can then be partioned into a set of cells of
approximately the same probability. Our mapping scheme
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Figure 1. Mapping the coordinate t of a point P along a line to the
coordinate θ = tan−1 t

a
in an angular space.

is illustrated in Fig. 1. Assume Q is the pedal of O on the
extension line of an HVPI (marked with thick red) and P is
the intersection between the extension line of a voting edge
and the extension line of the HVPI, we use t = QP to rep-
resent the coordinate of P on the HVPI line (t is positive if
P is at the right side of OQ and negative otherwise). Al-
though t is unbounded, we propose a scheme that maps t
into ϑ = tan−1

(
t
a

)
, where a is a parameter dependent on

the location and orientation of HVPI line. Apparently, ϑ
lies in a 1-D bounded space which makes it ideal for HT.

Our VP detection algorithm operates directly in image
domain. Since the consistency and distance measures in
image domain have clear geometric interpretation, our algo-
rithm is able to achieve detection accuracy and robustness
that are comparable to the state of the art; moreover, the
computational frugality and space compactness of the 1-D
Hough Transform ensures our algorithm’s real-time perfor-
mance.

2. Algorithm

Assume a set of N edges is extracted from an image, the
algorithm’s pipeline runs through the following 4 steps:

1). In UPRANSAC step, a total of n sample edges, each
of which is regarded as a HVPI, are randomly selected from
the N input edges;

2). For each HVPI, a Hough subspace is built along its
extension line through partitioning the line into a set of m
cells of approximately equal probability;

3). Each input edge gets to vote once in each subspace,
casting its vote for the cell that the extension line of the
voting edge crosses. As HVPI is not allowed to vote in its
associated subspace, (N − 1) votes are cast for m cells in
each subspace;

4). After voting, a multi-round VP detection is con-
ducted with each round detecting a single VP and removing
the subspaces associated with those HVPIs which are valid
inliers of the VP. The VP detection ends when the stop cri-

teria are reached.

2.1. Selection of a set of HVPI edges

Distinct from a full-parameterized RANSAC VP detec-
tor such as [26] in which each sample set contains 2 HVPIs
to fit a VP model, the UPRANSAC selects a single HVPI
as a sample set, in which case a VP is not totally fixed but
instead bound to the extension line of the HVPI. This brings
an obvious advantage in that a much smaller number of min-
imal sample sets are required to achieve the same probabil-
lity of hitting an all-inlier sample set as a full-parameterized
RANSAC. For example, assume an image has 1,000 edges,
among which 50 are the inliers of a VP. Then in our ap-
proach, each sample set has the probability of 0.05 to hit a
VP inlier; in contrast, a sample set in a fullly-parameterized
RANSAC that uses a pair of HVPIs as a sample set has the
probability of 0.052 = 0.0025 to hit an all-inlier set. As the
number of meaningful edges (or line segments) in a typi-
cal average image is usually less than 1,000, the size of the
minimal sample sets needed by UNPANSAC can be as low
as 200 input edges to ensure adequate detection reliability
(against false negative detection). In practice, a larger size
in the minimal sample sets (up to the full set of the input
edges) than necessary only marginally improves the detec-
tion accuracy.

2.2. Construction of Hough space

Our approach’s Hough space consists of a set of sub-
spaces, each of which is built along the extension line of
an HVPI. To optimize the HT reliability, it is necessary to
formulate a scheme to partition each subspace into a set
of Hough cells of approximately equal probability. In this
way, the votes cast by outliers of a VP tend to be distributed
evenly over the cells of the subspace and thus the risk of
false positive VP detection is minimized.

For simplicity, the image is first normalized to a unit
square with its center fixed at the origin as shown in Fig.2.
We use l(d, φ) to represent the extension line of an HVPI,
where d is the distance between O and the HVPI line, Q
is the pedal of perpendicular projection of O to the HVPI,
and φ is the level-line angle of OQ. An image generally
contains a number of edges (line segments), whose location
and orientation distributions are quite different from uni-
form distribution. However, for a huge number of images
of the same size, by statistics, their edges are expected to
be evenly distributed inside the image region and their ori-
entations are also expected to be evenly distributed between
0 and π. Collectively, these edges can be modelled by a
simple generic random edge e(u, v, θ) whose midpoint C
((u, v) in Fig. 2) is uniformly distributed inside the image
region and whose level-line angle θ is also uniformly dis-
tributed in the angular space (θ ∈ (0, π)).

