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Abstract

Compared with traditional methods, the deep learning-
based multi-focus image fusion methods can effectively im-
prove the performance of image fusion tasks. However,
the existing deep learning-based methods encounter a com-
mon issue of a large number of parameters, which leads
to the deep learning models with high time complexity and
low fusion efficiency. To address this issue, we propose a
novel discrete Tchebichef moment-based Deep neural net-
work, termed as DTMNet, for multi-focus image fusion. The
proposed DTMNet is an end-to-end deep neural network
with only one convolutional layer and three fully connected
layers. The convolutional layer is fixed with DTM co-
efficients (DTMConv) to extract high/low-frequency infor-
mation without learning parameters effectively. The three
fully connected layers have learnable parameters for fea-
ture classification. Therefore, the proposed DTMNet for
multi-focus image fusion has a small number of parameters
(0.01M paras vs. 4.93M paras of regular CNN) and high
computational efficiency (0.32s vs. 79.09s by regular CNN
to fuse an image). In addition, a large-scale multi-focus
image dataset is synthesized for training and verifying the
deep learning model. Experimental results on three pub-
lic datasets demonstrate that the proposed method is com-
petitive with or even outperforms the state-of-the-art multi-
focus image fusion methods in terms of subjective visual
perception and objective evaluation metrics.

1. Introduction
Due to the limitation of imaging devices, it is difficult

to capture an image where all objects are in focus. How-
ever, all-in-focus images are often required as input for spe-
cific computer vision tasks, such as localization, detection,
and segmentation tasks [4]. A common method to solve
the issues above is the multi-focus image fusion (MFIF)
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(a) Source image A (b) Source image B (c) Fused image

Fig. 1. An example of MFIF with two source images with different focal
lengths. (a) Focus on foreground, (b) Focus on background and (c) All-in-
focus.

technique, which aims at obtaining an all-in-focus image
by combining two or more images taken with diverse fo-
cal lengths [18]. Fig. 1 shows an example of the fused
image obtained from two source images with different fo-
cal lengths. According to the fusion strategy, the existing
MFIF methods can be roughly divided into two categories:
traditional MFIF methods and deep learning-based MFIF
methods.

The traditional MFIF methods can be further divided into
transform domain-based methods and spatial domain-based
methods. The transform domain-based methods firstly de-
compose the source images into multiple coefficients, and
these different coefficients are then fused by following cer-
tain fusion rules to get the fused coefficients. Finally, the
fused image is obtained by inverse transformation of the
fused coefficients. Typical transform domain-based meth-
ods include gradient pyramid (GP) method [17] and discrete
cosine transform (DCT) method [1]. Although the trans-
form domain-based methods have high noise robustness and
are easy to implement, the fused images always produce un-
real results in brightness and color due to the imperfection
of transformations and handcrafted features. As the name
suggests, the source images are fused in the spatial domain
for the spatial domain-based methods, i.e., using some spa-
tial features of images [11]. Typical spatial domain-based
methods include image matting(IM) method [8], guided fil-
tering (GF) method [7] and density-SIFT (DSIFT) method
[10]. Due to the influence of defocus and artificially de-
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signed focus measurement, the source image is blurred
around the boundary between the focused/defocused area.
Consequently, the fusion results of these methods are often
blurred around the boundary [13].

The deep learning-based methods have become a very
active direction in the field of MFIF in recent years. Liu
et al. [9] first introduced convolutional neural network
(CNN) into the field of MFIF. In their method, the activ-
ity level measurement and fusion rule, which are two cru-
cial issues in the image fusion process, can be jointly gen-
erated by learning the CNN model, avoiding the manual de-
sign of focus measurement and fusion rules. Tang et al.
[18] proposed a pixel-wise convolutional neural network (p-
CNN) that can recognize the focused and defocused pix-
els in source images from its neighborhood information for
MFIF. Some methods begin to use the convolutional layer
to replace the fully connected layer because the fully con-
nected layer consumes many storage resources. For exam-
ple, Guo et al. [3] proposed an MFIF method based on
a fully convolutional network (FCN). Although the exist-
ing deep learning-based MFIF methods can achieve good
fusion performance, they usually improve the fusion per-
formance by increasing the network depth or width, which
will also increase the computational burden and the require-
ments of hardware, thereby reducing the efficiency of image
fusion.

