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Abstract

Most semi-supervised learning models are consistency-
based, which leverage unlabeled images by maximizing the
similarity between different augmentations of an image. But
when we apply them to human pose estimation that has ex-
tremely imbalanced class distribution, they often collapse
and predict every pixel in unlabeled images as background.
We find this is because the decision boundary passes the
high-density areas of the minor class so more and more
pixels are gradually mis-classified as background. In this
work, we present a surprisingly simple approach to drive
the model to learn in the correct direction. For each image,
it composes a pair of easy-hard augmentations and uses the
more accurate predictions on the easy image to teach the
network to learn pose information of the hard one. The ac-
curacy superiority of teaching signals allows the network
to be “monotonically” improved which effectively avoids
collapsing. We apply our method to the state-of-the-art
pose estimators and it further improves their performance
on three public datasets.

1. Introduction

2D human pose estimation has many practical applica-

tions such as 3D pose modeling [48, 35, 23] and action

recognition [37, 38]. The early works in deep learning try

to regress joint coordinates from images directly [34, 5].

But most recent ones adopt the heatmap-based framework

[33, 39, 24, 30, 41] because it provides better supervision.

But there is a more important but less explored problem of

learning robust models that perform well on unseen wild

images. One solution is to fit the “whole” world by in-

finitely increasing training images. The other is to transfer

pre-trained models to new domains by unsupervised fine-

tuning. The common basis behind the two approaches is

Semi-Supervised Learning (SSL)— how to leverage unla-
beled images to obtain a generalizable model?
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Figure 1. Our approach to avoid “collapsing” in semi-supervised

human pose estimation. For each unlabeled image, we compose

an easy and hard image pair Ie and Ih using two augmentation

methods Te and Th, respectively, and feed them to the network

fθ . We use the heatmaps Te→h(Hθ,e) on the easy image to teach

the network to learn about the hard image. Te→h maps the two

heatmaps of the augmented images. Lθ represents the consistency

loss. The accuracy superiority allows the network to be “mono-

tonically” improved which avoids collapsing.

The previous SSL works have primarily focused on the

classification task. In general, there are two strategies to ex-

plore unlabeled images. The first is Pseudo labeling [26, 42]

which first learns an initial model on only labeled images in

a supervised way. Then, for each unlabeled image, it applies

the initial model to obtain hard or soft pseudo labels repre-

senting its category. Finally, it learns the ultimate model

on the combined dataset of labeled and pseudo-labeled im-

ages. However, the performance of the method is largely

limited by that of the initial model which is learned only on

the labeled images and fixed thereafter.

The second class of methods [2, 19, 27, 28, 31] learn

about unlabeled images by requiring the network to have

similar predictions for different augmentations of the same

image. They are better than the pseudo labeling methods

because the accuracy is not limited by the fixed labeling

network. However, when we apply them to 2D pose esti-

mation, we find that all of them encounter the collapsing

problem meaning that, within few training iterations, the

models begin to predict every pixel in unlabeled images as

background. As a result, the prediction accuracy becomes

even worse than the initial supervised model.
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The collapsing problem is not identified as a serious is-

sue in previous works because most of them were only eval-

uated on the well-balanced classification task. But we find it

is vital for tasks with severe class imbalance such as human

pose estimation, which has not received sufficient attention.

It occurs because when the network makes different predic-

tions on the corresponding pixels, it lacks sufficient infor-

mation to determine the correct optimization path. Blindly

minimizing their discrepancy causes the decision boundary

to be incorrectly formed due to imbalance and pass through

the high-density area of the minor class as revealed in [14].

It leads to the situation where a growing number of pixels

are mis-classified as background.

In this work, a simple approach is presented to address

the collapsing problem. We first introduce the concept of

easy-hard augmentation pair and, by definition, a network

should obtain better average accuracy on a certain dataset

with easy augmentation than on the same dataset with hard

augmentation. Then, for each unlabeled image, we com-

pose an easy and a hard augmentation, feed them to the

network and obtain two heatmap predictions. We use the

accurate predictions on the easy augmentation to teach the

network to learn about the corresponding hard augmenta-

tion (see Figure 1). However, the hard augmentation will

not be used for teaching the network to learn about the easy

augmentation, which avoids high response samples being

pulled to background as illustrated in Figure 2. The relative

accuracy superiority of the teaching signals allows the net-

work to be “monotonically” improved which stabilizes the

training and avoids collapsing.

