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Figure 1: City block forms the basic urban fabric of a city. We illustrate (a) sample blocks taken from Manhattan, NYC.
Colors are assigned according to land use categories. We propose (b) BlockPlanner, a novel system for generating realistic
and diverse (c) 3D city blocks from scratch with valid land use categories. The cores of BlockPlanner are: a vectorized city
block representation, a graph-based VAE, and a series of losses to prevent geometric violations.

Abstract
City modeling is the foundation for computational ur-

ban planning, navigation, and entertainment. In this work,
we present the first generative model of city blocks named
BlockPlanner, and showcase its ability to synthesize valid
city blocks with varying land lots configurations. We pro-
pose a novel vectorized city block representation utilizing a
ring topology and a two-tier graph to capture the global and
local structures of a city block. Each land lot is abstracted
into a vector representation covering both its 3D geome-
try and land use semantics. Such vectorized representation
enables us to deploy a lightweight network to capture the
underlying distribution of land lots configurations in a city
block. To enforce intrinsic spatial constraints of a valid city
block, a set of effective loss functions are imposed to shape
rational results. We contribute a pilot city block dataset to
demonstrate the effectiveness and efficiency of our repre-
sentation and framework over the state-of-the-art. Notably,
our BlockPlanner is also able to edit and manipulate city
blocks, enabling several useful applications, e.g., topology
refinement and footprint generation.

1. Introduction
The surging demand for city modeling [24, 19] appears

in many fields, including urban planning [29, 10, 4], au-
⇤Equal contribution.

tonomous driving simulation [12], and game design [5, 1,
2], attracting lots of research attention in the last decades.
As the fundamental component of urban areas, city blocks
provide the order and structure to a city, forming the basic
unit of a city’s urban fabric, illustrated in Fig. 1. However,
conventional procedural modeling methods adopt heuristic
rules to approximate the subdivision of city blocks [29, 32],
which may fail to reflect the realistic and dynamic struc-
tures. Consequently, we want to learn city block generation
from resourceful urban planning data that captures both the
3D geometry and their land use compositions.

A more relevant problem to ours is indoor floorplan gen-
eration. Series of works [27, 15, 36] have recently been
inspired by the huge success in rasterized image synthe-
sis [21, 8, 30]. For example, HouseGAN [27] adopts a gen-
erative adversarial network (GAN) to produce diverse house
layouts given a relation graph. The model predicts a binary
mask for each room, indicating its position and size relative
to the house. However, these solutions cannot be directly
adapted to city block generation for the following reasons.

First of all, the rasterized representation is not expres-
sive for city blocks. As city blocks bear intricate structural
details and regularities, representing land lot instances as
binary masks significantly impair their geometrical traits,
as well as the relative position between land lots. Addition-
ally, once rasterized, small land lots are likely to be dropped
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by the generative model as a small probability event. One
needs to increase the resolution of rasterized images to fully
capture the details and diversity in a city block, as a city
block on average accommodates more than 30 land lots,
whereas the number of rooms in a house is usually less
than 10. Consequently, more training time and computing
resources are required. Secondly, the spatial configuration
of a city block has unique constraints on the topology and
function of land lots. For example, the generated land lots
should be accessible from streets and ideally aligned. Fur-
thermore, with much more instances, the searching space
for the relation among lots grows exponentially.

To this end, we propose a novel block generation frame-
work, referred to as BlockPlanner. Following the nature of
city blocks, we propose to represent city blocks in a vector-
ized manner. We come up with a unified ring topology as
the backbone of various land lots arrangements in a block
and construct two-tier graphs to represent city block indi-
viduals. While the block as a whole serves as the parent
node, each land lot is represented as a child node, associated
with a set of geometry parameters and geometric attributes,
as well as the land use semantics. Their adjacency relations
are reflected by the edge matrix. Such representation cap-
tures both the global structure of a city block and the local
relationships among its land lots, enabling our development
of a lightweight model to generate diverse city blocks with
valid structural details. Our model is constructed following
the scheme of a variational autoencoder (VAE) [22]. A set
of losses are carefully designed to penalize various geomet-
ric violations for ensuring valid topologies. To facilitate city
block generations and more general studies, we construct a
new dataset named NYC-Block Dataset, collected and orga-
nized from the public government resources [6]. Our exper-
iments demonstrate BlockPlanner’s capability of producing
diverse and realistic city blocks with reasonable land use
compositions. We further show that BlockPlanner can ben-
efit applications such as city footprint generation and indoor
scene layout generation.