In this paper, in order to obtain high-quality fusion im-
ages with low time complexity, we propose a novel discrete
Tchebichef moments-based deep neural network named
DTMNet for MFIF. The contributions of this paper are sum-
marized as follows:

• It is the first time that the image moments and
deep learning technologies are combined to propose
the lightweight end-to-end deep neural network, i.e.,
DTMNet for multi-focus image fusion.

• A DTM fixed convolution (DTMConv) is proposed,
which can effectively extract the high/low-frequency
information of the image and enhance the deep learn-
ing model’s feature learning ability.

• In the proposed DTMNet, only the low-order
Tchebichef polynomial coefficients and the 1× 1 con-
volutional layer instead of fully connected layers are
introduced to further reduce the parameters and im-
prove the performance of the network.

The rest of this paper is organized as follows. In Section
2, the discrete Tchebichef moments (DTMs) is briefly intro-
duced. In Section 3, we present the details of the proposed
DTMNet. The extensive experiments conducted to evalu-
ate the proposed method are presented in Section 4, and the
conclusion is drawn in Section 5.

2. Discrete Tchebichef Moments
DTMs belong to a new image moments technology pro-

posed in recent years. The kernel functions of DTMs are
composed of discrete Tchebichef orthogonal polynomials
with different orders and have the characteristic of fast it-
erative calculation [20]. Moreover, DTMs have the advan-
tages of high de-correlation, no numerical approximation,
and strong image reconstruction ability. They have been
widely used in image analysis, recognition, and compres-
sion. In actual implementation, the DTMs are computed
with the kernel matrix [20], as is shown in Fig. 2.
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Fig. 2. A typical 9×9 kernel matrix of DTMs, in which each row represents
a DTM polynomial with different orders.

2.1. DTMs as Correlation

Correlation is a similarity measure between two func-
tions. The correlation Rgt(a, b) of two discrete functions
g(x, y) ∈ RM×N and t(x, y) ∈ RM×N are defined by [25]
as

Rgt(a, b) =

M−1∑
x=0

N−1∑
y=0

g(x, y)t(x− a, y − b). (1)

Given a digitalized image f(x, y) with the size of M ×N ,
the (m + n)

th order of DTM of image is defined by [14] as

Km,n =

M−1∑
x=0

N−1∑
y=0

k̃m(x;M)k̃n(y;N)f(x, y), (2)

where m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1 and
k̃m(x;M)k̃n(y;N) is the kernel function of DTMs. Ac-
cording to Eq. (1) and (2), we can conclude that the
DTMs of image f(x, y), i.e., (Km,n) is actually the cor-
relation between image f(x, y) and the DTM kernel func-
tion k̃m(x;M)k̃n(y;N). In other words, DTMs measure
the similarity between image and the kernel functions of
DTMs.

According to the frequency distribution of DTMs’ ker-
nel functions, the DTMs with different orders (Km,n) mea-
sure different spatial frequency components of an image.
The lower order DTMs measure the low spatial frequency
components of the image, while the higher-order DTMs
measure the high spatial frequency components of the im-
age. This can also be verified by observing the plots of
the kernel functions of DTMs. For simplicity, we denote
Φm,n(x, y) =k̃m(x;M)k̃n(y;N) as the kernel function of
DTMs, and Fig. 3 shows the plots of DTMs’ kernel func-
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(a) (b)

Fig. 3. The plots of DTMs’ kernel function Φm,n. (a) Φ2,2 and (b)
Φ10,10. The x and y in the figure represent the pixel position on the image.

tions with different orders. As shown in this figure, the
value of kernel function Φ2,2 changes smoothly, indicating
that K2,2 measures the low spatial frequency component of
the image. On the contrary, the value of kernel function
Φ10,10 changes drastically, indicating that K10,10 measures
the high spatial frequency component of the image.

