
Rethinking and Improving Relative Position Encoding for Vision Transformer

Kan Wu1,2,3,∗, Houwen Peng3,∗,†, Minghao Chen3, Jianlong Fu3, Hongyang Chao1,2

1
School of Computer Science and Engineering, Sun Yat-sen University

2
The Key Laboratory of Machine Intelligence and Advanced Computing (Sun Yat-sen University), Ministry of Education

3
Microsoft Research Asia

Abstract

Relative position encoding (RPE) is important for trans-
former to capture sequence ordering of input tokens. Gen-
eral efficacy has been proven in natural language process-
ing. However, in computer vision, its efficacy is not well
studied and even remains controversial, e.g., whether rela-
tive position encoding can work equally well as absolute
position? In order to clarify this, we first review exist-
ing relative position encoding methods and analyze their
pros and cons when applied in vision transformers. We
then propose new relative position encoding methods dedi-
cated to 2D images, called image RPE (iRPE). Our methods
consider directional relative distance modeling as well as
the interactions between queries and relative position em-
beddings in self-attention mechanism. The proposed iRPE
methods are simple and lightweight. They can be eas-
ily plugged into transformer blocks. Experiments demon-
strate that solely due to the proposed encoding methods,
DeiT [21] and DETR [1] obtain up to 1.5% (top-1 Acc)
and 1.3% (mAP) stable improvements over their original
versions on ImageNet and COCO respectively, without tun-
ing any extra hyperparameters such as learning rate and
weight decay. Our ablation and analysis also yield in-
teresting findings, some of which run counter to previ-
ous understanding. Code and models are open-sourced at
https://github.com/microsoft/Cream/tree/main/iRPE.

1. Introduction

Transformer recently has drawn great attention in com-

puter vision because of its competitive performance and su-

perior capability in capturing long-range dependencies [1,

2, 7, 21, 24]. The core of transformer is self-attention [22],

which is capable of modeling the relationship of tokens in

a sequence. Self-attention, however, has an inherent defi-

ciency — it cannot capture the ordering of input tokens.

∗Equal contributions. Work performed when Kan and Minghao were

interns of MSRA. † Corresponding author: houwen.peng@microsoft.com

Therefore, incorporating explicit representations of position

information is especially important for transformer, since

the model is otherwise entirely invariant to sequence order-

ing, which is undesirable for modeling structured data.

There are mainly two classes of methods to encode po-

sitional representations for transformer. One is absolute,

while the other is relative. Absolute methods [8, 22] en-

code the absolute positions of input tokens from 1 to maxi-

mum sequence length. That is, each position has an individ-

ual encoding vector. The encoding vector is then combined

with the input token to expose positional information to the

model. On the other hand, relative position methods [4, 17]

encode the relative distance between input elements and

learn the pairwise relations of tokens. Relative position

encoding (RPE) is commonly calculated via a look-up ta-

ble with learnable parameters interacting with queries and

keys in self-attention modules [17]. Such scheme allows the

modules to capture very long dependencies between tokens.

Relative position encoding has been verified to be effective

in natural language processing [4, 6, 15, 25]. However, in

computer vision, the efficacy is still unclear. There are few

recent works [3, 7, 18] shedding light on it, but obtaining

controversial conclusions in vision transformers. For exam-

ple, Dosovitskiy et al. [7] observed that the relative position

encoding does not bring any gain comparing to the abso-

lute one (please refer to Tab. 8 in [7]). On the contrary,

Srinivas et al. [18] found that relative position encoding can

induce an apparent gain, being superior to the absolute one

(please refer to Tab. 4 in [18]). Moreover, the mostly recent

work [3] claims that the relative positional encoding cannot

work equally well as the absolute ones (please refer to Tab.

5 in [3]). These works draw different conclusions on the

effectiveness of relative position encoding in models, that

motivates us to rethink and improve the usage of relative

positional encoding in vision transformer.

On the other hand, the original relative position encoding

is proposed for language modeling, where the input data is

1D word sequences [4, 17, 22]. But for vision tasks, the

inputs are usually 2D images or video sequences, where

the pixels are highly spatially structured. It is unclear that:

10033

whether the naive extension from 1D to 2D is suitable for

vision models; whether the directional information is im-

portant in vision tasks?

In this paper, we first review existing relative position en-

coding methods, and then propose new methods dedicated

to 2D images. We make the following contributions.

• We analyze several key factors in relative position en-

coding, including the relative direction, the importance

of context, the interactions between queries, keys, val-

ues and relative position embeddings, and computa-

tional cost. The analysis presents a comprehensive un-

derstanding of relative position encoding, and provides

empirical guidelines for new method design.

• We introduce an efficient implementation of relative

encoding, which reduces the computational cost from

the original O(n2d) to O(nkd), where k � n. Such

implementation is suitable for high-resolution input

images, such as object detection and semantic segmen-

tation, where the token number might be very large.

