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Abstract

Generative adversarial networks built from deep convo-
lutional neural networks (GANs) lack the ability to exactly
replicate the high-frequency components of natural images.
To alleviate this issue, we introduce two novel training tech-
niques called frequency dropping (F-Drop) and frequency
matching (F-Match). The key idea of F-Drop is to filter
out unnecessary high-frequency components from the in-
put images of the discriminators. This simple modification
prevents the discriminators from being confused by pertur-
bations of the high-frequency components. In addition, F-
Drop makes the GANs focus on fitting in the low-frequency
domain, in which there are the dominant components of
natural images. F-Match minimizes the difference between
real and fake images in the frequency domain for generating
more realistic images. F-Match is implemented as a regu-
larization term in the objective functions of the generators;
it penalizes the batch mean error in the frequency domain.
F-Match helps the generators to fit in the high-frequency
domain filtered out by F-Drop to the real image. We exper-
imentally demonstrate that the combination of F-Drop and
F-Match improves the generative performance of GANs in
both the frequency and spatial domain on multiple image
benchmarks.

1. Introduction

Generative adversarial networks built from deep convo-
lutional networks (GANSs) [10, 11, 20, 22] have attracted
much attention in the computer vision community and
have been utilized in various applications because they can
synthesize diverse images with high-fidelity to the target
datasets. The training of GANSs is formulated as a competi-
tive game played by two neural networks called a generator
and a discriminator; the generator is optimized to produce
fake images that can fool the discriminator, and the discrim-
inator is optimized to distinguish the real images from the
fake images through min-max optimization. In theory, the
model replicates training data as the optimal result. How-
ever, recent studies have revealed that GANSs fail to replicate
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Figure 1. Sensitivities of discriminators in the frequency domain.
The sensitivity is measured by single Fourier attack (SFA) [26],
which perturbs each frequency component of an image. As the
sensitivity, we plot the average differences between outputs of nor-
mal and attacked discriminators over 128 images in the AFHQ-Cat
dataset (512 x 512) on each pixel. The differences in the low-
frequency domain are located near the center of each figure, and
the differences in the high-frequency domains are at the edges.
Our method outperforms the baseline (StyleGAN2-ADA) in terms
of the robustness against the SFA on the high-frequency compo-
nents.

data in the frequency domain [7, 8]. Durall et al. [7] and
Frank et al. [8] have reported that the frequency character-
istics of the generated images in the high-frequency domain
are different from those of real images (we refer to this dif-
ference as the frequency gap). They have also shown that
the generated images can be easily detected as fakes with al-
most 100% accuracy by assessing the frequency gap. While
the previous studies mainly focus on the aliasing caused
by upsampling in CNNs as the cause of the frequency gap,
modifying the upsampling is insufficient for correcting the
flaws in the frequency domain [8]. In this study, we ex-
plore another cause of the frequency gaps to reduce them.
Since spatial and frequency domains are dual, reducing the
frequency gaps can improve the generative performances of
GAN:Ss in the spatial domain.

We hypothesize that the frequency gap is caused by the
sensitivity of the discriminators to the perturbations in the
high-frequency domain. In GANs for image generation,
discriminators are usually implemented as CNN-based bi-
nary classifiers. As shown in [26, 30], CNN-based classi-
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fiers are sensitive to perturbations of the frequency com-
ponents. Moreover, Wang et al. [27] have reported that
CNN-based classifiers predict labels depending on high-
frequency components that are hardly recognizable to hu-
mans. Accordingly, we conjecture that the discriminators of
GAN:Ss are also sensitive to the high-frequency components
of the input images. Indeed, our experiments demonstrate
the sensitivity of the discriminator in the frequency domain:
the output of the discriminator is significantly changed by
single Fourier attack [26], which perturbs each frequency
component of an image (Fig. 1, left). The sensitivity of the
discriminators prevents the generators from learning data
because the generators are optimized to fool the discrimina-
tors by perturbing high-frequency components rather than
by replicating data.