2.2. Focus Measurement Based on DTMs

The change of image focusing degree is mainly reflected
in the change of high spatial frequency components of an
image. Combining the conclusion from subsection 2.1, the
focus measurement based on DTMs was defined by [26] as

FMK =
||H(f̃ ; p)||
||L(f̃ ; p)||

, (3)

where ||F || = F1
2 + F2

2 + · · · + Fn
2 denotes the energy

of F , p = m + n is the order of DTMs, f̃ is the normalized
image block with the size of b× b, which is defined as

f̃(x, y) =
f(x, y)√∑b−1

x=0

∑b−1
y=0 [f(x, y)]

2
, (4)

and f̃ satisfies the following property:∑b−1

x=0

∑b−1

y=0
[f̃(x, y)]

2
= 1. (5)

L(f̃ ; p) and H(f̃ ; p) denote the sets of low-order and high-
order DTMs,

L(f̃ ; p) = {Km,n|m + n ≤ p},
H(f̃ ; p) = {Km,n|m + n > p},
M + N − 2 ≥ p ≥ 0.

(6)

Combining Eqs. (4), (5), (6) and the Parseval theorem,
L(f̃ ; p) and H(f̃ ; p) satisfy the following property:

||L(f̃ ; p)||+ ||H(f̃ ; p)|| = ||f̃ || = 1,

||L(f̃ ; p)|| = 1− ||H(f̃ ; p).
(7)

Thus, the focus measure based on DTMs defined in Eq. (3)
can be simplified as

FMK =
||H(f̃ ; p)||
||L(f̃ ; p)||

=
1−||L(f̃ ; p)||
||L(f̃ ; p)||

. (8)

It can be seen from Eq. (8) that only the set of low-order

DTMs can calculate the focus measurement FMK. More-
over, when the value of p is small, the focus measurement’s
computational complexity can be greatly reduced. There-
fore, only the low-frequency components of an image cap-
tured by the set of low-order DTMs can be used to measure
the image focusing degree.

3. The Proposed DTMNet for MFIF
The framework of MFIF by the proposed DTMNet is

shown in Fig. 4. In this framework, we mainly consider
the task of fusing two source images with different focal
lengths, and the fusion of three or more source images can
be straightforwardly extended based on this framework.

3.1. Basic Modules

1) DTMConv Block: The investigation on the cor-
relation between image and DTMs’ kernel functions pro-
vided in subsection 2.1 demonstrates that the high/low-
order DTMs can effectively extract the high/low-frequency
information of image, and the investigation in subsection
2.2 shows that only the low-frequency components of an
image captured by the set of low-order DTMs can be used
to measure the image focusing degree. Moreover, the im-
age information stored in each moment is independent and
the information redundancy between the moments is mini-
mal. Thus, we design the DTMConv block (shown in Fig.
5), which is composed of a normalization layer (Norm) and
a DTM convolution layer (DTMConv), to extract the low-
frequency feature.

Firstly, the normalization layer is used to preprocess the
input image to enhance the non-numerical approximation
property of DTMs. The normalization process is expressed
as

f(x, y) =
f(x, y)√∑x+b/2

x=x−b/2

∑y+b/2
y=y−b/2 [f(x, y)]

2
, (9)

where f(x, y) represents the gray-scale image, and the size
of the normalized image block is b× b, which is consistent
with the size of the convolution kernel of DTMConv.

Secondly, the DTM convolutional layer is composed of
weights and bias, which are used to extract low-frequency
features of the image. The weights of filters in DTMConv
can be expressed as

W p
n = (Ei)

TEj ,

(
i+ j = p, p ≤ 5, n =

i+j∑
t=0

(t+ 1)− j

)
,

(10)
where E is the kernel matrix of DTMs with the size of h×h,
(Ei)

T is the h×1 column vector obtained by transposing the
(i + 1)th row of E, Ej is the (j + 1)th row of E, p = i + j
is the order of DTMs, n is the nth convolution kernel in
DTMConv. Therefore, W p

n represents the weight of the nth

convolution kernel, which is obtained by the coefficients of
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Fig. 4. The proposed MFIF algorithm using DTMNet.
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Fig. 5. The detail description of the DTMConv Block. Ej represents the
(j + 1)th row of the kernel function E, (Ei)