The probability density function of e(u, v, θ) can be
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Figure 2. The intersection of the extension line of the random edge
e(u, v, θ) and the HVPI (l(d, φ).

written as:

f(u, v, θ) =

{
1
π if u, v ∈ (−0.5, 0.5) and θ ∈ (0, π),

0 otherwise.
(1)

Our goal is to derive an analytical approximation to di-
vide l(d, φ) (the extension line of the HVPI) into a set of
1-D Hough cells so that the extension line of e(u, v, θ) is
approximately equally likely to cross each cell. Such a
model is expected to be applicable to a generic image since
e(u, v, θ) has similar behavior to the collective effect of the
set of edges in a general image.

As shown in Fig. 2, assume the extension line of the ran-
dom edge e(u, v, θ) intersects l(d, φ) at P . Along l(d, φ) a
new variable t = QP is introduced. Here t is assigned pos-
itive if P is at the right side of OQ and assigned negative
otherwise. It can be easily derived that P ’s coordinates are
(d cosφ + t sinφ, d sinφ − t cosφ). Since CP ’s level line
angle is θ, one has:

tan θ =
v − d sinφ+ t cosφ

u− d cosφ− t sinφ
(2)

Since the probability distribution of intersection P ’s co-
ordinate t along l(d, φ) is the cumulative effect of the ran-
dom edge e(u, v, θ) over the edge’s entire space, probabilis-
tic density function (PDF) of t is independent of u, v and θ.
So PDF of t can be defined as fd,φ(t).

To deduce fd,φ(t), let’s consider the probability of the
intersection point P falling between t and t + dt as shown
in Fig. 2, where dt is an infinitesimal increment of t. On
the one hand, this probability is equal fd,φ(t)|dt|; on the
other hand, the probability is also equal to the probability
that level-line angle of the random edge falls between θ to

θ + dθ, with t and θ interrelated via Eq.2. So, we have:

fd,φ(t)|dt| =
∫ 0.5

−0.5
du

∫ 0.5

−0.5
dvf(u, v, θ)|dθ| (3)

s.t. tan θ =
v − d sinφ+ t cosφ

u− d cosφ− t sinφ

where s.t. is the abbreviation of ”subject to”. Eq.(3) can be
solved by moving |dt| to the right side:

fd,φ(t) =

∫ 0.5

−0.5
du

∫ 0.5

−0.5
dvf(u, v, θ)

∣∣∣∣dθdt
∣∣∣∣ (4)

s.t. tan θ =
v − d sinφ+ t cosφ

u− d cosφ− t sinφ

Combining Eq.1 and Eq.4, we have:

fd,φ(t) =
1

π

0.5∫
−0.5

0.5∫
−0.5

|u cosφ+ v sinφ− d|dudv
(u−d cosφ−t sinφ)2+ (v−d sinφ+t cosφ)2

(5)

Eq.5 gives the PDF of how the intersection point P is
distributed along l(d, φ). While the PDF itself is appar-
ently not analytically solvable, we can still derive its analyt-
ical approximation. To do that, we introduce 2 new terms:
g(d, φ) ≡ fd,φ(0) and h(d, φ) = limt→∞ t2fd,φ(t) :

g(d, φ) ≡ 1

π

0.5∫
−0.5

0.5∫
−0.5

|u cosφ+v sinφ−d|dudv
(u−d cosφ)2+(v−d sinφ)2

(6)

h(d, φ) ≡ 1

π

0.5∫
−0.5

0.5∫
−0.5

|u cosφ+ v sinφ− d|dudv (7)

The distributions of g(d, φ) and h(d, φ) over d ∈ (0, 0.5)
and φ ∈ (0, 2π) are shown in Fig. 3 (a) and Fig. 3 (b),
respectively. A new function, f̂d,φ(t) is introduced here to
approximate fd,φ(t):

f̂d,φ(t) =
g(d, φ)

1 + g(d,φ)
h(d,φ) t

2
(8)

Since f̂d,φ(0)
fd,φ(0)

= 1 and limt→∞
f̂d,φ(t)
fd,φ(t)

= 1 and both

f̂d,φ(t) and fd,φ(t) are monotonously decreasing fuctions
of |t|, f̂d,φ(t) is expected to be a good approximation of
fd,φ(t). As g(d, φ and h(d, φ are still not in analytical
forms, we introduce their respective empirical approximate
solution:

g(d, φ) ≈ 0.9− 0.9d2 (9)

h(d, φ) ≈ 0.111 + 0.155d2 (10)
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(a) (b)

Figure 3. The distribution of g(d, φ) (a) and h(d, φ)(b) in terms of
d and φ.