• We propose four new relative position encoding meth-

ods, called image RPE (iRPE), dedicated to vision

transformers, considering both efficiency and gener-

alizability. The methods are simple and can be eas-

ily plugged into self-attention layers. Experiments

show that, without adjusting any hyperparameters and

settings, the proposed methods can improve DeiT-

S [21] and DETR-ResNet50 [1] by 1.5% (top-1 Acc)

and 1.3% (mAP) over their original models on Ima-

geNet [5] and COCO [12], respectively.

• We answer previous controversial questions. We em-

pirically demonstrate that relative position encoding

can replace the absolute encoding for image classifi-

cation task. Meanwhile, the absolute encoding is nec-

essary for object detection, where the pixel position is

important for object localization.

2. Background
2.1. Self-Attention

Self-attention plays a fundamental role in transformer.

It maps a query and a set of key-value pairs to an output.

More specifically, for an input sequence, e.g., the embed-

dings of words or image patches, x = (x1, . . . ,xn) of n
elements where xi ∈ Rdx , self-attention computes an out-

put sequence z = (z1, . . . , zn) where zi ∈ R
dz . Each out-

put element zi is computed as a weighted sum of input ele-

ments:

zi =

n∑
j=1

αij(xjW
V). (1)

Each weight coefficient αij is computed using a softmax:

αij =
exp(eij)∑n
k=1 exp(eik)

, (2)

where eij is calculated using a scaled dot-product attention:

eij =
(xiW

Q)(xjW
K)T√

dz
. (3)

Here, the projections WQ, WK , WV ∈ R
dx×dz are pa-

rameter matrices, which are unique per layer.

Rather than computing the self-attention once, Multi-

head self-attention (MHSA) [22] runs the self-attention

multiple times in parallel, i.e., employing h attention heads.

The attention head outputs are simply concatenated and lin-

early transformed into the expected dimensions.

2.2. Position Encoding

Absolute Position Encoding. Since transformer con-

tains no recurrence and no convolution, in order for the

model to make use of the order of the sequence, we need

to inject some information about the position of the to-

kens. The original self-attention considers the absolute
position [22], and add the absolute positional encodings

p = (p1, . . . ,pn) to the input token embedding x as

xi = xi + pi, (4)

where the positional encoding pi,xi ∈ Rdx . There are sev-

eral choices of absolute positional encodings, such as the

fixed encodings by sine and cosine functions with differ-

ent frequencies and the learnable encodings through train-

ing parameters [8, 22].

Relative Position Encoding. Besides the absolute posi-

tion of each input element, recent works also consider the

pairwise relationships between elements, i.e., relative po-
sition [17]. Relative relation is presumably important for

tasks where the relative ordering or distance of the elements

matters. This type of methods encode the relative position

between the input elements xi and xj into vectors pV
ij , pQ

ij ,

pK
ij ∈ R

dz , where dz = dx. The encoding vectors are em-

bedded into the self-attention module, which re-formulates

Eq. (1) and Eq. (3) as

zi =

n∑
j=1

αij(xjW
V + pV

ij), (5)

eij =
(xiW

Q+ pQ
ij)(xjW

K+ pK
ij)

T

√
dz

. (6)

In this fashion, the pairwise positional relation is learned

during transformer training. Such relative position encod-

ing can be either shared across attention heads or not.

3. Method

In this section, we first review previous relative position

encoding methods and analyze their differences. Then, we

propose four new methods dedicated to vision transformer,

and their efficient implementation.

10034

(a) bias mode (b) contextual mode

Figure 1: Illustration of self-attention modules with 2D relative position encoding on keys. The blue parts are newly added.

3.1. Previous Relative Position Encoding Methods

Shaw’s RPE. Shaw et al. [17] propose a relative position

encoding for self-attention. The input tokens are modeled

as a directed and fully-connected graph. Each edge between

two arbitrary positions i and j is presented by a learnable

vector pij ∈ R
dz , namely relative position encoding. Be-

sides, the authors deemed that precise relative position in-

formation is not useful beyond a certain distance, so intro-

duced a clip function to reduce the number of parameters.

The encoding is formulated as

zi =

n∑
j=1

αij(xjW
V + pV

clip(i−j,k)), (7)

eij =
(xiW

Q)(xjW
K+ pK

clip(i−j,k))
T

√
dz

, (8)

clip(x, k) = max(−k,min(k, x)), (9)

where pV and pK are the trainable weights of relative po-

sition encoding on values and keys, respectively. pV =
(pV

−k, ...,p
V
k) and pK = (pK

−k, ...,p
K
k) where pV

i ,p
K
i ∈

R
dz . The scalar k is the maximum relative distance.

RPE in Transformer-XL. Dai et al. [4] introduce addi-

tional bias terms for queries, and uses the sinusoid formu-

lation for relative position encoding, which is formulated as

eij =
(xiW

Q+ u)(xjW
K)T + (xiW

Q+ v)(si−jW
R)

T

√
dz

,

(10)
where u,v ∈ R

dz are two learnable vectors.

The sinusoid encoding vector s provides the prior of rel-

ative position [22]. WR ∈ R
dz×dz is a trainable matrix,

projecting si−j into a location-based key vector.