Our approach is general and applies to most consistency-

based SSL methods such as [17, 19] for stopping collapsing.

We empirically validate it on a simple baseline as well as

on the state-of-the-art method [17] which jointly learns two

models. Both methods collapse in their original setting and

our easy-hard augmentation strategy helps avoid the prob-

lem. We extensively evaluate them on three public datasets

of COCO [22], MPII [1] and H36M [15]. When the num-

ber of labeled images is small, our approach increases the

mean Average Precision (AP) by about 13% (from 31.5%
to 44.6%) compared to the supervised counterpart which

only uses labeled data for training. As a comparison, the

pseudo labeling methods of [42] and [26] only get 37.2%
and 37.6% mean AP, respectively. More importantly, when

we apply our method to the best 2D pose estimator and

use all available labeled training images, it can further im-

prove the performance by a decent margin by exploring un-

labeled images. We also report results when our approach

is used for semi-supervised pre-training and domain adap-

tation tasks. The versatile practical applications in various

settings validate the values of this work.

2. Related Work
SSL has been well studied for the classification task.

We discuss some works which use deep networks since our

target is to address the collapsing problem confronted by

deep learning methods. Please refer to other surveys such

as [36] for a more comprehensive review. Pseudo labeling

[20, 26, 42, 43] is commonly used in SSL. The basic idea

is to first learn an initial model on labeled images and then

apply it to unlabeled images to estimate pseudo labels. The

images with confident pseudo labels are added to the la-

beled dataset. Finally, it trains a stronger classifier on the

extended dataset in a supervised way. However, the per-

formance is limited by that of the initial classifier which

is learned on only few labels. Iterative training alleviates

the problem but the classifier is updated only once after it

processes the whole dataset which is inefficient for large

datasets. Besides, the selection criterion for data to be added

to the labeled set is ad hoc for different tasks.

Some SSL methods [27, 19, 31, 2, 28] are consistency-

based. For example, the Π model [19] keeps history predic-

tions on the dataset and requires current predictions to be

consistent with them. The approach is shown to be more

tolerant to incorrect labels but is inefficient when learning

large datasets since history predictions change only once

per epoch. Tarvainen et al. [31] present the mean-teacher
model in which the teacher is the moving average of the

student which can be timely updated in every iteration.

But their performance is limited because the two models

tend to converge to the same point and stop further explo-

ration. Some methods [25, 17] learn two different mod-

els by minimizing their prediction discrepancy. To avoid

the case where the two models converge to the same point,

they either learn from different initializations [17] or add

view difference constraints [25]. Besides, There are some

works that avoid collapsing without negative sample in self-

supervised learning [10, 7, 44], but their objective functions

and optimized variables are different from ours. The BYOL

uses the Exponential Moving Average (EMA) strategy [10],

which does not prevent collapsing in our experiments. The

SimSiam shows that the stop-gradient plays an essential

role [7] but using it alone without our easy-hard augmen-

tation strategy also cannot avoid collapsing.

The above works were not been evaluated for pose esti-

mation and we find they all encounter the collapsing prob-

lem when applied to the task. The contribution of this work

lies in identifying and studying the collapsing problem and

presenting a simple solution to avoid it such that the ex-

isting SSL methods can be used for pose estimation. In

addition, we will extend some representative works to the

human pose estimation task and provide a rigorous evalua-

tion of their performance. This has empirical values to the

community. We will release our code and models hoping it

can facilitate research along this direction.
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3. The Method

Figure 2. Left: the standard consistency-based method minimizes

the distance between the predictions of the two augmentations (red

and blue points). Since many pixels have low response (close to

background), few high response pixels (e.g., the red point) tend

to be gradually pulled to the background class. Right: In our

method, more accurate predictions of easy augmentation pull those

on hard augmentation, which avoids high response samples being

pulled to the background class.

The task of 2D pose estimation aims to detect locations

of K body joints in an image I. Since [33], nearly all

methods transform the problem to estimating K Gaussian

heatmaps H where each heatmap encodes the probability

of a joint at a location in I. For inference, each joint can be

estimated to be at the location with the largest value in the

corresponding heatmap. Denote the labeled and unlabeled

training sets as L = {(Il,Hl)}Nl=1 and U = {Iu}Mu=1, re-

spectively. For supervised training of the pose estimation

network f , we minimize the MSE loss between the esti-

mated and ground-truth heatmaps:

Ls = EI∈L ||f(Iη, θ)−Hη||2, (1)

where Iη = T (I, η) represents an augmentation of I and η
represents augmentation parameter. Hη = T (H, η) repre-

sents the corresponding heatmap and θ represents the net-

work parameters.