In above approximate solution, the variable φ is ignored
since its effect on both g(d, φ) and h(d, φ) is insignificant
in comparison with d. As a perfect PDF has the property

of
+∞∫
−∞

f̂d,φ(t)dt ≡ 1,the above analytical approximations

satisfy |
+∞∫
−∞

f̂d,φ(t)dt − 1| ≤ 0.01 for d ≤ 0.6, which

makes f̂d,φ(t) a satisfactory probabilistic density function
for a HVPI edge that is no more than 0.6 times of the nor-
malized image width(or height) away from the image cen-
ter.

Since f̂d,φ(t) is still a function defined over an un-
bounded 1-D space(t ∈ (−∞,+∞)), we introduce a new
variable ϑ:

ϑ = tan−1

 t√
h(d,φ)
g(d,φ)

 (11)

Since lim
t→∞

ϑ = π
2 , obviously ϑ is defined in a bounded

space (ϑ ∈
(
−π2 ,

π
2

)
), with ϑ = ±π2 corresponding specifi-

cally to cases where the random edge e(u, v, θ)(voting edge
in Fig. 4) is parallel to the HVPI line l(d, φ). As shown in
Fig. 4, assume a voting edge intersects the l(d, φ) at point P
which is t away from the pointQ (the pedal ofO on l(d, φ)),
t can be mapped into an angular variable ϑ = ∠PRQ with
R being the reference point along the extension line of QO

and satisfying QR =
√

h(d,φ)
g(d,φ) .

Corresponding to the PDF f̂d,φ(t) of point P in t space,
we also define the PDF of point P in ϑ space as f̂d,φ(ϑ).
The 2 PDFs are interrelated in the form of:

f̂d,φ(ϑ)dϑ = f̂(d,φ)(t)dt (12)

Eq.11 yields:

f̂d,φ(ϑ) =
f̂(d,φ)(t)

dϑ
dt

(13)

Combining Eq.8, Eq.11 and Eq.13 yields:

f̂d,φ(ϑ) =
√
g(d, φ)h(d, φ) (14)

Figure 4. Mapping from t space to ϑ space.

Eq.14 defines a uniform distribution of the point P in the
ϑ space. Since partitioning the ϑ space into a set of equal-
sized cells leads to each cell having the same probability of
capturing P , ϑ space is ideal for HT.

In practice, HT is conducted in t space but implicitly in-
voking ϑ as far as space partitioning is concerned. Assume
the HVPI line is partitioned into a set of m (an even intiger)
Hough cells (via ϑ), numbered (0, 1, 2, ...,m − 1) and a
voting edge intersects the HVPI line at t, then the sequence
number k of the cell that the voting edge casts its vote for
is:

k = round

m
2

+
m

π
tan−1

 t√
h(d,φ)
g(d,φ)

 (15)

where the analytical approximations of g(d, φ) and h(d, φ)
are given by Eq.9 and Eq.10 respectively, and ”round” is the
function that produces the nearest integer around the param-
eter in the brackets.

2.3. HVPI-based Voting

Assume a total of N edges have been extracted from an
image, a subset which contains n edges is selected in the
minimal HVPI sets. The Hough space consists of n sub-
spaces with each subspace built along the extension line of
an individual HVPI and containing m Hough cells.

To begin with, each Hough cell is initialized to 0 (con-
taining 0 votes). Then,each of the N input edges casts one
vote in each subspace, voting for the cell whose sequence
number is derived through Eq.15. In the case where the
voting edge is parallel to the HVPI, the vote goes to the first
Hough cell (k = 0). To ensure the fairness of voting pro-
cess, a HVPI edge is not allowed to vote in its associated
subspace. Overall, (N − 1) × n votes are cast. With there
being m Hough cells, each cell receives N−1

m votes on av-
erage. Fig. 5 shows an image’s input edges (in yellow), 4
HVPIs (in thick red) and the distributions of votes in their
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Figure 5. 4 HVPIs and the vote distributions in their respective
subspaces.

respective subspaces (in red, green, blue, and cyan). Note
that each subspace contains a salient peak which is at least
4 times as high as the average number of votes captured
by other Hough cells. It is also observed that each valid
region around the peak, which contains those surrounding
cells capturing at leach half of the votes received by the peak
cell, covers no more than 3 cells (In Fig. 5, m = 120).