T represents the transpose
operation on Ei, and ⊗ represents matrix multiplication.

polynomial in DTMs with order p.
In this paper, the kernel matrix E of DTMs is a 9 × 9

matrix presented in Fig. 2. As shown in Fig. 5, when p = 5,
i and j take 5 and 0 respectively, i.e., the transpose of the
6th row ((E5)

T ) of the DTMs’ kernel matrix E is multiplied
by the 1th row ((E0)

T ) of the DTMs’ kernel matrix E to
obtain a 9 × 9 matrix W 5

21, which is used as the weight of
the 21th convolution kernel of the DTMConv. According
to Eq. (10), when p ≤ 5, the available weights are 21.
Therefore, the low 5-order polynomials in DTMs can get 21
convolution kernels. In addition, the bias of the DTMConv
are set to 0.

2) Fully Connected Layer: The detailed description of
the fully connected (FC) layer is shown in Fig. 6. In our ex-
periment, we treat the MFIF task as a binary classification
task. We make a focus evaluation for each pixel of the im-
age to determine whether it is focused or de-focused. The
general classification method is through the fully connected
layer, but our experiment needs to meet the following three
requirements: First, sharing parameters. Second, keeping
the spatial structure of the image and the size of the feature
map unchanged during the classification process. Third, the
number of parameters should be as small as possible.

In this paper, we introduce three 1×1 convolution layers
to replace the fully connected layer. The number of filters in
the three convolutional layers is 64, 64, and 2, respectively.
It is noted that we also add the ReLU nonlinear activation
function after the first and second convolutional layers to
increase the nonlinearity of the network and enable our net-
work to express more complex features. Moreover, in order
to classify a two-class focus evaluation corresponds to each
pixel, the softmax activation function is added after the last
convolutional layer. Finally, a two-channel feature map can
be obtained after the focus score module, which is the focus
score of each pixel corresponds to the two source images.
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Fig. 6. Detail description of fully connected layers.

3.2. Effect Order P

Generally, higher-order DTMs can capture more high-
frequency content of images. However, it is confirmed
in [25] that with the increase of DTMs order, DTMs im-
plies better discriminating power between various degrees
of blurring, but it also means that the moments are more
susceptible to the effect of noise.

In order to have a suitable setting for the order of DTMs,
we verify it on the Lytro dataset, as shown in Fig. 7. Pn
represents p = n, and PnF represents the final decision map
generated by Pn. Fig.7 (a) and (f) are a pair of multi-focus
source images on the Lytro dataset. Fig. 7 (b)-(e) repre-
sent the initial decision maps generated when p values are
3, 4, 5, and 6 respectively. Fig. 7 (g)-(j) are the final deci-
sion maps optimized by CRF for the initial decision maps
of corresponding orders. The results show that when p = 5,
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(a) Source A (b) P3 (c) P4 (d) P5 (e) P6

(f) Source B (g) P3F (h) P4F (i) P5F (j) P6F

Fig. 7. The decision map generated by DTMs of different orders.

Method QMI QG QY QCB Parameter(M) Time(s)

P3F 1.0849 0.6975 0.9817 0.7512 0.0065 0.3131

P4F 1.0939 0.7058 0.984 0.7685 0.0076 0.3201

P5F 1.1033 0.7134 0.9888 0.7861 0.0089 0.3371

P6F 1.0990 0.7114 0.9856 0.7819 0.0103 0.3551

Table 1. Comparison of the fused images generated by different orders
in terms of quantitative indicators, parameters and calculation time. For
QMI [5], QG [23], QY [24] and QCB [2], the larger values indicate
better results. The best result is in bold.

the decision map is the best. In addition, Table 1 also shows
the comparison of the fusion images generated by the final
decision maps of different orders in terms of objective indi-
cators, the parameters, and the calculation time. It is found
that with the increase of order, the number of parameters
and calculation time of DTMNet increase positively, but the
quantitative results reach the peak at p = 5. Therefore, p =
5 is the optimal order of DTMS.