Huang’s RPE. Huang et al. [11] propose a new method

considering the interactions of queries, keys and relative po-

sitions simultaneously. The equation is given as follows

eij =
(xiW

Q+ pij)(xjW
K+ pij)

T− pijpij
T

√
dz

, (11)

where pij ∈ R
dz is the relative position encoding shared

by queries and keys.

RPE in SASA. The above three methods are all designed

for 1D word sequence in language modeling. Ramachan-

dran et al. [16] propose an encoding method for 2D images.

The idea is simple. It divides the 2D relative encoding into

horizontal and vertical directions, such that each direction

can by modeled by a 1D encoding. The method formula-

tion is given as follows

eij =
(xiW

Q)(xjW
K+ concat(pK

δx̃,p
K
δỹ))

T

√
dz

, (12)

where δx̃ = x̃i− x̃j and δỹ = ỹi− ỹj denote the relative

position offsets on x-axis and y-axis of the image coordi-

nate respectively, pK
δx̃ and pK

δỹ are learnable vectors with

length 1
2dz , the concat operation concatenates the two en-

codings to form a final relative encoding with length of dz .

In other words, the same offsets on x-axis or y-axis share

the same relative position encoding, so this method is able

to reduce the number of learnable parameters and computa-

tional cost. However, the encoding is only applied on keys.

In our experiments, we observe that the RPE imposed on

keys, queries and values simultaneously is the most effec-

tive one, as presented in Tab. 4 and Tab. 5.

RPE in Axial-Deeplab. Wang et al. [23] introduce

a position-sensitive method that adds qkv-dependent posi-

tional bias into self-attention. The position sensitivity is ap-

plied on axial attention that propagates information along

height-axis and width-axis sequentially. However, when the

relative distance is larger than a threshold, the encoding is

set to zero. We observe that long-range relative position

information is useful, as analysed in Tab. 6. The position-

sensitivity might be competitive when imposed on the stan-

dard self-attention. If equipped with the proposed piecewise

function, it can be further improved and become more effi-

cient for modeling long-range dependencies.

10035

3.2. Proposed Relative Position Encoding Methods

We design our image RPE (iRPE) methods to analyze

several factors which are not well studied in prior works

(see the analysis in Sec. 4.2). First, to study whether the

encoding can be independent of the input embeddings, we

introduce two relative position modes: bias and contextual.

We present a piecewise function to map relative positions to

encodings, being different from the conventional clip func-

tion. After that, to study the importance of directivity, we

design two undirected and two directed methods. Finally

we provide an efficient implementation for our methods.

Bias Mode and Contextual Mode. Previous relative po-

sition encoding methods all depend on input embeddings.

It brings a question, i.e., whether the encoding can be inde-

pendent of the input? We introduce bias mode and contex-

tual mode of relative position encoding to study the ques-

tion. The former one is independent of input embeddings,

while the latter one considers the interaction with queries,

keys or values. More specifically, we introduce a unified

formulation as

eij =
(xiW

Q)(xjW
K)T+bij√

dz
, (13)

where bij ∈ R is the 2D relative position encoding, defining

the bias or contextual mode. For bias mode,
bij = rij , (14)

where rij ∈ R is a learnable scalar and represents the rela-

tive position weight between the position i and j. For con-

textual mode,

bij = (xiW
Q)rij

T , (15)

where rij ∈ R
dz is a trainable vector, interacted with the

query embedding. There are multiple variants for bij in con-

textual mode. For example, the relative position encoding

operated on both queries and keys can be presented as

bij = (xiW
Q)(rKij)

T + (xjW
K)(rQij)

T , (16)

where rKij , r
Q
ij ∈ R

dz are both learnable vectors. Besides,

contextual mode can also be applied on value embeddings,

zi =

n∑
j=1

αij(xjW
V + rVij), (17)

where rVij ∈ R
dz . The relative position weights rQij , rKij

and rVij can be constructed in the same way. For a unified

representation, we use rij to denote them in bias mode and

contextual mode in the following discussion. Fig. 1 shows

the illustration of self-attention modules with 2D relative

position encoding on keys in the propsoed two modes.

A Piecewise Index Function. Before describing the

2D relative position weight rij , we first introduce a many-

to-one function, mapping a relative distance into an in-

teger in finite set, then rij can be indexed by the inte-

ger and share encondings among different relation posi-

tions. Such index function can largely reduce computa-

tion costs and the number of parameters for long sequence

Figure 2: The comparison between the piecewise function

g(x) and the clip function h(x).

(e.g., high resolution images). Although the clip function

h(x) = max(−β,min(β, x)) used in [17] also reduces the

cost, the positions whose relative distance is larger than β
are assigned to the same encoding. This method inevitably

drops out the contextual information of long-range relative

positions. Inspired by [15], we introduce a piecewise func-

tion g(x) : R → {y ∈ Z| − β ≤ y ≤ β} for indexing

relative distances to corresponding encodings. The function

is based on a hypothesis that the closer neighbors are more

important than the further ones, and distributes the attention

by the relative distance. It is presented as

g(x) =

{
[x], |x| ≤ α

sign(x)×min(β, [α+
ln (|x|/α)
ln (γ/α)

(β − α)]), |x| > α

(18)

where [·] is a round operation, sign(x) determines the

sign of a number, i.e., returning 1 for positive input, -1 for

negative, and 0 for otherwise. α determines the piecewise

point, β controls the output in the range of [−β, β], and γ
adjusts the curvature of the logarithmic part.