2.4. Multi-round VP Detection

The detection stage is a multi-round process with each
round consisting primarily of the following 3 steps:

1). Search and validate the optimal HVPI. This is the
HVPI whose associated subspace contains the peak cell(the
cell that captures the most votes across the whole Hough
space). If the peak cell’s vote count is above a prescribed
threshold Cthreshold, a new VP is detected and the optimal
HVPI is considered as a valid inlier of a VP;

2). Extract the VP’s initial estimate and all of its inlier
edges, and refine the VP estimate based on the inliers. The
VP’s initial estimate is set at the midpoint of the peak cell
in the optimal HVPI’s associated subspace. For each de-
tected VP, we create an inlier set with the optimal HVPI
being the first entry. Then those voting edges whose votes
fall in the full-width-at-half-maximum region of the peak
cell—which covers the cells surrounding the peak with each
cell receiving at least half as many votes as the peak cell
does—are added into the inlier set of the VP. Please note
that in a subspace, the leftmost cell(k = 0) and the right-
most cell(k = m−1) are neighboring cells because their re-
spective ϑ values are separated by π/m. We use the method
that is similar to [35] to refine the VP;

3). Update the Hough space based on the VP’s inlier set.

Figure 6. The detected VP points and their respective inlier edge
sets .

It is assumed that an edge can be an inlier to no more than
one VP, so the subspaces of those HVPIs identified as the
inliers of the newly detected VP are removed from the cur-
rent Hough space to prevent duplicate detection; moreover,
votes casted by each of the inlier edges of the VP in the cur-
rent Hough space is discarded to prevent their interference
with the following rounds of detection.

The above process runs repeatedly until either the
number of detected VPs reaches the prescribed threshold
N MAXVP or the votes received by the optimal HVPI’s
peak cell falls below a prescribed threshold Cthreshold.

Fig. 6 shows 4 sets of VP inliers based on the voting re-
sults as shown in Fig. 5. Note only 3 horizontal VPs, which
are marked green, blue, and cyan respectively, are shown
and their inlier edges are marked with corresponding col-
ors. As expected, the 3 horizontal VPs are colinear and fall
on the dashed red line (the horizon).

3. Complexity Analysis
The computational cost of our approach primarily comes

from 3 sources, voting, VP detection, and VP refining.
Here, N , n, and m are the number of input edges, the num-
ber of the HVPIs, and the number of Hough cells of each
subspace, respectively. In the implementation, n and m are
limited with n = min (N, 500) and m ≤ 200.

Voting process involves (N − 1) × n votes. As n ≤
500, its computational complexity is O(N). VP detection
involves at most N MAXV P ( 6 in our implementation)
rounds with each round searching for at most m × n cells.
With both m and n limited, it has the computational com-
plexity of O(1). VP refining involves at most N MAXV P

VPs, each VP refining involves O(N) inlier edges, so the
total refining cost is O(N).

Overall, the algorithm’s computational cost is O(N),
where N is the number of input edges.

As far as space complexity is concerned, since Hough
space involves n subspaces, each of which contains m cells
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Figure 7. Exemplary VP detection results using our approach. 1st and 2nd rows show the satisfactory detection and the 3rd row shows the
less-than-ideal detection cases which account for less than 7% of total cases. Inlier edges are color-coded based on their respective VP type
(zenith: magenta; the 2 dominant horizontal VPs: yellow and cyan). Ground truth VPs and detected VP are displayed as circles and red
circles respectively; ground truth horizon lines and detected horizon lines are displayed as green solid lines and red dash lines respectively.
Note that some VPs are out of the displayable areas and so only their inliers are shown.

(both n andm are limited), our approach has the space com-
plexity of O(mn) = O(1).