In summary, the main contributions of our work are:

• We propose BlockPlanner, a system that realizes
diverse and valid city block generation, where a
novel vectorized two-tier graph representation, a light-
weight graph VAE, and a set of losses capable of ge-
ometric reasoning are contributed. A pilot city block
dataset containing real-world city blocks with rich an-
notations is alongside collected, which would facilitate
future research on city understanding.

• We demonstrate the efficiency and the generalizability
of our approach, which sets the foundation for large-
scale city modeling with high fidelity in both geometry
and functional semantics.

2. Related Work
City Modeling and Urban Representation. Procedural
modeling is the early approach for the generation of city
layouts, including street networks and 3d building mod-
els [29, 26]. While these methods guarantee valid topolo-
gies with user-specified attributes and can be deployed to
large urban areas, expert efforts are required to design hand-
coded rules that accord with certain regulations both visu-
ally and semantically. Another line of researches exploits
two distinctive attributes of city images: 1) the rich geomet-
ric structures inherited in the man-made world [40, 39]; and
2) the underlying functional semantics that are tightly con-
nected with human activities [35, 16]. Both attributes have
shown important roles in urban view recognition and under-
standing, yet how to incorporate them effectively into the
generative model counterparts remains an open question.
Generative Models for Structured Layout. Layouts have
the nature of being topologically constrained in the global
structure, meanwhile exhibiting consistency in local shape
attributes. The generation of layouts hence must consider
both perspectives. Various graph-based generative models
have been proposed [25, 23, 37] to enforce rational structure
in 3D shape generation. LayoutVAE [20] adopts a sequen-
tial framework and tries to capture the structural logic of a
scene by placing elements iteratively. Similarly, Wang et
al. [33] synthesize indoor scenes by inserting objects one-
by-one. Recently, in the context of indoor floorplan gen-
eration, multiple attempts have been made to enforce local
spatial consistency by converting floorplans into rasterized
images [27, 15, 36]. Features such as zero-gap adjacency
and wall boundaries between rooms are then reflected in
pixel-level, thus can be effectively learned by deep neural
networks. Nevertheless, these approaches require either the
outline of the floorplan or the connectivity between rooms,
which to some extent simplify the challenge by providing
hints of structure. Modeling floorplan or layout in raster-
ized form has certain drawbacks. The rasterized layout is
not scaleable nor precise. Future processing is inevitable to
make it suitable for computer-aided design.

Inspired by recent success in using vectorized represen-
tation for synthesizing images and vector graphics [9, 13,
31], we propose a novel framework called BlockPlanner for
city block generation.

3. NYC-Block Dataset
To launch city block generation at large scale, a pilot

dataset NYC-Block Dataset is collected and organized on
top of urban planning resources published by city agencies
of New York City, US [6]. We sort out records related to
valid tax lots and group them by city blocks, resulting in
28, 838 entries in total. A typical city block sample is pre-
sented in Fig. 2. By definition, a city block is a tract of land
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Figure 2: Visualization of a typical city block in NYC-Block.

Land Lots per CityBlock CityBlocks
Avg. Std. Min. Med. Max. Count

BK 36.35 25.30 1 37 524 7,610
SI 30.69 30.76 1 24 494 4,070

MN 21.71 17.85 1 19 243 1,965
BX 29.59 22.93 1 27 244 3,031
QN 26.68 17.77 1 26 273 12,162

NYC 29.77 23.07 1 27 524 28,838

Table 1: Statistics of NYC-Block, listed separately for five
boroughs: Brooklyn (BK), Staten Island (SI), Manhattan
(MN), Bronx (BX), Queens (QN), and the entire NYC.

bounded on all sides by streets. The spatial configuration
and layout of a city block are defined based on its inter-
nal arrangement of land lots. There is also a height limita-
tion specified for each land lot, where buildings constructed
within should not exceed. Apart from geometry, each land
lot is associated with its unique land use type.