To alleviate the sensitivity of the discriminators and the
frequency gap, we present two novel techniques, called
frequency dropping (F-Drop) and frequency matching (F-
Match). The main idea of F-Drop is to filter out high-
frequency components from the inputs of the discrimina-
tors (for both real and generated images) and thereby the
discriminators concentrate on lower frequency components,
which are the dominant components in natural images [29].
We insert a low-pass filter, which filters out frequency com-
ponents above a certain threshold from images, before the
input layer of the discriminators. F-Drop, (i) transforms
RGB images into the frequency domain by using discrete
cosine transform (DCT), (ii) performs filtering in the fre-
quency domain by element-wise multiplication, and (iii)
transforms the images back into RGB space by using in-
verse discrete cosine transform (IDCT). Since RGB im-
ages are used as input, F-Drop does not require any mod-
ifications to the original network architectures. By apply-
ing F-Drop, the discriminators become robust against high-
frequency perturbations (Fig. 1, right), and thus, the gen-
erators can dedicate themselves to fooling the discrimina-
tors by learning the remaining lower frequency components.
However, since F-Drop simply transforms the input of the
discriminators, the generators are still free to synthesize the
high-frequency components filtered out during the training.
Hence, to synthesize realistic frequency components, we
propose F-Match, which minimizes the mean error in the
frequency domain. F-Match is a simple mini-batch-based
regularization term for the objective function of the genera-
tors; it can utilize arbitrary frequency transformations (e.g.,
DFT and DCT) and loss functions (e.g., the squared and ab-
solute error). We experimentally found that the best func-
tion for F-Match is the mean squared error in DCT space.
Our experiments show that, in various settings, the com-
bination of F-Drop and F-Match succeeds in synthesizing
more realistic images in both the frequency and spatial do-
mains compared with the conventional techniques [4, 7, 8].
Our contributions are summarized as follows:

e We demonstrate that the discriminators of GANs are
sensitive to perturbations of high-frequency compo-
nents through the experiments applying single Fourier
attack to discriminators.

e We propose two simple techniques for GANSs called F-
Drop and F-Match for reducing the frequency gap be-
tween real and generated images. F-Drop filters out the
high-frequency components from the input images of
the discriminators, and F-Match minimizes the mean
error in the frequency domain by adding a regulariza-
tion term to the objective function of the generators.

e We confirm that our methods can improve the quality
of the generated images on various image datasets.

2. Related Work
2.1. Frequency Gaps in Generative Models

Frequency gaps in GANs or CNN-based generative mod-
els have been studied in recent papers [7, 8]. Durall et
al. [7] and Frank et al. [8] have found that there are fre-
quency gaps between real images and images generated
from CNN-based models by using discrete Fourier trans-
form (DFT) and discrete cosine transform (DCT). They
have also found that the generated images are detected as
fake by linear classifiers trained on the frequency compo-
nents of the images. These studies have hypothesized that
upsampling in CNNG is a cause of the frequency gaps. In
particular, Frank et al. [8] have shown that the frequency
gaps can be reduced by modifying the upsampling in the
generators (by using, e.g., binomial upsampling). However,
the modification of upsampling is not sufficient for generat-
ing undetectable fake images in the frequency domain. Fur-
thermore, we empirically report that the modification may
degrade the generative performance of GANSs in the spa-
tial domain (Sec. H of the supplementary materials); this
degradation has not been discussed in any previous works.
In contrast to these works, we show that the discriminators
of GANS are sensitive to high-frequency perturbations, and
that this sensitivity is also one of the causes of the frequency
gaps.

For alleviating frequency gaps, Durall et al. [ 7] have pro-
posed spectral regularization which minimizes the binary
cross-entropy between the azimuthal integrals of the real
and generated images in the frequency domain. Although
spectral regularization has a similar form to F-Match, it
minimizes the gaps between each generated image and the
mean value of the real images whereas F-Match minimizes
the gaps between the mean values of the generated and real
images over each mini-batch. Chen et al. [4] have proposed
a similar technique called SSD, which modifies discrimi-
nators by adding a classifier in the frequency domain and
utilizes the output of the classifier to modulate the losses of
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the GANs. SSD does not use the gradients of the frequency
classifier for training of GANs, whereas F-Match directly
uses the gradients of the loss in the frequency domain.

2.2. Sensitivity of CNNs for Frequency Components

In the context of adversarial attacks for CNN models,
Tsuzuku and Sato [26] have pointed out a sensitivity of
CNNs in the frequency domain by conducting an analy-
sis using their own black-box attack called single Fourier
attack (SFA). SFA perturbs an image in the directions of
each Fourier basis. Similar to [26], Yin et al. [30] have
shown that naturally trained CNNs are sensitive to high-
frequency perturbations. In addition, Wang et al. [27] have
indicated that the output of CNN-based classifiers depends
on the high-frequency components that are not visible to
humans. However, they have also shown that dropping the
high-frequency components from the training does not de-
grade the final test performances. Moreover, Xu et al. [29]
have shown that dropping the high-frequency components
from the input images of CNNs by thresholds helps to re-
duce the input size and improves performance. In summary,
the previous results provide two key insights: (i) CNNs-
based classifiers have flaws in processing high-frequency
components in input images, and (ii) high-frequency com-
ponents are not essential for training the classifiers. These
insights underlie the idea of F-Drop described in Sec. 5.1.