4. Evaluation

Our VP detection scheme is examined and evaluated
against the SOTA in VP detection. To make fair com-
parison, we used a 6-year-old laptop powered by 2Ghz
Intel Core i7 CPU and 4GB of DRAM, similar to hard-
ware setup in [17], to perform the tests. Our algorithm
is implemented with C++ language which is comparable
to [34], [35] and [29], which were implemented with C lan-
guage, and [17] which was implemented with Matlab+mex.

We evaluate our algorithm using two benchmark
datasets, the York Urban Dataset (YUD, [9]) and the
Eurasian Cities Dataset (ECD, [2]). YUD contains 102 cali-
brated images of 640×480 pixels obeying Manhattan world

assumption [8]. ECD contains 103 non-calibrated images
of various widths and heights. ECD contains larger images
with more complex scenes than YUD and is thus more chal-
lenging and time-consuming than YUD with respect to VP
detection.

We used Canny edge detector [5] in combination
with [32] to extract image edges because of its speed ad-
vantage over [31]. Table 1 lists the parameters and their
values that our implementation used for evaluation.

Fig. 7 shows results for our algorithm for some images
in YUD and ECD. Qualitatively, the case of total failure
was not observed as the zenith VP and at least one of the
horizontal VPs were always successfully detected by our
approach. The first and the second row in Fig. 7 displays
the cases where horizon detection error is less than 0.01 (92
among a total of 205 images) with detected horizon line (in
red dash line) being very close to the ground truth (solid
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Name Usage Magnitude(s)

n 2.1, 2.2, 3 min(500, N)
m 2.1, 2.2, 3 158 (YUD) or 180(ECD)

N MAXVP 2.3, 3 6
Cthreshold 2.4 max

(
5, 3Nm

)
Table 1. Algorithm parameters used.

(a)

(b)

Figure 8. Quantitative evaluation of the horizon line estimation.
The horizontal axis represents the horizon line detection error. The
vertical axis represents the ratio of images with horizon line error
lower than the corresponding abscissa. The AUC for each curve is
shown in the legend. For additional details see Sec

green line), and the third row shows the cases where hori-
zon detection error is higher than 0.05, indicated by the sig-
nificantly wider gap between detected horizon and ground
truth.

It shows that our approach is generally able to robustly
handle various types of noises, including irregular building
contour (3rd and 4th images in 1st row and 1st and 3rd im-

ages in 2nd row), stair handle (2nd image in 1st row), lane
markers and other road surface objects (2nd, 3rd, and 4th
images in 2nd row). The partially failed detection, which is
defined as horizon detection error greater than 0.05, makes
up 6.3% of the all tested images. The primary cause of the
partial VP detection failure is clustering of unrelated edges
into a set of inliers for the same VP. Those edges prone to
VP detection error usually include vehicle contours (1st and
3rd images in the 3rd row), electric wires (the 3rd and 4th
images in the 3rd row), edges belonging to different sets of
parallel lines (the 2nd and 4th images in the 3rd row).

Following previous research works, we use the horizon
detection error as a benchmark of VP detection accuracy.
Horizon detection error is defined as the maximum vertical
distance inside the image between the detected horizon line
and the ground truth horizon line normalized by the image
height. Following protocol used by [34], [17], [35], [29],
the cumulative histogram of these errors is shown and the
area under the curve (AUC) is reported as well.

Fig. 8(a) shows the accuracy comparison of the 8 com-
peting algorithms using YUD dataset. Our approach
achieves the best AUC at 95.47%, which is 0.69% better
than the second best at 94.78% achieved by [35]. Fig. 8(b)
shows the detection errors for the 8 algorithm on ECD data,
in which our approach achieves the second best AUC of
89.64%, which is about 1.16% lower than the best AUC
(90.80%) achieved by [35] but 0.44% better than the 3rd
best AUC (89.20%) achieved by [17].

For a YUD image, our approach’s average end-to-end
processing time—including image loading, edge detection
and VP detection— is 43 milliseconds, which drops to 9.3
milliseconds excluding image loading and edge detection.
In comparison, [35] and [17] required 1 second and 30
seconds, respectively, on average to process a YUD image.

5. Conclusion
We presented a novel VP detection scheme that demon-

strates competitive accuracy with the state of the art at real-
time processing efficiency. The further work will be in
adding neural network module to recognize edges belong-
ing to unrelated objects to reduce partial failed detection
error.
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