We compare the piecewise function g(x) with the clip

function h(x) = min(−β,max(β, x)), i.e. Eq. (9). In

Fig. 2, the clip function h(x) distributes uniform attention

and leaves out long distance positions, but the piecewise

function g(x) distributes different levels of attention by rel-

ative distance. We suppose that the potential information in

long-range position should be preserved, especially for high

resolution images or the tasks requiring long-range feature

dependencies, so g(x) is selected to construct our mapping

method for rij .

2D Relative Position Calculation. In order to calculate

relative position on 2D image plane and define the relative

weight rij , we propose two undirected mapping methods,

namely Euclidean and Quantization, as well as two directed

mapping methods, namely Cross and Product.

Euclidean method. On image plane, the relative position

(x̃i−x̃j , ỹi−ỹj) is a 2D coordinate. We compute Euclidean

distance between two positions, and maps the distance into

the corresponding encoding. The method is undirected and

formulated as
rij = pI(i,j), (19)

I(i, j) = g(
√
(x̃i − x̃j)2 + (ỹi − ỹj)2), (20)

10036

where pI(i,j) is either a learnable scalar in bias mode or a

vector in contextual mode. We regard pI(i,j) as a bucket,

which stores the relative position weight. The number of

buckets is 2β + 1, as defined in Eq. (18).

Quantization method. In the above Euclidean method,

the closer two neighbors with different relative distances

may be mapped into the same index, e.g. the 2D relative

positions (1, 0) and (1, 1) are both mapped into the index 1.

We suppose that the close neighbors should be separated.

Therefore, we quantize Euclidean distance, i.e., different

real number is mapped into different integer. We revise

I(i, j) in Eq. (19) as

I(i, j) = g(quant(
√
(x̃i − x̃j)2 + (ỹi − ỹj)2)). (21)

The operation quant maps a set of real numbers {0, 1, 1.41,

2, 2.24, ...} into a set of integers {0, 1, 2, 3, 4, ...}. This

method is also undirected.

Cross method. Positional direction of pixels is also im-

portant for images, we thereby propose directed mapping

methods. This method is called Cross method, which com-

putes encoding on horizontal and vertical directions sepa-

rately, then summarizes them. The method is given as

rij = px̃
Ix̃(i,j) + pỹ

Iỹ(i,j)
, (22)

I x̃(i, j) = g(x̃i − x̃j), (23)

I ỹ(i, j) = g(ỹi − ỹj), (24)

where px̃
I(i,j) and pỹ

I(i,j) are both learnable scalars in bias

mode, or a learnable vectors in contextual mode. Similar to

the encoding in SASA [16], the same offsets on x-axis or

y-axis share the same encoding, but the main difference is

that we use a piecewise function to distribute attention by

relative distance. The number of buckets is 2× (2β + 1).
Product method. The Cross method encodes different

relative positions into the same embedding if the distance

on one direction is identical, either horizontal or vertical.

Besides, the addition operation in Eq. (22) brings extra com-

putational cost. To improve efficiency and involve more di-

rectional information, we design Product method which is

formulated as

rij = pIx̃(i,j),Iỹ(i,j). (25)

The right side of the equation is a trainable scalar in bias

mode, or a trainable vector in contextual mode. I x̃(i, j)
and I ỹ(i, j) are defined in Eq. (23) and Eq. (24), and the

combination of them is a 2D index for p. The number of

buckets is (2β + 1)2.

An Efficient Implementation. For the above pro-

posed methods in contextual mode, there is a common term

(xiW)pI(i,j)
T when putting Eq. (19), Eq. (22) or Eq. (25)

into Eq. (15). Let yij denote the common term as follows,

yij = (xiW)pI(i,j)
T . (26)

It takes time complexity O(n2d) to compute all yij , where

n and d are the length of the input sequence and the number

of feature channels, respectively. Due to the many-to-one

property of I(i, j), the set size k of I(i, j) is usually less

than n in vision transformer. Therefore, we provide an effi-

cient implementation as follows,

zi,t = (xiW)pt
T , t ∈ {I(i, j)|i, j ∈ [0, n)}, (27)

yij = zi,I(i,j). (28)

It first takes time complexity O(nkd) to pre-compute all zi,t
by Eq. (27), then assigns zi,t to all yij by the mapping t =
I(i, j) by Eq. (28). The assignment operation takes time

complexity O(n2), whose cost is much smaller than that

of the pre-computation procedure. Thus, the computational

cost of relative position encoding reduces from the original

O(n2d) to O(nkd).