3. Background
3.1. Generative Adversarial Networks

A generative adversarial network is composed of a gen-
erator network Gy parametrized by 6, and a discriminator
network D, parameterized by ¢ [10]. The Gy generates
a fake sample zgre = Gy(z) from a random noise z ~ p,,
and the Dy distinguishes an observation x whether x comes
from the data distribution pqa¢, Or not. The objective func-
tions for training the discriminator and generator are

£D¢ = 7E7"diata 1Og D¢ (x)
—Eenp.log (1 = Dy(Go(2))), (D)
Lo, = —E.vp.logDy(Go(2)). 2

By training of G and D, Dy learns to maximize the prob-
ability of assigning a “real” label to real examples and a
“fake” label to fake examples, whereas Gy learns to maxi-
mize the probability of D,’s failure of distinction. In the-
ory, when G and D, converge to the optimal point, the
generator network Gy implicitly replicates pgaga-

In this paper, we mainly focus on GANs built from
CNNs. There are several variants, such as DCGAN [22],
WGAN-GP [11], and SNGAN [20]. We can apply F-Drop
and F-Match to any of these variants because they are de-
signed as an additional masking layer in discriminators or
as an additional regularization term.

3.2. Frequency Transformations

Here, we briefly summarize the foundations of discrete
cosine transform (DCT) that is used in F-Drop and F-Match.
Note that, for simplicity, our discussion regards transforma-
tions of a gray-scale square image X € R*H but it can
be easily extended to color images by performing the same
computations on each channel.

Two-dimensional DCT [1, 9] is formulated as follows:

H—-1H-1
Clu,v) = % 3N ST X(g)eli jouv), ()
i=0 j=0

where a(0) = 1/v/2,a(t) = 1 (for t # 0), and

(2i;;>m}cos {(Qj;[)m]'

(i, j,u,v) = cos[

where (4, j) represents a spatial pixel coordinate, (u,v) is
a frequency coordinate. This form is called DCT-II. We
choose DCT for F-Drop and F-Match as the default be-
cause it does not have discontinuous boundaries that pro-
duces high-frequency noise, in contrast to DFT [25]. As the
transformation from the frequency domain back to the spa-
tial domain, we use two-dimensional inverse discrete cosine
transform (IDCT):

H-1H-1

X(i,5) = % > awaw)C(u,v)cli, j,u,v), @)

u=0 v=0

where a(-) and ¢(-) as the same as in Eq. (3).

4. Analyzing GANs with Single Fourier Attack

We hypothesize that the frequency gap of GANSs is
caused by the sensitivity of the discriminators to perturba-
tions in the high-frequency domain. To confirm this hypoth-
esis, we analyze GANs subjected to single Fourier attack
(SFA) [26]. SFA attacks classification models by perturbing
the input images in the Fourier basis directions. For each
perturbation, SFA selects a single frequency component and
creates striped noise according to the selected component.
A perturbation 6 (u, v) of the frequency coordinate (u, v) for
an H x H image is defined as follows:

d(u,v) =e((1 4+ j)(Fr)u ® (Fr )y

= )P ® (Fius),

where € is a hyperparameter determining the size of the per-
turbation, Fyy is the matrix of the Fourier basis and (Fr);
represents the i-th row of Fi;. Note that ® means the Kro-
necker product and j is the imaginary unit. We will use
SFA to investigate the sensitivity of discriminators in the
frequency domain.
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Figure 2. Illustration of proposed methods

As a preliminary experiment, we tested ResNet-based
SNGANSs [20] trained on the CelebA dataset [19] (The de-
tails of the training are shown in Sec. 6.1). For SFA, we set
e to 10/255. The left-hand side of Figure 1 visualizes the
results of SFA. The visualization procedure followed [26].
Each pixel coordinate corresponds to a frequency compo-
nent used for SFA, and each pixel represents the absolute
differences | D(x) — D(x + 6(u,v))|, i.e., the sensitivity to
the perturbation. Note that the differences are normalized to
[0, 1] by dividing with the maximum value of the SNGANs
and ours. We can see that the SNGANSs are sensitive to
high frequency perturbations like the results in [30]. This
indicates that the discriminators are easily fooled by per-
turbing the high-frequency domain and their sensitivity in
this regard leads to the frequency gaps because the genera-
tors focus on synthesizing the high-frequency perturbations
rather than a realistic image. Since the high-frequency com-
ponents are not necessary for training CNNs, as discussed
in Sec. 2.2, we will examine a method of filtering out them
from the input images.