NYC-Block Dataset is large-scale, comprehensive, and
high quality, in terms of the following aspects: 1) Wide
coverage: it covers all five boroughs across NYC, includ-
ing both urban and suburban areas, where a great diversity
of block shapes and land use configurations are included.
Statistics are shown in Tab. 1; 2) Hierarchical structures:
each land lot is associated with its parent block, district,
and borough, allowing us to conduct a series of merging
and splitting operations on different levels, and build con-
nections between the geo-related attributes and the instance-
level lot attributes; 3) Rich annotations: along with accu-
rate lot geometries stored as polygons with coordinates of
each vertex, each land lot is associated with 93 meta at-
tributes covering from functional uses, land use regulariza-
tions, administrative planning, year built and modified, etc.
All the information is provided by the official NYC urban
planning department, which guarantees the facticity and ac-
curacy in reflecting real city block distributions; 4) Easy
generalization ability: the dataset can be easily enriched by
linking different databases conditioning on the unique geo-
location keys. The consolidated NYC-Block Dataset con-
taining detailed geometry and multi-level hierarchy and se-
mantics opens new possibilities for future research on city
understanding and cross-modal analysis.

Adjacent & 
Co-boundary

Strike-through Lot

Corner Lot

Co-boundary

Figure 3: Illustration of two important geometric relation-
ships between lots: Adjacency & Co-boundary, and two
special lot types in spatial: Corner lot & Strike-through lot.

4. BlockPlanner
The overview of BlockPlanner is shown in Fig. 4. Dur-

ing the inference time, random codes can be sampled from
the gaussian distribution and generate diverse and realistic
city blocks in an unconditional way. As a city block is usu-
ally bounded by two sets of parallel streets, blocks with ap-
proximate rectangle shapes are of our main interest. We first
introduce how a city block is canonicalized and represented
in a graph structure in Sec. 4.1. Then we explain the training
paradigm in Sec. 4.2, and elaborate the designed training
loss functions with geometric constraints in Sec. 4.3.

4.1. City Block Representation
We aim to seek a representation depicting accurate ge-

ometry and land use semantics of a city block, whilst effec-
tively capturing its global structure and the local relation-
ship among its land lots components.
Canonical View. To eliminate the orientation and scale dif-
ference caused by terrain, city blocks are firstly transformed
to a canonical view. The heading direction is corrected by
placing its longer block side to be well-aligned with the hor-
izontal. We normalize the geometry coordinates to [�1, 1],
representing the relative displacement in 2D space com-
pared to the centroid of the block. The building heights are
normalized in a range of [0, 1] within a city block.
Ring Topology for Global Structure. Rather than treating
the city block as an unordered set of land lots, we propose
a novel ring topology as the backbone of various lot con-
figurations, with lot instances indexed in a unified order. In
this way, we circumvent the inefficiency and potential er-
rors brought by the matching process in loss computation;
and encourage the model to concentrate more on local con-
nections, which greatly benefits their geometric reasoning.

Specifically, abide by urban planning regulations, land
lots in a block are configured to be accessible from at least
one of the surrounding streets to guarantee accessibility,
forming the intrinsic co-boundary relationship in block lay-
out, as illustrated in Fig. 3. Stem from this fact, for each
city block, we arrange its land lots into a ring topology and
order them from the land lot in the left-upper corner. From
the starting lot, we traverse along the four boundaries of
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Figure 4: The overall framework of BlockPlanner. The model learns to generate city blocks under a VAE training scheme.
Each city block is represented by a graph with lots arranged in a ring topology. After encoding the input graph into a 128-d
latent code, the decoder first predicts 1) the aspect ratio of the block shape, 2) the edge map indicating adjacent relations,
and 3) the initial feature for each lot node. Then the initial features are updated through iterative message passing and output
1) existence of lots, 2) the land use category, 3) the geometry parameters, and 4) the merged and boundary attributes, with
four linear heads. These attributes are further used to calculate the reconstruction error and the geometry violations, plus the
conventional variational loss.