4. Experiments
In this section, we first provide some analysis by com-

paring different position embeddings, followed by experi-

ments on the effects of key factors in relative position en-

coding. Then, we compare the proposed methods with the

state-of-the-art methods on image classification and object

detection tasks. Finally, we visualize the relative position

encoding and explain why it works.

4.1. Implementation Details

We choose the recent vision transformer model

DeiT [21] as the baseline for most experiments. The rela-

tive position encoding is added into all self-attention layers.

If not specified, RPE is only added on keys. We set α:β:γ =

1:2:8 for the piecewise function g(x), and adjust the number

of buckets by changing β. An extra bucket is used to store

the relative position encodings of the classification token.

For fair comparison, we adopt the same training set-

tings as DeiT [21]: AdamW [13] optimizer with weight de-

cay 0.05, initial learning rate 1x10−3 and minimal learning

1x10−5 with cosine scheduler, 5 epochs warmup, batch size

of 1024, 0.1 label smoothing [19], and stochastic depth with

survival rate of 0.9. The images are split into 14x14 non-

overlapping patches. Data augmentation methods [26, 27]

are consistent with DeiT [21]. All models are trained from

scratch for 300 epochs with 8 NVIDIA Tesla V100 GPUs.

4.2. Analysis on Relative Position Encoding

Directed v.s. Undirected. As shown in Tab. 1, directed

methods (Cross and Product), in general, perform better

than undirected ones (Euclidean and Quantization) in vision

transformer. This phenomenon illustrates that the directiv-

ity is important for vision transformers, because image pix-

els are highly structured and semantically correlative.

10037

Method Is
Mode

Top-1 Δ
based on DeiT-S [21] Directed Acc(%) Acc(%)

Original [21] - - 79.9 –

Euclidean ×
bias 80.1 +0.2

contextual 80.4 +0.5

Quantization ×
bias 80.3 +0.4

contextual 80.5 +0.6

Cross � bias 80.5 +0.6

contextual 80.8 +0.9

Product � bias 80.5 +0.6

contextual 80.9 +1.0

Table 1: Ablation of our relative position encoding meth-

ods on ImageNet [5]. The original model is DeiT-S [21],

which only uses absolute position encoding. We equip the

model with the proposed four relative encoding methods,

i.e., Eq. (19), Eq. (21), Eq. (22) and Eq. (25) with the best

numbers of buckets of 20, 51, 56 and 50 respectively.

Mode Shared
#Param. MACs Top-1

(M) (M) Acc(%)

Bias
× 22.05 4613 80.54± 0.06
� 22.05 4613 80.05± 0.04

Contextual
× 22.28 4659 80.99± 0.16
� 22.09 4659 80.89± 0.04

Table 2: Ablation of shared and unshared relative position

encoding across attention heads. The experiments are con-

ducted over DeiT-S [21] on ImageNet [5] with 50 buckets.

The models are trained and evaluated by three times.

Bias v.s. Contextual. Tab. 1 shows that the contextual

mode achieves superior performance to that of bias mode,

regardless of which method uses. The underlying reason

might be that contextual mode changes the encoding with

the input feature while bias mode keeps static.

Shared v.s. Unshared. Self-attention contains multiple

heads. RPE can be either shared or unshared across dif-

ferent heads. We show the effects of these two schemes in

bias and contextual modes in Tab. 2, respectively. For bias

mode, the accuracy drops significantly when sharing encod-

ing across heads. By contrast, in contextual mode, the per-

formance gap between two schemes is negligible. Both of

them achieve an average top-1 accuracy of 80.9%. We con-

jecture that different heads need different RPEs to capture

different information. In contextual mode, each head com-

putes its own RPE by the Eq. (15) while in bias mode the

shared RPE forces all heads to pay the same attention on

patches. For parameter-saving, we adopt the share scheme

in our final methods.

Piecewise v.s. Clip. We compare the efficacy of the

piecewise function g(x) defined in Eq. (18) and the clip

function h(x) defined in Eq. (9) in Tab. 3. There is a very

small, even negligible, performance gap between them in

image classification task. However, in object detection task,

we found the clip function is worse than the piecewise one

Function Mode Top-1 Acc(%) Top-5 Acc(%)

clip
bias 80.1 94.9

contextual 80.9 95.5

piecewise
bias 80.0 95.0

contextual 80.9 95.5

Table 3: Ablation for clip function and piecewise function.

The experiments are conducted over DeiT-S [21] model

with product shared-head relative position encoding on Im-

ageNet [5]. The number of buckets is 50.

Figure 3: Ablation for the number of buckets in contextual

product model with shared RPEs on ImageNet [5].

Figure 4: The extra computational cost of RPE with 50

buckets in different implementations under different reso-

lutions. The baseline model is DeiT-S [21]. MACs means

multiply-accumulate operations.

as illustrated in Tab. 6 (#5 v.s. #6). The underlying reason is

that they are similar when the sequence is short. The piece-

wise function is effective especially when the sequence size

is much larger than the number of buckets. Object detection

uses a much higher resolution input compared to classifica-

tion, leading to a much longer input sequence. We therefore

conjecture that when the input sequence is long, the piece-

wise function should be used since it is able to distribute dif-

ferent attentions to the positions with relative large distance,

while the clip function assigns the same encoding when the

relative distance is larger than β.