5. Proposed Method

Figure 2 illustrates the overview of F-Drop and F-Match.
F-Drop filters out the high-frequency components from the
input images for discriminators, while F-Match is a regu-
larization method for generators, which penalizes the mini-
batch mean error in the frequency domain between the real
and generated images. F-Drop and F-Match are indepen-
dent of each other and can be easily incorporated in the ar-
chitectures of GANS.

5.1. Frequency Dropping

First, we introduce the idea of frequency dropping (F-
Drop). As discussed in Sec. 2.2 and 4, the discriminators
of GANs are sensitive to the high-frequency components
of the input images, but can be trained without the high-
frequency components. F-Drop is based on these insights;
it filters out the high-frequency components from images by
masking with a user-defined threshold parameter -y € [0, 1].

The procedure of F-Drop is quite simple: (i) transform an
input image into the frequency domain, (ii) drop the high-
frequency components, and (iii) transform the frequency
components back into the spatial domain. F-Drop trans-
forms an input color image R3*H *W for the discriminators
as follows:

Drop(z,v) = F 1 (F(z) © M(v)), (6)

where F is a frequency transform function, such as DCT,
F~!is an inverse frequency transform function, such as
IDCT, and M(y) € R¥>*¥*W is a mask matrix for filter-
ing specific frequency components. Note that © denotes
element-wise multiplication. We chose DCT to be F and
IDCT to be F~. An element in a coordinate (c,u,v) of
the mask matrix M (~y) is defined as

. 1 (Ve 02 <AVH? +W?)
Mu,v('Y) = {0 (\/u2+v2 >’y\/H2+W2).

)

That is, we drop the high-frequency components of coor-
dinates farther away than v/ H?2 + W2, which is the Eu-
clidean distance from the origin point (0, 0) (i.e., the direct
current component). After masking, we utilize the remain-
ing lower frequency components for training the GANs
(Fig. 2, top). We can adjust the cutoff frequency with the
threshold hyperparameter . As defined in Eq. (7), the chan-
nels ¢ share the mask element, and thus, the Drop(+) calcu-
lation can be implemented by broadcasting a single chan-
nel mask M(y) € R*W_ Since all of the operations in
Drop(+) are differentiable with respect to the input data, we
can train the models by gradient descent via backpropaga-
tion in an end-to-end fashion.

5.2. Frequency Matching

Frequency matching (F-Match) is for minimizing the fre-
quency gap between the real and generated images. The key
idea is matching the frequency characteristics of the real and
generated images. F-Match minimizes the frequency gaps
by using the mini-batch statistics of the images because an
image generated from GANs does not have a one-to-one
correspondence to a real image. This regularization strat-
egy is commonly used by methods such as feature matching
in [24] and MMD-GAN [18]. The loss function of F-Match
is formalized as follows:

Linateh = d (Xreala Xfake) ) 3)
B— 1 B-1
real - E Z real Xfake = B Z ]: mfake)
i=0 =0

where d(-) is an error function, B is batch size for each
training iteration, and x|, is the ¢-th real image, and xj,
is the i-th generated image from the GANs. d(-) and F(-)
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can be set to an arbitrary error function (e.g., squared error)
and arbitrary frequency transform (e.g., DCT). In the sup-
plementary materials, we evaluate various combinations of
d(-) and F(-) and show that the mean squared error (MSE)
in DCT space is the best choice. We use the following MSE-
based function:

H W
1 _ _
dvise = 4777 Z Z (Xrear (1, 0) = Xpae(1,0)) %, (9)

where X (u,v) is the (u,v) coordinate of X. In the op-
timization, Lnch is added as a regularization term to the
objective function defined in Eq. (2):

LG, =E.np. log Dg(Go(2)) + AMlmaten, — (10)

where A is a balancing hyperparameter. As discussed in
Sec. 2.1, spectral regularization (SR) [7] is defined in a sim-
ilar form to F-Match. Following [7], the loss function of SR
for H x H square images is defined as

B-1
1 _ ]
ESR: E ;ZO dSR (Xreah ]:('r%ake» ’ (1 1)

H/2-1

1 _
dsr = _m 7;0 BCE (A(Xreah r)a A(Xfake> r))7

where BCE(+) is the binary cross entropy function and
A(X,r) is the azimuthal integral - fOQTr | X (r,0)|d0,
which approximates 2D DFT images into 1D signals with
respect to the radial distance r in polar coordinates (7, 6).
Note that SR differs from F-Match in that it uses a single
generated image for minimizing the frequency gaps.