the block in a counter-clockwise manner, turning the en-
countered land lots into an ordered list according to their
boundary accessibility sb. For a standard rectangle shape
block, sb 2 {0, 1, 2, 3}, representing its four boundaries.
Land lots are then assigned to the boundaries they reside
on. To preserve continuity, corner lots and strike-through
lots that touch more than one side, as shown in Fig. 3, are
repetitively counted. The duplicated occurrences on later
appeared times are distinguished with a merging parameter
sm 2 {0, 1}, indicating whether the lot should be merged.
Block-Lot Representation with Graph. We formulate a
city block as a two-tier graph G = {V, E}, V = {B, {Li}},
where B is the parent node standing for the city block, and
each child node Li denotes a land lot belonging to this city
block. Further generalization about this graph structure is
discussed in supplementary. Here, each lot Li is associated
with two attributes: the land lot geometry gi and the land
use semantics si. We adopt a 3D bounding box represen-
tation for gi with five parameters {xc, yc, w, h, n}, where
(xc, yc) is the coordinate of its 2D box centroid, while
(w, h, n) denote the size of its 3D building envelope. Here
we eliminate the subscript i for notation brevity. The block
node B is associated with an aspect ratio ry = W/H ,
where W and H are the width and height of a city block.
The edge matrix E represents the adjacency relations be-
tween land lots. We set the edge value ei,j = 1 if the lot
pair (Li, Lj) are adjacent in 2D, and 0 otherwise.

4.2. Generate City Blocks with Graph VAE

We adopt a novel framework based on powerful graph
neural networks (GNN) and variational autoencoder (VAE)
[38, 25, 22] to train BlockPlanner. The designs of our graph
encoder and decoder are explained in the following. More
network illustrations are provided in supplementary.

Encoder. The encoding process starts from the lot level.
For a lot node Li, the geometry and semantic embedding
fi,g, fi,s are obtained via two separate encoders:

fi,g = eg({xc, yc, w, h, n}), fi,s = es(sl). (1)

A one-hot positional encoding fi,PE indicating the lot order
index i in the ring is concatenated to the initialized feature
f
(0)
i as {fi,g, fi,s, fi,PE}. Given the edge matrix E , the ini-

tial feature f
(0)
i gets updated via T iterations of message

passing by averaging over the neighboring lots. At each it-
eration t, f (t)

i is updated as follows,

f
(t)
i =

1

Mi

X

{ei,j}2E

h
(t)

⇣
[f (t�1)

i , f
(t�1)
j ]

⌘
, (2)

where Mi is the number of adjacent lots for Li, and h
(t)

encodes the concatenation of f (t�1)
i and f

(t�1)
j . This mod-

ule aims to enrich each lot feature with its surrounding lot
nodes, as their spatial geometries and functionalities are
mutually constrained and influenced. After each iteration
t, we summarize the graph embedding z

(t) representing
the block node feature via max-pooling over the entire lot
nodes. The final embedding z for the block node B is ob-
tained at last by concatenating all z(t) obtained from each
iteration and pass through the final aggregation layer.
Decoder. On the decoder side, we develop a set of spe-
cialized geometric reasoning modules, to bridge the gap be-
tween low-level geometry and high-level topological rea-
soning. Specifically, the block node embedding z is pro-
cessed by three decoders to predict: the edge matrix, the
initial feature for each land lot, and block geometry param-
eter, i.e., aspect ratio, from which a rough block graph can
then be inferred. Formally, they are predicted by:

P̃ = dedge (z) , {f̃ (0)
i } = dlot(z), r̃y = dr(z), (3)
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where P̃ represents how likely the two land lots are con-
nected. An edge with P̃ (i, j) � 0.5 is treated as existing,
and Ẽ = P̃ � 0.5. Similar to the encoder, a one-hot posi-
tion encoding is attached to the initialized decoded features
as f̃ (0)

i = {dlot(z), fi,PE}. We follow Eq. 2 to update f̃
(t)
i

iteratively based on the predicted edge matrix Ẽ .
The final lot node embedding f̃i = f̃