3.1. Unsupervised Learning via Consistency

The network f also learns about unlabeled images via

consistency loss. For each unlabeled image I, it composes

two augmentations Iη and Iη′ and minimizes the MSE loss

between the heatmap predictions:

Lu = EI∈U ||f(Iη, θ)− f(Iη′ , θ′)||2 . (2)

The network parameters θ and θ′ can be either identical or

different. For example, in [31], θ′ is the exponential mov-

ing average (EMA) of θ. We will evaluate both choices in

our experiments. It is worth noting that both θ and θ′ are
changing during training. In contrast, the teacher network
of the pseudo labeling methods is fixed so it does not suf-
fer from collapsing. The parameters η and η′ are usually

randomly sampled at each training step. It is worth noting

that η and η′ are usually sampled from the same distribution

without discrimination [2, 19, 31].
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Figure 3. Top: results of the standard consistency-based method.

Average heatmap response increases steadily for labeled images

which is as expected. But for unlabeled images, it decreases to

zero which suggests that collapsing occurs. The estimation accu-

racy on the validation dataset also decreases to 0.9%. Below: the

results of our approach.

3.2. The Collapsing Problem

We try to train a model by adding the two loss functions:

L = Ls + λLu with λ = 1. Each batch of training data

consists of equal number of images from L and U . We use

affine augmentation [30, 41] for η and η′. We use identical

weights for θ and θ′ and use 1K labels. Within a few itera-

tions of training, the network begins to predict all pixels of

unlabeled images as background as shown in Figure 3 (top).

The maximum value in a heatmap is used to represent its

heatmap response and we find the average response on la-

beled images increases steadily which is as expected. How-

ever, the average response on unlabeled images decreases

significantly and the accuracy on validation images is very

low. Decreasing λ does not solve the problem. It only slows

down the collapsing process. So we set λ = 1 for the rest

of our experiments. Some one may think it is over-fitting

to the small labeled dataset. However, increasing labels to

118K does not fully solve the problem. The response on

unlabeled images still gradually decreases. The accuracy is

higher than the case with 1K labels but it is still worse than

the initial superivsed model. We also tried to use strong

augmentation methods such as Rand Augmentation [8] to

labeled images or unlabeled images but none of them can

fully address the collapsing problem.

Collapsing occurs because the consistency regularization

requires the model to satisfy the smoothness assumption

[6, 36] where an image and its augmentation should have

similar predictions. Thereby, the decision boundary would

be pushed to low-density region. In fact, due to the imbal-

ance in data, decision boundary often skews into the areas

of minor class which is sparse globally as shown in Figure

4. This is also observed in [14]. As a result, a growing

number of pixels are mis-classified as background.
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Figure 4. (A) the decision boundary before SSL. (B) the naı̈ve

consistency regularization moves data and their augmentations

(dashed circles) to their middle points. As a result, more data

will be close to the decision boundary which pushes the decision

boundary to pass through the areas of minor class that is sparse

globally. (C) differently, our approach drives the less accurate pre-

dictions, which are close to the decision boundary, to the direction

of more accurate predictions. In this case, the decision boundary

is less likely to be incorrectly formed.

3.3. Avoid Collapsing

The naı̈ve implementation of the consistency regulariza-

tion draws two samples to their middle point so more data

are becoming closer to the decision boundary (see Figure

4.B). As a result, the decision boundary is pushed away

from the high density areas of the dominant class and may

skew into the areas of minor class. In contrast, our approach

drives the less accurate predictions which are close to the

decision boundary to the direction of more accurate predic-

tions. In this case, the decision boundary is less likely to

skew into the areas of minor class.