Number of buckets. The number of buckets largely af-

fects model parameters, computational complexity and per-

formance. In order to find a balance, we explore the influ-

ence of varying the number of buckets for the contextual

Product method. Fig. 3 shows the change of top-1 accuracy

along with the number of buckets. The accuracy increases

from 79.9 to 80.9 before 50 buckets. After that, there is no

significant improvement. It shows that the number of buck-

ets 50 is a good balance between the computational cost and

the accuracy for 14× 14 feature map in DeiT-S [21].

10038

Abs Pos. pQij pKij pVij Top-1 Top-5

1 [21] learnable × × × 79.9 95.0

2 × × × × 77.6(-2.3) 93.8

3 × � × × 80.9(+1.0) 95.4

4 × × � × 80.9(+1.0) 95.3

5 × × × � 80.2(+0.3) 95.0

6 × � � × 81.0(+1.1) 95.5

7 × � � � 81.3(+1.4) 95.7
8 learnable � × × 80.9(+1.0) 95.5

9 learnable × � × 80.9(+1.0) 95.5

10 learnable × × � 80.2(+0.3) 95.1

11 learnable � � × 81.1(+1.2) 95.4

12 learnable � � � 81.4(+1.5) 95.6

Table 4: Component-wise analysis on ImageNet [5]. We

add contextual product shared-head RPE into DeiT-S [21].

The number of buckets is 50. Abs Pos. represents the ab-

solute position encoding. pQij , pKij and pVij present relative

position encodings on queries, keys and values.

Component-wise analysis. We perform a component-

wise analysis to study the effects of different position en-

codings for vision transformer models. We select DeiT-S

model [21] as the baseline, and only change the position en-

coding methods. The learnable absolute position encoding

is used in the original model. The relative position encod-

ings are computed by contextual Product method with 50

buckets. The conclusions we got from Tab. 4 are as fol-

lows: 1) Removing absolute position encoding from orig-

inal DeiT-S will cause that the Top-1 accuracy drops from

79.9 to 77.6 (#1 v.s. #2). 2) The models with only relative

position encoding surpass the one with only absolute posi-

tion encoding (#3-5 v.s. #1). It shows that RPE works well

as the absolute one. 3) When equipped with RPE, the ab-

solute one does not bring any gains (#3-5 v.s. #8-10). We

suppose that the local information is more important than

the global one in classification task. 4) The RPE on queries

or keys brings more gain than that on values (#3,4 v.s. #5).

5) The combination of the encodings on queries, keys and

values brings further improvements (#6,7,11,12 v.s. others).

Complexity Analysis. We evaluate the computational

cost of our proposed methods with respect to different input

resolutions. The baseline model is DeiT-S [21] with only

absolute position encoding. We adopt contextual product

shared-head relative position encoding to the baseline with

50 buckets. Fig. 4 shows our method takes at most 1% extra

computational cost with efficient implementation.

4.3. Comparison on Image Classification

We compare our proposed methods with the state-of-

the-art methods on image classification tasks. We select

DeiT [21] as the baseline. We adopt contextual Product

shared-head method with 50 buckets. As shown in Tab.

5, our method brings improvement on all three DeiT mod-

Model #Param. Input
MACs Top-1

(M) Acc (%)

Convnets

ResNet-50 [10] 25M 2242 4121 79.0

RegNetY-4.0GF [14] 21M 2242 4012 79.4

EfficientNet-B1 [20] 8M 2402 712 79.1

EfficientNet-B5 [20] 30M 4562 10392 83.6

Transformers

ViT-B/16 [7] 86M 3842 55630 77.9

ViT-L/16 [7] 307M 3842 191452 76.5

DeiT-Ti [21] 5M 2242 1261 72.2

CPVT-Ti(0-5) [3] 6M 2242 1262 73.4

DeiT-Ti with iRPE-K(Ours) 6M 2242 1284 73.7

DeiT-S [21] 22M 2242 4613 79.9

CPVT-S(0-5) [3] 23M 2242 4616 80.5

DeiT-S(Shaw’s) [17, 21]+ 22M 2242 4659 80.9

DeiT-S(Trans.-XL’s) [4, 21]+ 23M 2242 4828 80.8

DeiT-S(Huang’s) [11, 21]+ 22M 2242 4706 81.0

DeiT-S(SASA’s) [16, 21]∗ 22M 2242 4639 80.8

DeiT-S with iRPE-K(Ours) 22M 2242 4659 80.9

DeiT-S with iRPE-QK(Ours) 22M 2242 4706 81.1

DeiT-S with iRPE-QKV(Ours) 22M 2242 4885 81.4

DeiT-B [21] 86M 2242 17592 81.8

CPVT-B(0-5) [3] 86M 2242 17598 81.9

DeiT-B with iRPE-K(Ours) 87M 2242 17684 82.4

+ We utilize our product method to adapt 1D encoding for 2D images with

the clip function. The encoding weight is shared across heads.
* DeiT-S [21] with SASA [16]’s relative position encoding.