3.3. Fusion Details

In this paper, we introduce the DTMNet architecture for
MFIF. As shown in Fig. 4, the fusion process consists of five
steps: image preprocessing, low-frequency feature extrac-
tion, focus score, decision map generation and optimization,
and final image fusion. Firstly, the source images A and B
are converted into gray-scale images. Secondly, the gray-
scale images are fed into the DTMConv block to extract the
low-frequency components of the images. Thirdly, the low-
frequency feature maps are first concatenated and fed into
the focus score module for feature classification and focus
measurement. Then two-channel feature maps of the same
size as the source image are obtained, in which each value
represents the focus score of the corresponding pixel in the
two source images. Fourthly, the two-channel focus maps
are used to generate a binary image with the same size as the
source image, i.e., the initial decision map (IDM). Then, we
employ the Conditional Random Field (CRF) to optimize
IDM so that the final decision map (FDM, D) is obtained
for final MFIF. Finally, the fused image Ffusion is obtained
using the pixel-wise weighted-average strategy as

Ffusion(x, y) = D(x, y)�A(x, y) + (1−D(x, y))�B(x, y),
(11)

where � denotes the dot product.

3.4. Loss function

In the proposed DTMNet, MFIF is regarded as a binary
classification task with a two-channel output. Compared
with single-channel output, two-channel output considers
the relationship between each pair of input source images.
Therefore, we introduce a binary cross-entropy loss func-
tion to fully exploit each pair of source images’ comple-
mentary correlation.

In the training process, the binary cross-entropy loss
function calculates the error between the focus maps f
output by DTMNet and the ground truth focus maps f̂ ,
and then backpropagates to optimize the model parameters,
which is defined as

Lloss(f, f̂) = −
1

NC

N∑
i=1

C∑
j=1

[f̂
(i)
j log(f

(i)
j ) + (1 − f

(i)
j ) log(1 − f̂

(i)
j )],

(12)

where N is the batch size, C is the number of channel.

4. Experiment and Discussion
4.1. Experimental Settings

1) Datasets setting: The training and validation datasets
are generated from the Benchmark dataset [19], which con-
tains 10569 all-in-focus images and 10569 separated mask
images for the target. We adopted a Gaussian filter with a
standard deviation of 3 and a window of 7 × 7 to contin-
uously smooth each image, and finally obtained 10569 all-
in-blur images. Then, we generated a pair of multi-focus
images Ia and Ib based on the existing all-in-focus image
Iclear, the all-in-blur image Iblur and the mask Mclear:

Ia = Iclear �Mclear + Iblur � (1−Mclear),

Ib = Iclear � (1−Mclear) + Iblur �Mclear,
(13)

where � denotes the dot product. Finally, 10569 pairs
of synthesized multi-focus images and the corresponding
ground-truth mask are obtained. To effectively train the pro-
posed DTMNet model, we divide the generated dataset into
training dataset and validation dataset at a ratio of 9:1.

The testing datasets come from three public datasets:
Lytro dataset [15], Nature dataset [27], MFFW dataset [22].
The Lytro dataset is widely used to test the performance of
MFIF algorithms and contains a total of 20 pairs of multi-
focus images with the size of 520×520. The Nature dataset
contains a total of 16 pairs of multi-focus images with vari-
able sizes, which are more difficult to distinguish between
focus and defocus boundaries(FDB) than the Lytro dataset.
The MFFW dataset contains a total of 13 pairs of multi-
focus images with variable sizes, which considers the effect
of defocus propagation.

2) Training setting: We implemented the training pro-
cess by PyTorch [16]. The model ran on the NVIDIA Tesla
V100 GPU of memory size 16GB with CUDA version 10.1
and CUDNN version 6.0. It costs around 3 GB of GPU
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memory to train our model. The model was trained using
the Adam optimizer with the mini-batch composed of 32
training image pairs, which were selected from the reshuf-
fled training data. During the training process, the images in
the training dataset are resized to 256 × 256. The learning
rate is initialized to 0.0001 and decreased to 0.00001 at the
20th iteration by setting the weight decay factor to 0.1. We
set the maximum epoch number to 60 and validated it after
every two training epochs. In addition, to enhance the gen-
eralization ability and the fusion effectiveness of the model,
data enhancement technology was applied, including hori-
zontal and vertical flipping.