The final objective functions using F-Drop and F-Match
are:

Lp, == Espyu. log De(Drop(z, 7))
—E.np. log (1- D¢(Dr0p(G9(z), ),

Lg, = —E.~p. log Dg(Drop(Go(2),7)) +ALmatch- (13)

The overall training procedure with F-Drop and F-Match is
summarized in Algorithm 1. Note that, unlike the training
of normal GANs, we pre-fetch the input real images {x;}
for calculating the loss function of F-Match (Eq. 8) on line
4. GetSample and GenNoise are functions for fetching
batch images and for generating batch noise from a normal
distribution.

12)

6. Experiments

We evaluate our proposed methods (F-Drop and F-
Match) by comparing them with naive baselines and the ex-
isting methods [4, 7, 8]. We evaluate our methods in terms
of (i) quantitative metrics for GANs (main evaluations),

Algorithm 1 Training of GAN with F-Drop and F-Match

Require: Batchsize B, learning rate 79, 14, number of critics K, hyper-
parameters v, A

1: Randomly initialize parameters 6, ¢

2: while not convergent do

3 for k =1to K do

4: {x;eal}f:ol < GetSample(B)

5: {Zl}?:_ol < GenNoise(B)

6 ifk=1 theBn 5

i -1 i -1

7 {ztpctico < {Go(z) 1} 10

8: L"malch —d (% ZZB;BI -/—_(I;eul)7 % ZzB;?)l ‘F(x;ake)>
9: ‘CGG A E'{B log D¢ (DrOp(méake, 'Y))) + ALlmatch
10: 9(7977]9V9£G6
11: end if '
12: Lp, + — Y 25" log Dy (Drop(aiy, 7))
13: — 05" log(1 — Dy (Drop(Go(2'), 7))
14: ¢<—¢—77¢V¢£D¢
15: end for

16: end while

(ii) sensitivity to the high-frequency components (frequency
sensitivity analysis), (iii) the results in the state-of-the-art
settings using StyleGAN2-ADA, and (iv) the quality of the
generated images. The supplementary materials contain an
ablation study on F-Match, an analysis of hyperparameter
sensitivity of F-Drop, and fake detection in the frequency
domain (fake detection).

6.1. Setup

Datasets We used the six different image datasets:
CIFAR-10 and CIFAR-100 (32 x 32) [15], TinyImageNet
(32x32) [28], STL-10 (48x48) [6], CelebA (128x128) [19],
and ImageNet (128 x 128) [23]. These datasets have been
used for testing the benchmarks of GANs [3, 11, 17,20, 31].
We applied center cropping and resizing to the images of
TinyImageNet, CelebA, and ImageNet before the training.
For training, we normalized images into a range of [—1, 1].

GAN Baselines As a baseline, we chose spectral normal-
ization GAN (SNGAN) with ResNet-backbone architec-
tures [20]. As additional baselines, we tested Binomial [8],
which replaces the bilinear upsampling filters in the gener-
ators with the low-pass filters based on a binomial distri-
bution, spectral regularization (SR) [7], which minimizes
the gaps of the azimuthal integral in DFT space by using
Eq. (11) (see Sec. 5.2), and SSD-GAN [4], which adds a
frequency classifier in DFT space (using the azimuthal inte-
gral) to the discriminator and utilizes the output of the clas-
sifier to modulate the loss functions of the GANs. We used
the Binomial-5 kernel, following Frank er al. [8]. SR was
based on one in the author’s public code repository and used
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Table 1. Mean frequency gaps between real and fake images
CIFAR-10 CIFAR-100 TinyImageNet STL-10 CelebA ImageNet

SNGAN 6.89 7.01 9.83 4.19 4.49 4.83
Binomial [8] 7.85 583 9.96 4.30 4.74 4.55
SR [7] 6.12 6.80 9.77 3.98 4.48 5.70
SSD-GAN [4] 6.39 6.80 9.97 4.59 4.47 4.80
F-Drop 5.94 6.36 9.29 3.87 4.60 5.39
F-Match 4.84 4.87 7.36 4.04 4.46 4.52
F-Drop&Match 3.93 4.16 6.49 3.86 4.43 4.41
CIFAR-100  SNGAN Binomial SR SSD-GAN F-Drop F-Match F-Drop&Match

(Real) (FID: 15.2) (FID: 23.7) (FID: 14.7) (FID: 14.9) (FID: 15 1) (FID:14.7) (FID:13.8)

PR R U R et Gl B
CelebA SNGAN Binomial SR SSD-GAN F-Drop F-Match F-Drop&Match
(Real) (FID: 7.98) (FID: 37.9) (FID:11.2) (FID: 7.88) (FID: 686) (FID: 6.78) (FID: 6.78)

1
0
a .

Figure 3. Comparison of average DCT coefficients (top: CIFAR-
100, bottom: CelebA). The visualization protocols follow those of
Frank et al. [2].