(T )
i is evaluated

from multiple geometry regularization aspects. 1) We first
decode the geometry of each lot with (x̃c, ỹc, w̃, h̃, ñ) =
gbox(f̃i). 2) Given the maximal number N of possible lots
in a block, we predict the actual existence probability of
each lot with pi = �(glot(f̃i)), where � is a sigmoid func-
tion. Lots with pi � 0.5 are treated as exists; 3) Meanwhile,
the land use semantic is decoded with s̃l = glabel(f̃i); 4) To
further enforce the geometry constraints, two additional at-
tributes are predicted s̃m = gmerge(f̃i), and the boundary
accessibility s̃b = gbound(f̃i), as mentioned in Sec. 4.1.

4.3. Loss Function Design
To enforce both geometric and semantic constraints, we

design the following loss functions.
1) Reconstruction loss Lr measures the disparity in geom-
etry parameters between the generated block and the ground
truth using L1 loss. Given the unified land lots ordering un-
der the ring topology, the reconstruction loss on the entire
block can be computed by directly summing up the losses
on its land lots components Li; plus the difference in block
aspect ratio ry:

Lr =
X

i

||Li � L̃i||1 + ||ry � r̃y||1. (4)

2) Existence loss Lx examines both the existence of node
and edge, defined as:

Lx = Llot + Ledge +Me||E � Ẽ ||1. (5)

As existence is a binary code, binary cross entropy loss is
used for both Llot and Ledge. Since the positive pairs in the
edge matrix are sparse, we add an additional term by high-
lighting the ground truth positive edge pairs with a weighted
binary mask Me multiplied to the L1 loss.
3) Land use semantics loss Ls evaluates the captured se-
mantics. We cast land use category prediction as a classifi-
cation problem and use the conventional cross entropy loss.
4) Geometric validation loss Lg plays a critical role in our
formulation. It consists of three parts:

Lg = Ladj + Lbound + Lmerge. (6)

Lg covers both the topology attribute loss and their incon-
sistency with the actually decoded geometries. The bound-
aries of land lots are characterized by (xc ± w

2 , yc ± h
2 ).

Specifically, Ladj penalizes when two adjacent land lots do

not touch, implemented by pairing land lots according to
their orders inside the ring topology and the street bound-
aries, followed by minimizing the L1 distances of the col-
liding edges of these adjacent land lots. Lbound evaluates
whether the boundary accessibility is correctly predicted
and whether the bounding box edge of a land lot is tightly
aligned with the predicted boundary; Lmerge is specialized
to take care of the corner and strike-through type of lots to
reduce potential duplication.
5) Variational regularization loss Lv is added as a conven-
tional technique to obtain a smooth latent space following
a standard normal distribution. Our final loss is a weighted
combination of the above:

L = wrLr + wxLx + wsLs + wgLg + wvLv. (7)

5. Experiments
Implementation Details. Since city blocks in boroughs
like Brooklyn and Queens are usually monotone with little
variation (see statistics in supplementary), in this work we
narrow down to a representative Manhattan subset selected
from NYC-Block, which is more diverse and complicated,
while our methods can be naturally generalized to other ar-
eas and larger datasets. Inferred from the statistics in Tab. 1,
we set the maximum number of lots N within a block to be
50 to filter out extraordinarily large blocks; and the mini-
mum lot number to be 5 to preserve enough composition
complexity, resulting in 637 block samples (15, 541 land
lots) to conduct experiments on. Detailed network structure
and hardware configuration can be found in supplementary.
Evaluation Metrics. We compare the generated city blocks
to real distribution with two sets of metrics, which measure
the fidelity in both visual quality and structural statistics.

To evaluate visual quality, 1) Realism measures the fi-
delity of rasterized blocks via user rating. The final score
ranges from 0 to 100, with higher score denotes higher fi-
delity. User study details can be found in supplementary. 2)
FID score [14, 27, 28] is adopted to measure the diversity
of the rasterized 2D samples.