4.2. Subjective Evaluation and Analysis

In this section, the proposed DTMNet method is com-
pared with nine state-of-the-art MFIF methods. The trans-
form domain-based methods: DCT [1]. The spatial domain-
based methods: IM [8], GF [7] and DSIFT [10]. The deep
learning-based methods: CNN [9], p-CNN [18], DRPL [6],
MMF-Net [13] and GEU-Net [21]. For a fair and com-
prehensive comparison, the source codes of all compari-
son methods are provided by the corresponding authors, and
the quantitative evaluation is carried out on the three public
datasets including Lytro, Nature and MFFW.

1) Experiments on the Lytro dataset: Fig. 8 shows the
effectiveness of the proposed DTMNet on the conventional
dataset. In the enlarged image, the club in source image A
(Fig. 8 (a)) is focused and smooth, and four focused and
complete baseballs are presented in source image B (Fig. 8
(b)). The brightness of the transform domain method (Fig.
8 (c)) is not realistic, and the image details at the boundary
are destroyed. The incomplete and out-of-focus baseballs
both appear in the spatial domain methods (Fig. 8 (d)-(f))
and the deep learning methods (Fig. 8 (g) and (i)). The
out-of-focus area also appears in the club in Fig. 8 (h). In
contrast, the proposed DTMNet method (Fig. 8 (l)) obtains
a fused image with the smooth club and complete baseballs.

We also employed the difference image with the source
image B to clearly show the comparison of different meth-
ods because the visual results are not always easy to distin-
guish. The difference map can be obtained as

DifferenceMap = |Fused− SourceB| . (14)

Because the focus of the source image B is in the back-
ground and it is out of focus in the foreground, the differ-
ence image with a satisfactory fusion result would be all
black in the background. Fig. 9 shows the difference image
between the fused image in Fig. 8 and the source image B
(Fig. 8(b)). The proposed DTMNet (Fig. 9 (l)) is smooth on
the edge and black in the background, while other compar-
ison methods (Fig. 9 (a)-(h)) have noise in the background.

2) Experiments on the Nature dataset: Fig. 10 shows
the effectiveness of the proposed DTMNet method on the

(a) Source A (b) Source B (c) DCT

(i) DRPL

(d) IM

(e) GF (h) p-CNN

(l) DTMNet

(g) CNN

(k) GEU-Net(j) MMF-Net

(f) DSIFT

Fig. 8. Experimental results on a pair of source images from the Lytro
dataset [15].

     

     (a) DCT (b) IM (c) GF

(a) DCT

(d) DSIFT (e) CNN

(f) p-CNN (g) DRPL (h) MMF-Net (i) GEU-Net (j) DTMNet

Fig. 9. The difference image on Lytro dataset [15].

dataset with complex FDB. Fig. 11 shows the difference
images. In the enlarged image, the apical part of a petal is
in focus in source A (Fig. 10 (a)) and out of focus in source
B (Fig. 10 (b)), which indicates that the difference image
should not have an apical part. Unclear regions remain in
Fig. 10 (c)-(e), (g) and (k) because the apical part exists in
Fig. 11 (a)-(c), (e) and (i). The difference image in Fig.
11 (f) is not smooth at the boundary, indicating that p-CNN
has poor robustness to the complex boundary. Although the
difference image in Fig. 11 (h) is accurate but the color
is changed, indicating that the content of the fused image
obtained by the MMF-Net method has been changed. In
contrast, the proposed DTMNet produces a clear result in
Fig. 10 (l) even in such a difficult situation due to the lack
of apical part in the difference image in Fig. 11 (j),

3) Experiments on the MFFW dataset: Fig. 12 shows
the effectiveness of the proposed DTMNet method on the
dataset with defocus effect. Fig. 13 shows the difference
images. In the enlarged image, the cup in source A (Fig.
12 (a)) is in focus, and the branches in source B (Fig. 12
(b)) are relatively in focus due to the defocus effect. In Fig.
13, a lot of noise remains above the cup, indicating that the
fusion results generated by these methods are blurred in the
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(a) Source A (b) Source B (c) DCT (d) IM

(e) GF (f) DSIFT (g) CNN (h) p-CNN

(i) DRPL (j) MMF-Net (k) GEU-Net (l) DTMNet

Fig. 10. Experimental results on a pair of source images from the Nature
dataset [27].