Aas 1.0 x 1075.12 For SSD-GAN, the implementation was
composed of the author’s code, and we used A = 0.5, fol-
lowing [4].% For the labeled datasets (i.e., CIFAR-10/-100,
TinyImageNet, and ImageNet), we used conditional batch
normalization for generators and the projection discrimina-
tor following [21]. We evaluate other representative GAN
variants, including deep convolutional GAN (DCGAN) [22]
and Wasserstein GAN with a gradient penalty (WGAN-
GP) [11] instead of SNGAN in Sec. 6.2. We implemented
the architectures of GANs with the open-source repository
of Lee et al. [16]. More details of the training and evaluation
settings of GANSs appear in the supplementary materials.

6.2. Main Evaluations

Frequency Gaps First, we evaluate the reduction in the
frequency gaps. The following total absolute difference in
DCT space was used as a measure of the frequency gap:

1 H W B
ﬁ Z Z |Xreal(ua ’l))

where X (u,v) is defined in Eq. (8). We computed the
gaps between 10k real and generated images, where the
real images were randomly selected from each dataset. Ta-
ble 1 lists the mean frequency gaps measured by Eq. (14).
The F-Drop&Match column represents the performances of
SNGAN simultaneously applying F-Drop and F-Match. Vi-
sualizations of the frequency characteristics are shown in
Fig. 3, where the pixels in the upper left represent lower

- Xfake(uav)| 9 (14)

Uhttps://github.com/cc-hpc-itwm/UpConv/

2We used PyTorch to implement the differentiable azimuthal integral
because the author’s implementation, which uses Numpy, is not differen-
tiable. More detailed discussions appear in the supplementary materials.

3https://github.com/cyq373/SSD-GAN

frequency components and ones in the lower right rep-
resent higher frequency components. The figure and ta-
ble show that F-Drop&Match significantly reduced the fre-
quency gaps in all datasets and replicated more realistic fre-
quency characteristics compared with the other methods. In
a few cases, F-Drop by itself did not reduce the gaps. This is
because F-Drop allows the generators to synthesize the fil-
tered out high-frequency components, and thus, the gener-
ated images contain high-frequency components at random.
On the other hand, F-Match by itself reduced the gaps in all
cases, since it directly minimizes the frequency characteris-
tics. In Fig. 3, the results of F-Match show frequency gaps
in the middle range of the frequency domain more so than
the results of F-Drop&Match. This is because the genera-
tor of F-Match (by itself) focuses on high-frequency com-
ponents because of the sensitivity of the discriminators to
the high-frequency domain. These results indicate that F-
Drop&Match reduces the frequency gaps by complemen-
tarily combining filtering and direct minimization. Further-
more, F-Drop&Match outperformed the other frequency-
oriented methods, i.e., Binomial, SR, and SSD-GAN. The
poorer performance of these other methods is probably be-
cause they do not take account of the sensitivity of the dis-
criminators to the high-frequency domain. The sensitivity
of the other methods is discussed in Sec. 6.3. Here, we dis-
cuss other reasons why Binomial, SR, and SSD-GAN are
inferior to our methods. In the case of Binomial, the bi-
nomial upsampling suppresses the high-frequency compo-
nents in the generators, but does not explicitly regularizes
the models to learn the frequency characteristics. More-
over, we found that Binomial tends to degrade the genera-
tive performance in the spatial domain (see the evaluations
described below). For SR and SSD-GAN, the performance
gains sensitively depend on the dataset. This behavior re-
flects the 1D approximation with the azimuthal integral,
which implicitly assumes that the real frequency character-
istics are distributed in a concentric pattern in DFT space.
Since SSD-GAN does not use the gradients from the fre-
quency classifier for updating the GANS, its performance
gains may be unstable. Meanwhile, F-Match directly mini-
mizes the gaps for each frequency component in an end-to-
end fashion and performs stably on the various datasets.

FID/KID/IS Second, we measured the Fréchet inception
distance (FID) [12], kernel inception distance (KID) [2],
and inception score (IS) [24]. We computed these mea-
sures on 100k real and generated images for the 128 x 128
datasets, and 50k real and generated images for the 32 x 32
datasets and STL-10. Table 2, 3, and 4 show the scores of
FID/KID/IS for each combination of dataset, method, and
GAN variant. Note that | means lower is better and 1 means
higher is better. F-Drop by itself and F-Match by itself out-
performed the baselines in many cases. More importantly,
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Table 2. Performance comparison on the 32 x 32 datasets