Table 5: Comparison on ImageNet [5].

els. In particular, we improve the DeiT-Ti/S/B models by

1.5%/1.0%/0.6% respectively, through adding RPE only on

keys. We show that the models could be further improved

by adding the proposed RPE on both queries and values.

When compared with other methods, ours achieve superior

performance with less parameters and MACs.

4.4. Comparison on Object Detection

To verify the generality, we further evaluate our method

on COCO 2017 detection dataset [12]. We use the

transformer-based detection model DETR [1] as baseline,

and follow the same train/val settings (including hyperpa-

rameters), except injecting RPE into all self-attention mod-

ules in the encoder. As shown in Tab. 6 (#1,6 and #8,9), our

method consistently improve the performance of DETR by

1.3 and 1.7 mAP under 150 and 300 training epochs.

In addition, we conduct ablation studies analyzing that

the effects of position encoding on object detection task.

Comparing #1, #2 and #4 in Tab. 6, we give the conclusion

that position encoding is crucial for DETR. We also show

that absolute position embedding is better than relative po-

sition embedding in DETR, which is contrast to the obser-

vation in classification. We conjecture that DETR needs the

prior of absolute position encoding to locate objects.

4.5. Visualization

To explore the underlying reason of relative position

encoding, we visualize the extra weights bij (defined in

Eq. (13)) added into the attention by RPE for different po-

10039

Abs Pos. Rel Pos. #buckets epoch AP AP50 AP75 APS APM APL

1 [1] sinusoid none - 150 39.5 60.3 41.4 17.5 43.0 59.1

2 none none - 150 30.4(-9.1) 52.5 30.2 9.4 31.2 50.5

3 sinusoid bias 9× 9 150 40.6(+1.1) 61.2 42.8 19.0 43.9 60.2

4 none contextual 9× 9 150 38.7(-0.8) 60.1 40.4 18.2 41.8 56.7

5 sinusoid ctx clip 9× 9 150 40.4(+0.9) 60.9 42.4 19.1 43.7 59.8

6 sinusoid contextual 9× 9 150 40.8(+1.3) 61.5 42.5 18.5 44.4 60.5

7 sinusoid contextual 15× 15 150 40.8(+1.3) 61.7 42.6 18.5 44.2 61.2

8 [1] sinusoid none - 300 40.6 61.6 - 19.9 44.3 60.2

9 sinusoid contextual 9× 9 300 42.3(+1.7) 62.8 44.3 20.7 46.2 61.1

Table 6: Component-wise analysis on DETR [1].

(a) block 0 (b) block 10

Figure 5: Visualization of relative position encoding (RPE)

in contextual product method. We show the extra weights

added to the attention by RPE for different positions. (a),

(b) display the RPE weights for 5 × 5 reference patches

uniformly sampled from 14× 14 patches in block 0 and 10.

sitions. From Fig. 5, RPE makes patches focus more on its

neighboring patches in block 0. However, when it turns to

higher blocks, this phenomenon disappears. We conjecture

that after passing through multiple layers, the model has al-

ready captured enough local information. The shallow lay-

ers in transformer are global attentions, paying attention to

the whole image (consisting of small patches). It is differ-

ent from CNN models in which shallow layers only capture

local information. In theory, without RPE (or other addi-

tional operations such as local windows), transformer does

not explicitly capture locality. RPEs inject Conv-like induc-

tive bias (including locality) into transformer, improving the

model capability of capturing local patterns.

5. Related Work

Transformer. Transformer was originally introduced by

Vaswani et al. [22] for natural language processing, and re-

cently extended to computer vision [1, 7, 21]. In this work

we study vision transformers in image classification and ob-

ject detection tasks, and select DeiT [21] and DETR [1] as

our baseline models. In ViT [7] and DeiT [21], an image

is split into multiple fixed-size patches. The embedded fea-

tures of patches are added with absolute position encoding

to fed in a standard transformer encoder. An extra trainable

classification token is added into the sequence for classi-

fication. In DETR [1], a CNN backbone is used for fea-

ture extraction first. Its output, a 32× downsampling fea-

ture map is flatten and fed in a transformer that outputs a

certain number of bounding boxes. A learnable or sinusoid

absolute position encoding is added in encoder and decoder.

Relative Position Encoding. Relative position encod-

ing is proposed firstly by Shaw et al. [17], where relative

position encodings are added into keys and values. Dai et
al. [4] proposed relative position encoding with the prior of

the sinusoid matrix and more learnable parameters. Huang

et al. [11] proposed several 1D encoding variants. The ef-

fectiveness of relative position encoding has been verified

in natural language processing. There are also some works

utilizing relative position encoding on 2D visual tasks. Ra-

machandran et al. [16, 18] proposed 2D relative position en-

coding that computes and concatenates separate encodings

of each dimension. Chu et al. [3] proposed position encod-

ing generator, inserted between encoders. However, the ef-

ficacy of relative position encoding in visual transformer is

still unclear, which is discussed and addressed in this work.