     

     (a) DCT (b) IM (c) GF (d) DSIFT (e) CNN

(f) p-CNN (g) DRPL (h) MMF-Net (i) GEU-Net (j) DTMNet

Fig. 11. The difference image on Nature dataset [27].

(a) Source A (b) Source B (c) DCT (d) IM

(e) GF (f) DSIFT (g) CNN (h) p-CNN

(i) DRPL (j) MMF-Net (k) GEU-Net (l) DTMNet

   

   

   

Fig. 12. Experimental results on a pair of source images from the MFFW
dataset [22].

     

     (a) DCT (b) IM (c) GF (d) DSIFT (e) CNN

(f) p-CNN (g) DRPL (h) MMF-Net (i) GEU-Net (j) DTMNet

Fig. 13. The difference image on MFFW dataset [22].

corresponding area, as shown in Fig. 12 (c)-(h) and (j). In
addition, the incomplete difference image exists in Fig. 13
(i), resulting in severe defocus as shown in Fig. 12 (k). In
contrast, the difference image is complete and noise-free in
Fig. 13 (l), which indicates that the proposed method has
good robustness to the defocus effect.

4) Experiments on other images: Fig. 14 shows the dif-
ference images of the remaining images. The noise almost
exists in all images in Fig. 14 (b) and (i), and the color of
some images is changed, which shows that the fused results
generated by DCT and MMF-Net have changed the image
components. In Fig. 14 (c)-(f) and (h), the blur exists at
the boundary of the grid in the first row, and the noise re-
mains in the last two rows. In addition, the grid in the first
row of Fig. 14(g) and (j) is interrupted. On the contrary,
the proposed DTMNet achieves smooth and complete fu-
sion results in all images.

4.3. Objective Evaluation and Analysis

To further illustrate the effectiveness of the proposed
DTMNet for MFIF, we verified the images fused by dif-
ferent methods from the objective evaluation. In [12], the
evaluation metrics used for MFIF are roughly classified
into four categories: information theory-based metrics, im-
age feature-based metrics, image structural similarity-based
metrics and human perception inspired fusion metrics. In
this paper, we select a typical evaluation metric from each
type of objective evaluation metrics to verify the perfor-
mance of the fusion methods, i.e., normalized mutual infor-
mation (QMI ) [5], gradient-based fusion performance (QG)
[23], structural similarity (SSIM, QY ) [24] and Chen-blum
metric (QCB) [2].

The objective evaluation on the three public datasets are
shown in Table 2. For the Lytro dataset, the values of the
proposed DTMNet method are higher than those of other
comparison methods on three metrics, i.e., QMI , QG and
QY . For the Nature and MFFW datasets, the values of
the proposed DTMNet method are the highest in all met-
rics among all methods.

4.4. Comparison in Parameters and Computational
Time

Since the traditional method has no learnable parame-
ters, we only compared the deep learning-based methods
from the aspect of learnable parameters, as shown in Table
3. We can find in this table the proposed DTMNet has the
least parameters among all the comparison methods, with
only 0.01M parameters, which is 1/500 times that of CNN.

In addition, Table 3 also lists the average running time
for each method to generate a fusion image on the Lytro
dataset. The comparison is based on a platform with an Intel
Core i5-8300H CPU, an NVIDIA Geforce GTX 1060 GPU,
and an 8GB RAM. Generally, the traditional methods have
higher efficiency than the deep learning methods. However,
we can find that the DTMNet method is much faster than
all comparison methods, including traditional methods and
deep learning-based methods. Therefore, thanks to a very
small number of parameters, the proposed DTMNet can be
used in some real-time MFIF applications.
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(a) Source B (b) DCT (c) IM (d) GF (e) DSIFT (f) CNN (g) p-CNN (k) DTMNet(h) DRPL (i) MMF-Net (j) GEU-Net

Fig. 14. The difference images of the remaining images on the three datasets.