To evaluate layout validity, we additionally compare a
set of land use statistics between the empirical distributions
of real and fake samples, where 3) Sc stands for the number
of land lots per-block; 4) Sl is the empirical count of land
lots over different land use types; and 5) St is the empirical
transition probability of the land use category between one-
step neighboring lots within the same block. We report the
L1 distance between the discretized distributions for evalu-
ation. Note that, we use these statistical metrics only in our
ablation studies, given that the overall visual quality of the
generated samples is reasonable enough.
Comparison Methods. Since we are the first to study end-
to-end city block generation, our proposed BlockPlanner
is compared with two general graph-based layout/structure
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Real Data LayoutVAE MolVAE BlockPlanner BlockPlanner (L)  BlockGAN (L)

Figure 5: Qualitative evaluations. Column 2-3: LayoutVAE and MolVAE fail to capture valid block topology, while our
BlockPlanner efficiently generates diverse and valid block layouts with reasonable land use categories. Column 5-6: marker
(L) indicates land use level view. Though pixel-based BlockGAN generates sensible structure for large lots, the artifacts such
as the fuzzy boundary are significant. In contrast, our vectorized representation captures much more accurate geometry even
in small areas. (Dimgray color indicates the unfilled regions.)

Figure 6: 3D City blocks generated by BlockPlanner by
extruding the height dimension with lot attribute n.

Settings # FLOPS/M (#) Realism (") FID (#)

LayoutVAE 11 21.5 205.9
MolVAE 18 33.8 146.6
BlockGAN 805,297 63.4 133.1

BlockPlanner (Ours) 373 95.6 36.9

Table 2: Quantitative evaluations. FID and Realism mea-
sure visual quality; FLOPS measures computing efficiency.

generation frameworks, namely LayoutVAE [20] and Mol-
GAN [11]; and a SOTA method in indoor floorplan gener-
ation, named HouseGAN [27]. We make minimal input-
level adjustments to fit the city block generation scenario.
The hyperparameters are obtained via grid-search with op-
timal performance. We implement LayoutVAE following
the original paper [20]; substitute MolGAN with its VAE
counterpart that appears to be more stable during training;
and transform HouseGAN into an unconditional generative
framework. To be compatible with HouseGAN’s input, we
rasterize our city block data in 2D and feed it into the orig-
inal HouseGAN model. We treat each land use assembly
as an instance and output a binary mask for each land use,
denoted as BlockGAN. Detailed implementations can be
found in supplementary.

5.1. Benchmarking Results

We use Realism and FID to measure the visual qual-
ity of the generated blocks and compare the model effi-
ciency using FLOPS computed at inference time, as a light-
weight generative model is always preferred in large-scale
city modeling. The quantitative comparison is provided in
Tab. 2 and the qualitative results are shown in Fig. 5.

Comparison with Graph-based Methods. The block lay-
outs generated by LayoutVAE are drastically different from
real data. Land lots majorly concentrate around the cen-
ter of the block with a high overlapping ratio. It appears
that LayoutVAE fails to grasp the global structure of city
blocks. This can be ascribed to its sequential generation
manner, which enforces the model to focus on local patterns
only. The generated results from MolVAE are more struc-
tured compared to LayoutVAE. However, it fails to capture
the detailed relationship between pairs of land lots, and the
sense of alignment is weak. This is because the design of
MolVAE lacks spatial reasoning capability. In its initially
applied scenario, i.e. molecule synthesis, only atom types
and bonds between atoms are of its primary concern, while
city block requires much stronger geometry representation
in order to synthesize valid topology.