6. Conclusions and Remarks
In this paper, we review existing relative position en-

coding methods, and propose four methods dedicated to

visual transformers. The abundant experiments show that

our methods bring a clear improvement on both classifica-

tion and detection tasks with negligible extra complexity.

Our methods could be easily plugged into the self-attention

modules in vision models. In addition, we give comparison

of different methods and analysis on RPE with following

conclusions. 1) RPE can be shared among different heads

for parameter-saving. It is able to achieve comparable per-

formance with the non-shared one in contextual mode. 2)

RPE can replace the absolute one in image classification

task. However, absolute position encoding is necessary for

object detection task, which needs to predict locations of

objects. 3) RPE should consider the positional directivity,

which is important to structured 2D images. 4) RPE forces

the shallow layers to pay more attention to local patches.

In future work, we plan to extend our method to

other attention-based models and scenarios, such as high-

resolution input tasks like semantic segmentation [29], and

non-pixel input tasks like point cloud classification [9, 28].

Acknowledgments. Thanks to Dr. Xingxing Zhang for

insightful discussions. This work is partially supported by

NSF of China under Grant 61672548, U1611461.

10040

References
[1] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas

Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-

end object detection with transformers. In ECCV, 2020. 1,

2, 7, 8
[2] Minghao Chen, Houwen Peng, Jianlong Fu, and Haibin

Ling. Autoformer: Searching transformers for visual recog-

nition. In ICCV, 2021. 1
[3] Xiangxiang Chu, Bo Zhang, Zhi Tian, Xiaolin Wei, and

Huaxia Xia. Do we really need explicit position encodings

for vision transformers? arXiv preprint arXiv:2102.10882,

2021. 1, 7, 8
[4] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell,

Quoc Le, and Ruslan Salakhutdinov. Transformer-xl: Atten-

tive language models beyond a fixed-length context. In ACL,

2019. 1, 3, 7, 8
[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In CVPR, 2009. 2, 6, 7
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina

Toutanova. Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018. 1

[7] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Trans-

formers for image recognition at scale. ICLR, 2021. 1, 7,

8
[8] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats,

and Yann N Dauphin. Convolutional sequence to sequence

learning. In ICML, 2017. 1, 2
[9] Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang

Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud

transformer. arXiv preprint arXiv:2012.09688, 2020. 8
[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 7
[11] Zhiheng Huang, Davis Liang, Peng Xu, and Bing Xiang. Im-

prove transformer models with better relative position em-

beddings. In EMNLP, 2020. 3, 7, 8
[12] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

ECCV, 2014. 2, 7
[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay

regularization. arXiv preprint arXiv:1711.05101, 2017. 5
[14] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,

Kaiming He, and Piotr Dollár. Designing network design

spaces. In CVPR, 2020. 7
[15] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,

Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and

Peter J. Liu. Exploring the limits of transfer learning with a

unified text-to-text transformer. JMLR, 21(140), 2020. 1, 4
[16] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan

Bello, Anselm Levskaya, and Jonathon Shlens. Stand-

alone self-attention in vision models. arXiv preprint
arXiv:1906.05909, 2019. 3, 5, 7, 8

[17] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-

attention with relative position representations. ACL, 2018.

1, 2, 3, 4, 7, 8
[18] Aravind Srinivas, Tsung-Yi Lin, Niki Parmar, Jonathon

Shlens, Pieter Abbeel, and Ashish Vaswani. Bottleneck

transformers for visual recognition. In CVPR, 2021. 1, 8
[19] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon

Shlens, and Zbigniew Wojna. Rethinking the inception ar-

chitecture for computer vision. In CVPR, 2016. 5
[20] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, 2019. 7
[21] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco

Massa, Alexandre Sablayrolles, and Hervé Jégou. Training

data-efficient image transformers & distillation through at-

tention. In ICML, 2021. 1, 2, 5, 6, 7, 8
[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia

Polosukhin. Attention is all you need. In NeurIPS, 2017. 1,

2, 3, 8
[23] Huiyu Wang, Yukun Zhu, Bradley Green, Hartwig Adam,

Alan Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-

alone axial-attention for panoptic segmentation. In ECCV,

2020. 3
[24] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In CVPR, 2018. 1
[25] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell,

Russ R Salakhutdinov, and Quoc V Le. Xlnet: General-

ized autoregressive pretraining for language understanding.

NeurIPS, 32, 2019. 1
[26] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk

Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-

larization strategy to train strong classifiers with localizable

features. In ICCV, 2019. 5
[27] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and

David Lopez-Paz. mixup: Beyond empirical risk minimiza-

tion. arXiv preprint arXiv:1710.09412, 2017. 5
[28] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip Torr, and

Vladlen Koltun. Point transformer. arXiv preprint
arXiv:2012.09164, 2020. 8

[29] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,

Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao

Xiang, Philip H.S. Torr, and Li Zhang. Rethinking semantic

segmentation from a sequence-to-sequence perspective with

transformers, 2020. 8

10041