Method
Lytro dataset Nature dataset MFFW dataset

QMI QG QY QCB QMI QG QY QCB QMI QG QY QCB

DCT [1] 0.8357 0.6110 0.9146 0.6738 0.9377 0.5974 0.8894 0.6811 0.7985 0.5646 0.8755 0.6291

IM [8] 1.1419 0.7174 0.9787 0.7952 1.2260 0.7111 0.9747 0.7884 1.0932 0.6893 0.9652 0.7364

GF [7] 1.0980 0.7204 0.9817 0.7975 1.1397 0.7019 0.9640 0.7767 0.9594 0.6779 0.9652 0.7364

DSIFT [10] 1.1876 0.7266 0.9877 0.8093 1.2565 0.7184 0.9797 0.8048 1.1426 0.6906 0.9404 0.7341

CNN [9] 1.1512 0.7250 0.9871 0.8084 1.2286 0.7180 0.9852 0.8040 1.0915 0.6818 0.9735 0.7415

p-CNN [18] 1.1773 0.7234 0.9860 0.8049 1.2406 0.7077 0.9707 0.7913 1.1338 0.6839 0.9625 0.7393

DRPL [6] 1.1895 0.7274 0.9867 0.8067 1.2482 0.7049 0.9614 0.7831 1.1462 0.6886 0.9312 0.7152

MMFNet [13] 0.9719 0.6576 0.9517 0.7508 1.0554 0.6340 0.8950 0.7039 0.9535 0.6001 0.8705 0.6410

GEU-Net [21] 1.1564 0.7140 0.9798 0.7858 1.2545 0.7126 0.9809 0.7910 1.1215 0.6971 0.9780 0.7494

DTMNet 1.1928 0.7282 0.9886 0.8089 1.2692 0.7197 0.9862 0.8081 1.1853 0.7036 0.9834 0.7510

Table 2. The quantitative comparison of different MFIF methods. For QMI [5], QG [23], QY [24] and QCB [2], the larger values indicate better results.
The best result is in bold.

Method
Traditional methods Deep learning methods

DCT IM GF DSIFT CNN p-CNN DRPL MMFNet GEU-Net DTMNet

Para(M) - - - - 4.93 0.31 1.07 5.22 2.16 0.01

Time(s) 0.49 16.94 2.74 3.36 79.09 3.52 3.55 8.92 1.65 0.32

Table 3. The number of parameters (Para) for the various models and the
average time consumption to generate the fused image on the Lytro dataset.

4.5. Ablation Study

Several ablation studies are conducted to show the effec-
tiveness of the proposed DTMConv for feature extraction
in Table 4. The experimental settings remain unchanged,
and DTMConv is replaced with learnable convolution and
discrete cosine convolution (DCTConv) respectively. The
results show that the DTMConv has a stronger image repre-
sentation ability than learnable convolution and DCT, which
helps extract more abundant image information.

5. Conclusion
In this paper, a novel discrete Tchebichef moments-

based convolutional neural network, termed as DTMNet, is
proposed for MFIF. To the best of our knowledge, it is the
first time that the image moment and deep learning tech-
nologies are combined to propose the lightweight end-to-
end deep neural network, i.e., DTMNet for MFIF. The pro-

Method Conv DCTConv DTMConv
QMI 1.1862 1.1891 1.1928
QG 0.6259 0.6467 0.7282
QY 0.9158 0.9383 0.9886
QCB 0.7182 0.7344 0.8089

Table 4. Ablation Study. We use the quantitative comparisons on the Lytro
dataset with different training settings.

posed DTMNet has 0.01M parameters only, and it can be
used in some real-time MFIF applications. Extensive ex-
periments on three public datasets show that the proposed
DTMNet outperforms the state-of-the-art methods in terms
of visual quality and objective assessment.
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