Comparison with Pixel-based Methods. BlockGAN pro-
duces more reasonable configurations compared to the
aforementioned methods. Although it can output rational
global block structure, the generated mask at the instance
level is fuzzy with inaccurate geometry. Different from an
indoor floorplan, a land lot usually occupies a small tract
and has delicate 2D geometry. The power of rasterized rep-
resentation is hence limited in capturing all the details. De-
spite the impressive results on the indoor floorplan, it is less
practical for our scenario. A workaround is to increase the
input resolution, but with the price of using more computing
resources and training time. On the other hand, benefit from
the vectorized canonical graph representation and geome-
try reasoning constraints, BlockPlanner is able to capture
both the block-level structure and lot-level geometry with
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(a) w/o L (b) w/o L (c) w/o L

(e) Linear topology (row-wise) (f) Linear topology (X-axis) 

boundg adj

(d) w/o Lmerge

Figure 7: Different effects of visual quality degradation by
ablating on different design modules, illustrated with the
typical artifacts of each setting.

Ablation Setting FID (#) Sl (#) St (#) Sc (#)

Lg Losses

- 92.8 0.29 0.74 0.49
+ Ladj 64.9 0.34 0.64 0.53
+ Ladj + Lbound 55.5 0.33 0.64 0.44
+ Ladj + Lbound + Lmerge (?) 36.9 0.18 0.46 0.27

Message Pass

0 50.9 0.75 0.68 0.42
1 47.3 0.62 0.63 0.43
2 41.6 0.26 0.53 0.38
3 (?) 36.9 0.18 0.46 0.27

Topology
Row-wise 47.3 0.12 0.43 0.31
X-axis 44.8 0.11 0.53 0.62
Ring (?) 36.9 0.18 0.46 0.27

Position Enc w/o PE 47.2 0.41 0.67 0.45
w/ PE (?) 36.9 0.18 0.46 0.27

Table 3: Quantitative comparisons on ablating: (a) Lg

items; (b) Number of iterations in message passing; (c)
Adopting alternative topology; (d) Using position encoding
on encoder and decoder. We use (?) to indicate full model.

reasonable computing resources. Quantitatively, it outper-
forms BlockGAN in both FID and Realism with ⇠ 1000⇥
lower FLOPS. To further demonstrate the superior of Block-
Planner, we provide the 3D extruded geometry of the gen-
erated city blocks in Fig. 6, which exhibits diversity and
fidelity in both topology and the land use semantics.

5.2. Ablation Studies
Effect of Geometry Constraints. The role of each geome-
try constraint Ladj , Lbound and Lmerge is individually stud-
ied. Fig. 7 (a)-(d) depict the effect of each loss term. Lbound

helps spread land lots to four boundaries and enforce their
alignment; Ladj decreases gaps between land lots; Lmerge

effectively prevents overlaying at corners and helps predict
correct geometry for strike-through and corner land lots.
Tab. 3 (a) offers quantitative results where the best perfor-
mance is achieved when all constraints are imposed.
Influence of Message Passing. We vary the number of it-
erations performing message passing in our model. Results
are shown in Tab. 3 (b). It can be noticed that increasing
the number of iterations from 0 to 3 leads to better results,
implying that a deeper fusion of neighboring information
benefits the learning process.

Random Row-wise X-axis

Order

Ring

Figure 8: Edge matrices from different global topologies.
From left to right, Random (no pre-defined topology) gives
patternless edge matrices; Row-wise and X-axis (linear
topology) lead to discontinuity due to jumps between lots;
Ring exhibits regular and continuous edge matrices.

Choice of Global Topology. Recall that our novel city
block representation fits the global block structure into a
ring topology. Such design reduces data variance compared
to those constructed without global topology as illustrated
in Fig. 8, which significantly eases the learning process. We
also show that the ring topology is superior to linear topolo-
gies. Fig. 8 provides two examples where land lots are ar-
ranged row-wise and along X-axis respectively. One can
observe that the according edge matrices exhibit discontinu-
ity due to jumps between lots, which in turn lead to artifacts
in generated samples as shown in Fig. 7 (e)-(f). Quantita-
tive results are provided in Tab. 3 (c). We further study the
effect of position encoding imposed on land lots under the
ring topology. Tab. 3 (d) shows that both the visual quality
and semantics validity improve when position encoding is
deployed, where the global structure defined by ring topol-
ogy is further strengthened.