To achieve the goal, we present a paired easy-hard image

augmentation strategy. For an unlabeled image I, it obtains

two augmented images Ie and Ih by applying an easy and

hard augmentation Te and Th, respectively:

Ie = Te(I) = T (I, ηe) and Ih = Th(I) = T (I, ηh). (3)

Where Te is regarded as an easier augmentation method

than Th only when the network obtains better average accu-
racy on a dataset under perturbation Te than under Th. We

feed the two augmented images to the network and let the

predictions of Ie to teach the predictions of Ih:

Le,h = EI∈U ||f(Ie, θ)− f(Ih, θ)||2 . (4)

For the sake of simplicity, we call f(Ie, θ
′) and f(Ih, θ)

as teacher and student signals, respectively. Note that the
gradients are propagated through only the student path.
This is the key to avoid collapsing. This can be done by

calling the detach operator on the teacher signals before

computing the loss. Removing the detach operator leads

to collapsing regardless of augmentations.
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Figure 5. Left: Average precision of a network on a dataset un-

der different augmentation. Right: Some example easy-hard aug-

mentation pairs and their effects on avoiding collapsing. “JC 5”

represents Joint Cutout Augmentation on five joints (a novel hard

augmentation method we introduce in section 4.1). “RA 20” rep-

resents Random Augmentation [8].

4. Implementation Details
4.1. Easy-Hard Augmentation

Affine Transformation is commonly used in 2D pose

estimation which randomly scales and rotates an image.

Affine transformation changes keypoint locations for pose

estimation which are equivariant to the transformation [47,

32]. Let T (·) be an affine transformation and f(·) be the

network to estimate heatmaps from images. Then the loss

function can be computed as:

L = EI∈U‖f(T (I))− T (f(I))‖2 . (5)

It can be extended to map the heatmaps of the same image

under two different affine augmentations which allows us to

compute the consistency loss.

We find that a pose estimator achieves very different per-

formances on the same dataset if we apply affine transfor-

mation of different strengths to perturb the testing images.

Figure 5 shows some typical results. For example, when

we randomly sample rotation angles from [−30◦, 30◦] and

scale factors from [0.75, 1.25] (denoted as “Affine 30”) for

affine transformation to perturb testing images, the Average

Precision (AP) on the dataset is about 63.7%. But when

we sample from a larger range of [−60◦, 60◦] and [0.5, 1.5],
respectively, AP decreases notably to 55.7%.

The above finding motivates us that we can compose

easy-hard augmentation pairs by adapting the ranges of ro-

tation and scaling. Figure 5 shows some easy-hard augmen-

tation choices that are able to prevent the model from col-

lapsing. It is worth noting that “Affine 60” can be regarded

as a hard augmentation compared to “Affine 30”, but it can

also be regarded as an easy augmentation when compared

to a stronger method “JC 5” which we will introduce in the

next section. It suggests that it is the gap between the two
methods that matters.

Note that the augmentation strategies generalize well

across datasets, which means that we need not to repeat the

experimentation. In our experiments, the augmentations are

determined based on 1K images sampled from COCO, and

are applied to the rest datasets.
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Joint Cutout Although affine-based augmentation al-

ready avoids collapsing, we find using harder augmentation

for Th improves the accuracy (Te still uses easy affine aug-

mentation). Inspired by cutout [9] and keypoint masking

[16], we introduce a new method Joint Cutout to simulate

occlusion. For each image (with easy augmentation ap-

plied), we first estimate coarse locations of keypoints using

the model we are trying to train. Then we randomly sample

a number of detected keypoints and mask their surrounding

regions as illustrated in Figure 6. To avoid over-fitting to

the masks, the center locations and sizes of masking regions

are randomly perturbed. The method improves accuracy by

a notable margin especially when the number of labeled im-

ages is small.

4.2. Learning Dual Networks

The previous SSL methods [31, 19, 28, 2] often learn a

single network where the teacher’s parameters are either the

same as the student’s or its exponential moving average. So

the teacher and student networks are coupled which limits

their performance [17]. The recent method [17] learns two

independent networks to solve the problem. In this section,

we briefly introduce how to apply easy-hard augmentation

to it. For a training image I, we generate an easy and a hard

augmentation denoted as Ie and Ih, respectively. Then we

feed them to both networks fθ and fξ and obtain four stream

heatmap predictions:

Hθ,e = f(Ie, θ) and Hθ,h = f(Ih, θ),

Hξ,e = f(Ie, ξ) and Hξ,h = f(Ih, ξ).
(6)

We know that Hθ,e and Hξ,h are similar up to a known

transformation Te→h. Similarly, Hθ,h is also similar to

Hξ,e up to the same transformation. We train the networks

by minimizing two consistency loss items:

θ∗ = argmin
θ

‖Hθ,h − Te→h(Hξ,e)‖2,

ξ∗ = argmin
ξ

‖Hξ,h − Te→h(Hθ,e)‖2.
(7)

We only pass the gradient back through the hard example

to avoid collapsing. It means that one consistency loss item

is used to optimize a single network at each time. Take

the first formula in Eq. (7) as an example, Hξ,e estimated

by fξ is treated as a teacher to update fθ. In this case, we

do not update fξ because Hθ,h is usually too noisy to be

used as supervision. Subsequently, we update fξ according

to the second formula in Eq. (7). The two symmetrical

loss items are combined so that the two networks can guide

each other and be optimized together. The performances of

the two networks are very close in the end and we report

their average accuracy. Note that in inference, the model

has the same number of parameters and running speed as

the supervised model.

Images

Heatmaps

Original Affine Joint Cutout Original Affine Joint Cutout

Figure 6. Effect of Joint Cutout. In each example, we show orig-

inal, affine transform and Joint Cutout images and heatmaps. We

can see that Joint Cutout is more effective in fooling the network.

In the left example, since the head is occluded, the model has diffi-

culty in discriminating left and right joints, which drives the model

to learn more discriminative features.

5. Baselines and Our Methods
We first introduce several baselines by modifying some

representative SSL classifiers for pose estimation including

both Pseudo labeling methods and consistency-based ones,

and numerically compare them to our approach.

PseudoPose It is modified from pseudo labeling methods

[20, 26, 42]. We first train a teacher model ft with labeled

images. Then ft is fixed and we apply it to unlabeled images

to obtain pseudo heatmaps. We train an ultimate model f
by minimizing the Mean squared error (MSE) loss on the

combined set:

L =
∑

I∈U
‖Te→h(ft(Ie))− f(Ih)‖2 +

∑

I∈L
‖He − f(Ie)‖2,

(8)

where He is the ground-truth heatmap. Note that we use the

same augmentation methods as ours for fair comparison.

DataDistill [26] It is also a pseudo labeling method. It

differs from PseudoPose in that it sums the heatmaps es-

timated for multiple different augmentations of an image,

obtains the keypoint locations, and re-generates a pseudo

heatmap with Gaussian shape for supervision.

Ours (Single) It is a consistency-based method in which

θ and θ′ are identical. On labeled images, it performs su-

pervised learning with the ground-truth heatmaps. For each

unlabeled image, it minimizes the discrepancy between the

two estimated heatmaps of the easy and hard augmented
images. It differs from PseudoPose in that ft is not fixed.

In fact, it is f which is learned in semi-supervised learning.

Ours (Dual) The method is similar to “Ours (Single)”

except that it learns dual networks as discussed in section

4.2. We also apply our proposed “easy-hard” augmentation

method to this approach to avoid collapsing.
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6. Experiment
6.1. Datasets, Metrics and Details

COCO Keypoint [22] It has four subsets of TRAIN,

VAL, TEST-DEV and TEST-CHALLENGE. There are 123K

WILD unlabeled images. To evaluate our method when dif-

ferent numbers of labels are used, we construct four train-

ing sets by randomly selecting 1K, 5K, 10K and 20K person

instances from TRAIN, respectively. The unlabeled set con-

sists of the rest of images from TRAIN unless specified. In

some experiments, we use the whole TRAIN as the labeled

set and WILD as the unlabeled one. We report the mean AP

over 10 OKS thresholds as the main metric following [22].

The input image size is 256× 192.

Table 1. AP of different methods on COCO when different num-

bers of labels are used. The bottom section (grayed) evaluates

augmentation methods. “A” represents Affine transformation.

Methods Aug. 1K 5K 10K All

Supervised [41] A 31.5 46.4 51.1 67.1

PseudoPose A 37.2 50.9 56.0 —

DataDistill [26] A 37.6 51.6 56.6 —

Ours (Single) A 38.5 50.5 55.4 —

Ours (Dual) A 41.5 54.8 58.7 —

Ours (Single) A+JC 42.1 52.3 57.3 —

Ours (Dual) A+RA 43.7 55.4 59.3 —

Ours (Dual) A+JC 44.6 55.6 59.6 —

MPII Dataset [1] It has about 25K images with 40K an-

notated person instances. Since labels are not provided for

the test set, we conduct ablation study on the validation set

which consists of 3K instances. We use the training set as

the labeled set and the AI Challenger dataset [40] as the

unlabeled set, which has 210K images with 370K person

instances. The metric of PCKh@0.5 [1] is reported. The

size of the input image is 256× 256 following [1].