CIFAR-10 CIFAR-100 TinylmageNet
FID(}) KIDxw0™* () IS() FID(}) KIDxw0™* () IS FID(}) KIDxw™* () IS
SNGAN 14.310473 9_20:}:057 825:{:0.14 15.2:‘:0425 9.76i0‘35 8.91i0'04 21.8i3'01 12‘31343 6_35:!:0.28
Binomial [3] ~ 35.9%0%  219%18  660*015 237070 143047 g 9008 539426 30 gEEI 534029
SR [7] 12.2i0A27 7_731273 8.43i0'01 14.7i0.27 9.56i0‘49 8.94i0'05 23_8i2.01 18.9i2‘00 5_96j:0,25
SSD-GAN [4]  134%013 g 72021 g 301l 14 2088 g 3pE078 g 12031 2 EISL 2972 6,500
F—Drop 14'1j:()‘81 9'111021 8.31i0'18 15'1i0.15 9'47:{:029 8.93i0'05 20'4i0.46 11‘5:{:1‘18 6.49i0’08
F-Match 12.8i0‘53 7.90:t0.32 8.45i0'12 14.710466 9.09i0.89 9. 17i0.24 20.9i0.24 12.7i0.46 6.41 +0.24
F-Drop&Match 1075092 7155058 g45+006 (383034  ggo0dd g at0M0 [goFls 10302 55014

Table 3. Performance comparison on larger image datasets

STL-10 (48 x 48)

CelebA (128 x 128)

ImageNet (128 x 128)

FID () KIDx107* ()  IS(1) FID () KIDx10™* ()  IS(1) FID () KIDx10™* ()  IS(1)
SNGAN 34.711.26 32.0i0.91 8.68i0'08 7.98i0'l3 4.45:t0.42 3.02i0.07 62.5il.l6 63.5i0'80 14.1 +0.34
Binomial [8] 34.9+044 32.4%101 8.66009  37.9+657 22.3+095 2.86+002 76 616093 74.1%615 11.6%114
SR [7] 38.1i0,74 34.9:t0.87 8.49i0'02 11.2i0,74 5.67i0'87 2.91i0.06 64.0i|'52 64.9i2'35 13.9i0.49
SSD-GAN [4] ~ 35.6%0% 322068 g77+003  7gg064 4 opt097 305007 61204 61619 14.3%008
F-Drop 34.7i0,75 31.8:“'09 8.75i0'07 6.86i0.47 3.92:t0.64 3.09+0.06 61.0i0'59 60.9:t1.86 14,2021
F-Match 34.0%072 31.1%076 8.79+005 g 7g+0.10 3.73+0.18 3.08+004 g o133 62.2%13 14.4+018
F-Drop&Match ~ 33.8+0-66 30.4+0-83 8.85+0.15 g 78+0.11 3.61+0-10 3161905 §0.4+0-71 60.5+0-51 14.5+030
Table 4. Performance comparison on GAN variants (CIFAR-100) " Binomial SSD-GAN - Dw \“h FDropMatch |
DCGAN [22] WGAN-GP [11] 1 Q "
FID(}) KID<o () IS(t) FID() KIDxe? () ISM [ “ . ‘ p
Baseline 27.2il 15 lﬁ.zil 69 7(161() 26 25A2;H| 20 21A210.31 7.7210.()'4 o
inomial [¢ 3 +3.78 X +2.38 5 +0.18 3 +0.48 X +0.77 K +0.07 . o, 0 e .
];R[ ] 1] jﬁ_f@ﬂ 28 gi_itﬂﬂ 2_§§i0 7 ﬁf,_;ﬂ o ;i_ﬁim 2_2210_45 Figure 4. Sensitivity analysis by SFA [26] on CelebA
SSD-GAN [4]  342%18  |getl62 53028 450176 30 196 6 (4203
F-Drop 25'9i0.45 1 5.8t0'27 7.1 51005 23,810 28 19.310 52 7.8510'0|
P +0.73 +1.06 +0.17 +0.14 +0.21 +0.11
E:II\DA:(:;}(;LMatch ;g:§+1.17 ig:imm ;j;mm 2;3“53 i(s);JrOJQ ;:ggﬂmz ('}FA—\.I?-I_I) . CIFAR-100 Tim'lumg,v%l STL-10 ImageNet
Z o3 i) .
‘. w X
F-Drop&Match performed the best in all cases. Binomial ““
p p | | ' .. _ CIFAR-10 CIFAR-100  TinylmageNet STL-10 ImageNet
underperformed the baseline in almost all cases. Similar 3 % Q 4‘ r ;
to the evaluation of the frequency gaps, the performances 3 3 ! ‘*‘
of SR and SSD-GAN sensitively depend on the datasets, g : * [

while our methods stably outperform the baselines. These
results indicate that our methods can flexibly help GANSs to
replicate the real images in both the frequency and spatial
domain.