6. Applications
BlockPlanner supports a variety of geometry editing and

manipulation tasks benefiting from its vectorized represen-
tation. Meanwhile, it can also be generalized to other layout
generation domains. For more discussion and implementa-
tion details, we refer the readers to the supplementary.

6.1. Editing and Manipulation
Topology Refinement. BlockPlanner allows us to flexi-
bly and accurately control the output block shape and land
lots configuration, for further editing or processing, in or-
der to enhance the final visual quality. For example, we can
adopt an optimization process to predict a minimal editing
effort to obtain a zero-gap layout. Specifically, we learn
a set of refinement parameters X that control the transla-
tion and scaling magnitude of each lot geometry. The op-
timized result can be obtained by minimizing the objective
Dgap(r(G))+�|X|2, where r(·) indicates the rendered lay-
out, and Dgap(·) is the accumulative gap areas. We use
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Raw 
Geometry

After
Optimization

Figure 9: For cases where the generated block has gaps in
between, we can effectively correct them by running the
post-optimization step to minimize such artifacts.

dumbbell 
shape

Block Plan Building Footprint

Figure 10: From block plan to building footprint. A strong
correlation can be observed among footprint shapes within
neighboring lots, conditioned on the land use category, such
as the classic “dumbbell” shape for the old law tenement.

Manhattan

Brooklyn

Figure 11: Network Interpolation [34] between two models
separately trained on Manhattan (MN) and Brooklyn (BK)
subsets (ordered clockwise). From MN to BK, block length
along Y-axis gradually increases with land lots shape be-
coming more homogeneous. Functionally, residential lots
gradually dominate the block.

�|X|2 to constrain the magnitude of changes, reflecting our
desire to ask each lot to maintain its original geometry as
much as possible. See Fig. 9 for example cases.
Footprint Generation. With BlockPlanner, large-scale
city blocks can be easily generated. We showcase one-step
further to synthesize plausible building footprints upon the
generated block plans, i.e., to generate 3D building models
reside in each land lot. We formulate this task as a classi-
cal image-to-image translation problem conditioned on the
generated city blocks. See supplementary for our adapted
pix2pix [17] implementation.
From Manhattan to Brooklyn. Can the learned latent
code distribution reveal the characteristics of a local area, so
that it can also serve as a good indicator to study urban simi-
larity and differences? Driven by this curiosity, we finetune
a model on a filtered subset with 2, 804 Brooklyn blocks,
which is pre-trained on the Manhattan subset. The linearly
interpolated results using DNI [34] are analyzed in Fig. 11.
Interestingly, the smooth transition reflects the underlying
block patterns exhibiting in the two boroughs, revealing a

Living room
Kitchen 
Bedroom 
Bathroom 
Closet 
Balcony 
Corridor 

Figure 12: Top: Real floorplans from HouseGAN dataset.
Bottom: Ours generated floorplans, with diverse configura-
tions and realistic looking.

tight correlation between the machine-identified city block
configurations and the urban social factors.

6.2. Extension to Indoor Scenes
With little modification, our vectorized representation

for city blocks can be adapted to other layout generation
domains. Take the indoor floorplan as an example, for the
rooms and furniture that do not touch any boundary, we as-
sociate them with an additional void boundary dimension
under the ring topology. We train BlockPlanner on a sub-
set of HouseGAN [27] dataset, where we select houses with
at least 10 rooms to showcase the capability of our frame-
work in generating layouts with a large number of nodes.
While in their original experimental setting, most houses
have room numbers less than 10. See Fig. 12 for both
ground truth samples and our generated floorplans.

7. Conclusion
In this work, we propose BlockPlanner to tackle the

problem of city block generation, accompanied by a newly
collected NYC-Block Dataset. BlockPlanner models city
blocks using a novel and effective vectorized representa-
tion and trains a lightweight graph-based generative model
under a VAE scheme, where a set of losses capable of geo-
metrical reasoning are designed to enforce the intrinsic con-
straints on city blocks. We show that the generated city
blocks are realistic in visual and valid in configuration, and
allow future manipulation at the lot level. With such mer-
its, BlockPlanner opens a new direction for large-scale city
modeling in an end-to-end manner.
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