H36M Dataset [15] We use subjects S1, S5, S6, S7 and

S8 for training, and S9, S11 for testing. The 2D pose ac-

curacy is measured by Joint Detection Rate (JDR). And the

Mean Per Joint Position Error (MPJPE) is used as the main

metric in 3D pose estimation.

Implementation Details We use SimpleBaseline [41] to

estimate heatmaps and ResNet18 [12] as its backbone. But

our approach is general and can be applied to other pose es-

timators as shown in Table 4. On the validation set, we use

the ground truth boxes and do not flip images for all meth-

ods. We train the models for 100 epochs. We use Adam [18]

optimizer with the initial learning rate of 1e−3. It drops to

1e−4 and 1e−5 at 70 and 90 epochs, respectively.

Table 2. The effects of using different network structures for the

two models fθ and fξ on COCO. We report AP when different

numbers of labels are used.

Method Networks of fθ and fξ 1K 5K 10K

Supervised [41] ResNet18 31.5 46.4 51.1

Supervised [41] HRNet w48 39.2 57.7 63.7

Ours (Dual)
ResNet18 41.5 54.6 58.6

ResNet18 41.6 54.9 58.8

Ours (Dual)
HRNet w48 50.9 64.3 67.9

HRNet w48 51.0 64.2 67.9

Ours (Dual)
ResNet18 48.7 59.4 62.5
HRNet w48 50.9 62.8 66.8

6.2. Ablative Study

Easy-Hard Augmentation We first study the relationship

between augmentation methods and collapsing. As shown

in Figure 7 (a), when we use easy augmentations for both

Te and Th, the average response gradually decreases to zero

for unlabeled images meaning collapsing occurs. This is

because there is no accuracy gap between teacher and stu-

dent signals. We also get degenerated results when we use

hard augmentation for Te (see sub-figures c and d) for the

same reason. In contrast, the training becomes normal when

we use easy-hard augmentation strategy. In this case, the

teacher and student models have sufficient gap. We have

similar observation when we either learn a single model or

dual models.

Baseline SSL Methods Table 1 shows the results of dif-

ferent SSL methods. Supervised training with a small num-

ber of labels gets worst results which validates the values of

unlabeled images. The gap is larger when there are fewer

labels. DataDistill [26] achieves slightly better accuracy

than PseudoPose since it ensembles multiple network out-

put to obtain more reliable pseudo labels. The proposed

consistency-based method ”Ours (Dual)” get better results

than the pseudo labeling methods.

We also study the impact of augmentation methods for

Th. We can see from Table 1 (bottom) that applying harder

augmentation methods such as RandAug (RA) and Joint

Cutout (JC) notably improves the results especially when

the number of labeled images is small. In particular, Joint

Cutout achieves consistently better mean AP scores than

RandAug. It is known that the most common mistake

in pose estimation is the confusion between left and right

joints. As shown in Figure 6, Joint Cutout is effective in

increasing the level of confusion and drives the models to

learn more discriminative features. We use Joint Cutout
as the default augmentation for the rest of the paper. It is

worth noting that applying hard augmentation to [41] in su-

pervised training actually decreases AP when there are 1K

labels and slightly increases AP from 51.1% to 52.1% when

there are 10K labels.
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Figure 7. Evolution of average heatmap around body joints of different augmentation strategies. The blue line represents the results on

labeled images. The red and green lines represent the results of the teacher and student, respectively, on unlabeled images.

Table 3. Results on the COCO VAL set when all images from the

TRAIN set are used as the labeled set and all images from the

WILD set are used as the unlabeled set.