6.3. Frequency Sensitivity Analysis

As shown in Sec. 4, the discriminators of GANSs are sen-
sitive to the perturbations in the high-frequency domain.
We evaluate the sensitivity of our methods by conducting
an SFA analysis. Figure 4 compares the baselines and our
methods in terms of the results of SFA perturbing each fre-
quency component on CelebA. Figure 5 shows the results
of SFA on multiple datasets. We used the same visualiza-
tion protocol as in Sec. 4. We also tested Binomial, SR,
and SSD-GAN on CelebA (Fig. 4); the results on the other
datasets appear in the supplementary materials and lead to
the same conclusions as given below. F-Drop&Match out-
performed all of the baselines. Since the robust frequency

Figure 5. Sensitivity analysis by SFA [26] on multiple datasets

domains of F-Drop&Match seem to be the union of the ro-
bust frequency domains of F-Drop and ones of F-Match,
we see that the robustness of F-Drop&Match comes from
combining F-Drop and F-Match complementarily. More
importantly, in Fig. 4, we see that Binomial, SR, and SSD-
GAN are not robust against the low to middle range of the
frequency domain. We consider that this is because these
methods, unlike F-Drop, feed the whole input images in-
cluding their high-frequency components into the discrim-
inators, and thus, the discriminators have trouble focusing
on the lower frequency domain. These results suggest that
the discriminators of F-Drop&Match can focus on the lower
frequency and the generators indirectly adjust their training
to learn realistic frequency components by combining F-
Drop and F-Match complementarily.
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Table 5. Evaluation on StyleGAN2-ADA (FID)

FFHQ Cat Dog Wild

(256 x 256) (512 x 512)
StyleGAN2-ADA [13] 4.30 355 740 3.05
F-Drop&Match 4.05 336 721 2.62

StyleGAN2-ADA Real

Ours

Figure 6. Visualization of real and generated images (AFHQ-Cat)

6.4. Evaluation on StyleGAN2-ADA

Here, we show extra results evaluated on state-of-the
art settings. We chose StyleGAN2-ADA [13] as the base-
line and used the implementation provided by the authors.*
We evaluated models on the four high-resolution datasets:
FFHQ [14], and AFHQ-Dog/Cat/Wild [5]. The training set-
tings of F-Drop&Match are shared with that of the previ-
ous work [13]; we used paper256 setting for FFHQ and
paper512 setting for the AFHQ datasets, which are preset
in the repository. The hyperparameters of A were 1.0x 10~7
for FFHQ and 1.0 x 1078 for the AFHQ datasets. Table 5
summarizes the results of FID. Our method succeeded to
improve the baseline. As the same trend in Section 6.3,
Figure 1 shows that our method can prevent the discrim-
inators to be fooled by the high-frequency components in
input. Thus, F-Drop&Match can work well even on high-
resolution datasets with state-of-the-art GAN variant.

6.5. Qualitative Results

Lastly, we provide visualizations of the generated im-
ages. Figure 6 illustrates the generated images from the
StyleGAN2 and F-Drop&Match (ours) models trained on
the AFHQ-Cat dataset; the training settings are shared with
Section 6.4. The generated images are randomly selected.
We emphasize again that we did not use M () of F-Drop
in the evaluation after training. We can see that both

“https://github.com/NVlabs/stylegan2-ada-pytorch

StyleGAN2-ADA and ours synthesized rough shapes of cat
faces that are composed of lower frequency components.
Meanwhile, ours was superior to StyleGAN2-ADA at syn-
thesizing more detailed information such as hair which is
composed of higher frequency components, while keeping
the information on the lower frequency components such
as the positions of facial parts. These results indicate that
F-Drop and F-Match make the generators focus on fitting
all of frequency components. More importantly, we found
that F-Drop produces no visible flaws by filtering the high-
frequency components during training. Additional visual-
ization studies including ones on other datasets can be found
in the supplementary materials; they show the same ten-
dency as described here.

7. Conclusion

We presented F-Drop and F-Match for minimizing the
frequency gaps that appear in images generated by GANS.
We demonstrated that the discriminators of GANs are
highly sensitive to high-frequency perturbations and the
sensitivity can cause frequency gaps. Our methods improve
GANSs in both the frequency and spatial domain because F-
Drop protects the discriminators from high-frequency per-
turbations and F-Match directly minimizes the frequency
gap by using a simple mini-batch error function. Our exten-
sive experiments show that the combination of F-Drop and
F-Match outperforms the baselines on various datasets. An
important direction of future research will be to introduce
adaptive masking without any hyperparameter into F-Drop
for filtering effectively and generating realistic images.
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