Method Network AP Ap .5 AR AR .5

Supervised [41] ResNet50 70.9 91.4 74.2 92.3

Ours ResNet50 73.9 (↑3.0) 92.5 77.0 93.5

Supervised [41] ResNet101 72.5 92.5 75.6 93.1

Ours ResNet101 75.3 (↑2.8) 93.6 78.2 94.1

Supervised [41] ResNet152 73.2 92.5 76.3 93.2

Ours ResNet152 75.5 (↑2.3) 93.6 78.5 94.3

Supervised [30] HRNetW48 77.2 93.5 79.9 94.1

Ours HRNetW48 79.2 (↑2.0) 94.6 81.7 95.1

Network Structures We evaluate the effect of using dif-

ferent networks in Table 2. We can see that when we use

ResNet18 and HRNet, the performance of ResNet18 im-

proves by a large margin (41.5% vs. 48.7%) compared

to the case of using ResNet18 for both networks. This is

mainly because HRNet can provide more accurate super-

vision for ResNet18 which notably boosts its performance.

The results suggest that, even when our target is to learn a

lightweight model for fast inference, we can still learn it to-

gether with a large model which will notably improve the

accuracy of the lightweight model.

6.3. Failed Attempts

We present some failed attempts to avoid collapsing. The

first is to balance foreground/background pixels by class re-

weighting. Since we do not have labels, we assign larger

weights for pixels with larger heatmap predictions since

they are more likely from foreground. We tried several

weight functions but collapsing still occurs because we do

not have ground-truth labels (see Figure 8 (C)). The second

approach uses confident predictions to teach the network. If

the maximum response of a heatmap (of teacher) is larger

than a threshold, we use it as supervision. Otherwise, we do

not use it in loss computation. When the threshold is small,

the performance is much worse than the initial supervised

model (see (A1)). When the threshold is large, very few

pixels are involved in training and the performance is barely

improved (see (A4)). The third approach stabilizes training

using Mean Teacher [31] in which the teacher is the expo-

nential moving average of the student θ′ ← αθ′+(1−α)θ.

We set α to be 0.99 and 0.999, respectively. The perfor-

mance is worse than the initial supervised model which does

not use unlabeled images (see (B1-B2)).
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Figure 8. Results of failed attempts. A1-A4 represent approaches

which use confident predictions to teach the network with confi-

dence thresholds of 0.2, 0.4, 0.6 and 0.8, respectively. B1-B2 rep-

resent mean teachers with EMA parameters of 0.99 and 0.999. C

represents the re-weighting method. D1-D3 represents easy-easy,

hard-hard and hard-easy augmentation strategies. The gray dash

lines is the AP of the initial supervised model.

6.4. Performance with Many Labels

We use COCO TRAIN and WILD as labeled and unla-

beled datasets, respectively. The results on the VAL set are

in Table 3. Our approach consistently outperforms the ini-

tial supervised model. It suggests that even when we have

access to many labels, it still gets decent improvement with

unlabeled images. We also test our approach in a more re-

alistic setting where labeled and unlabeled images are from

different datasets of MPII and AIC, respectively. Table 5

shows the results on the test set of MPII. Our approach out-

performs all other methods. The experiment validates the

values of using unlabeled images. The last two methods

use extra labels and larger image sizes.

Table 4 shows the results of the state-of-the-art meth-

ods on the COCO test-dev dataset. We supplement them

with our approach to learn about unlabeled images from the

COCO WILD dataset. We can see that our approach consis-

tently improves the performance although the performance

of the original methods are already very high.
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Table 4. Comparison to the state-of-the-art methods on the COCO TEST-DEV dataset. The COCO Train set is the labeled set and COCO

WILD set is the unlabeled set. The person detection results are provided by Simple Baseline [41] and flipping strategy is used.

Method Network Input Size GFLOPS #Params AP AP0.50 AP0.75 APM APL AR
SB [41] ResNet50 256 × 192 8.9 34.0 70.2 90.9 78.3 67.1 75.9 75.8

SB [41] ResNet152 256 × 192 15.7 68.6 71.9 91.4 80.1 68.9 77.4 77.5

HRNet [30] HRNetW48 384 × 288 32.9 63.6 75.5 92.5 83.3 71.9 81.5 80.5

MSPN [21] ResNet50 384 × 288 58.7 71.9 76.1 93.4 83.8 72.3 81.5 81.6

DARK [45] HRNetW48 384 × 288 32.9 63.6 76.2 92.5 83.6 72.5 82.4 81.1

UDP [13] HRNetW48 384 × 288 33.0 63.8 76.5 92.7 84.0 73.0 82.4 81.6

Ours (+SB) ResNet50 256 × 192 8.9 34.0 72.3 (↑ 2.1) 91.8 80.5 69.3 77.8 77.7

Ours (+SB) ResNet152 256 × 192 15.7 68.6 73.7 (↑ 1.8) 92.1 82.1 71.0 79.0 79.1

Ours (+HRNet) HRNetW48 384 × 288 32.9 63.6 76.7 (↑ 1.2) 92.5 84.3 73.5 82.5 81.8

Ours (+DARK) HRNetW48 384 × 288 32.9 63.6 77.2 (↑ 1.0) 92.6 84.5 73.9 82.9 82.2

Table 5. Comparisons on the MPII test set (PCKh@0.5). Our

method uses HRNetW32 as backbone and size is 256× 256. The

MPII and AIC (w/o labels) dataset are used for training. The ∗
means extra labels in AIC are used.

Method Hea Sho Elb Wri Hip Kne Ank Total

Newell et al.[24] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9

Xiao et al. [41] 98.5 96.6 91.9 87.6 91.1 88.1 84.1 91.5

Ke et al. [16] 98.5 96.8 92.7 88.4 90.6 89.4 86.3 92.1

Sun et al. [30] 98.6 96.9 92.8 89 91.5 89 85.7 92.3

Zhang et al. [46] 98.6 97.0 92.8 88.8 91.7 89.8 86.6 92.5

Ours 98.7 97.3 93.7 90.2 92.0 90.3 86.5 93.0
Su et al.*[29] 98.7 97.5 94.3 90.7 93.4 92.2 88.4 93.9

Bin et al.*[3] 98.9 97.6 94.6 91.2 93.1 92.7 89.1 94.1

Bulat et al.*[4] 98.8 97.5 94.4 91.2 93.2 92.2 89.3 94.1

Table 6. Domain adaptation results measured by MPJPE (mm) on

the H36M dataset. The MPII is used as labeled set and H36M is

unlabeled set. No labels from H36M are used in training.

Method Training Data Shld Elb Wri Mean

Supervised MPII* 40.3 67.0 89.3 65.5

PseudoPose MPII*+H36M 39.6 59.2 76.8 58.5

Ours MPII*+H36M 35.8 56.4 77.6 56.6

6.5. Alternative Applications

SSL can also be used for unsupervised domain adapta-
tion to learn about unlabeled images from a new domain. To

that end, we evaluate different methods by trying to adapt

the model learned on the MPII dataset to the H36M dataset

[15]. We first estimate 2D poses from different camera

views and then recover the 3D pose by triangulation [11].

The results are shown in Table 6. Directly using the model

trained on the MPII dataset gets a larger error. Our ap-

proach decreases the error by about 15%. The improvement

on challenging joints such as “elbow” and “wrist” is even

larger. The approach achieves better results than other SSL

methods which use unlabeled images.

SSL can also be used for learning pre-trained models us-

ing unlabeled images which can then be finetuned on a new

dataset in a supervised way. sIn our experiment, We pre-

train a 2D pose estimator on the MPII dataset and the AIC

Table 7. Effect of pre-trained models on 2D pose estimation tasks

on the H36M dataset.

Pre-train Method Knee Ankle Elbow Wrist Avg

Supervised 92.5 88.8 88.2 83.3 88.2

PseudoPose 92.1 88.5 89.3 84.1 88.5

Ours 93.5 90.6 89.9 84.9 89.7

Table 8. Effect of pre-trained models on 3D pose estimation tasks

on the H36M dataset. The errors are measured by MPJPE (mm) .

Pre-train Method Knee Ankle Elbow Wrist Avg

Supervised 38.2 58.0 39.7 56.2 48.0

PseudoPose 37.5 59.0 39.4 54.8 47.7

Ours 35.3 49.3 36.2 50.1 42.7

dataset (w/o labels) using our approach and finetune it on

the H36M dataset. The 2D and 3D pose estimation results

on H36M are shown in Table 7 and 8, respectively. We

can see that the pre-trained model learned by our approach

achieves notably higher 2D pose estimation accuracy and

lower 3D pose error than the model pre-trained only on the

labeled dataset MPII and finetuned on H36M.

7. Conclusion

In this work, we present the first systematic study of

semi-supervised 2D pose estimation. In particular, we first

identify and discuss the collapsing problem in consistency

based methods. Then we present a simple yet effective

approach to solve the problem. We conduct extensive ex-

periments to validate the effectiveness of our approach and

show that it can benefit many different application scenar-

ios. We will release our code and models hoping to inspire

more research in this direction.
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