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Abstract

Recent studies imply that deep neural networks are vul-
nerable to adversarial examples, i.e., inputs with a slight
but intentional perturbation are incorrectly classified by
the network. Such vulnerability makes it risky for some
security-related applications (e.g., semantic segmentation in
autonomous cars) and triggers tremendous concerns on the
model reliability. For the first time, we comprehensively eval-
uate the robustness of existing UDA methods and propose a
robust UDA approach. It is rooted in two observations: i)
the robustness of UDA methods in semantic segmentation
remains unexplored, which poses a security concern in this
field; and ii) although commonly used self-supervision (e.g.,
rotation and jigsaw) benefits model robustness in classifica-
tion and recognition tasks, they fail to provide the critical
supervision signals that are essential in semantic segmen-
tation. These observations motivate us to propose adver-
sarial self-supervision UDA (or ASSUDA) that maximizes
the agreement between clean images and their adversarial
examples by a contrastive loss in the output space. Extensive
empirical studies on commonly used benchmarks demon-
strate that ASSUDA is resistant to adversarial attacks.

1. Introduction

Semantic segmentation aims to predict semantic labels
of each pixel in the given images, which plays an important
role in autonomous driving [19] and medical diagnosis [28].
However, pixel-wise labeling is extremely time-consuming
and labor-intensive. For instance, 90 minutes are required
to annotate a single image for the Cityscapes dataset [6].
Although synthetic datasets [29, 30] with freely available
labels provide an opportunity for model training, the model
trained on synthetic data suffers from dramatic performance
degradation when applying it directly to the real data of
interest.

Motivated by the success of unsupervised domain adapta-
tion (UDA) in image classification, various UDA methods for
semantic segmentation are recently proposed. The key idea
of these methods is to learn domain-invariant representations
by minimizing marginal distribution distance between the
source and target domains [15], adapting structured output
space [38, 5], or reducing appearance discrepancy through
image-to-image translation [ 1, 51, 18]. Another alternative is
to explicitly explore the supervision signals from the target
domain through self-training. The key idea is to alterna-
tively generate pseudo labels on target data and re-train the
model with these labels. Most of the existing state-of-the-art
UDA methods in semantic segmentation rely on this strat-
egy and demonstrate significant performance improvement.
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However, one of the critical issues of the aforementioned
UDA methods is that they are possibly vulnerable to adver-
sarial attacks. In other words, the performance of a UDA
model may dramatically degrade under an unnoticeable per-
turbation. Unfortunately, the robustness of UDA methods
remains largely unexplored in the literature. With the in-
creasing applications of UDA methods in security-related
areas, the lack of robustness of these methods leads to mas-
sive safety concerns. For instance, even small-magnitude
perturbations on traffic signs can potentially cause disas-
trous consequences to autonomous cars [9, 33], such as
life-threatening accidents.

Self-supervised learning (SSL) aims to learn more trans-
ferable and generalizable features for vision tasks (e.g., clas-
sification and recognition) [8, 10, 12, 4]. Key to SSL is the
design of pretext tasks, such as rotation prediction, selfie,
and jigsaw, to obtain self-derived supervisory signals on un-
labeled data. Recent studies reveal that SSL is effective in
improving model robustness and uncertainty [13]. However,
commonly used pretext tasks are designed to capture the
global representation of a given image or an image patch.
Such pretext tasks fail to provide critical supervision sig-
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nals for segmentation tasks where fine-grained or pixel-level
representations are required [49].

In this paper, we first perform a comprehensive study to
evaluate the robustness of existing UDA methods in seman-
tic segmentation. Our results reveal that these methods can
be easily fooled by small perturbations and show dramatic
performance degradation. To remedy this problem, we in-
troduce a new UDA method known as ASSUDA to robustly
adapt domain knowledge in urban-scene semantic segmen-
tation. The key insight of our method is to leverage the
regularization power of adversarial examples. Specifically,
we propose the adversarial self-supervision that maximizes
the agreement between clean images and their adversarial
examples by a contrastive loss in the output space. The ad-
versarial examples aim to i) provide fine-grained supervision
signals for unlabeled target data, so that more transferable
and generalizable features can be learned and ii) improve the
robustness of our model against adversarial attacks by taking
advantage of both adversarial training and self-supervision.

Our main contributions can be summarized as i) To the
best of our knowledge, this paper presents the first systematic
study on how existing UDA methods in semantic segmen-
tation are vulnerable to adversarial attacks. We believe this
investigation provides new insight into this area; ii) We pro-
pose a new UDA method that takes advantage of adversarial
training and self-supervision to improve the model robust-
ness; iii) Comprehensive empirical studies demonstrate the
robustness of our method against adversarial attacks on two
benchmark settings, i.e., "GTAS to Cityscapes” and "SYN-
THIA to Cityscapes”.

2. Related Work

Unsupervised Domain Adaptation Unsupervised do-
main adaptation (UDA) refers to the scenario where no labels
are available for the target domain. In the past few years,
various UDA methods are proposed for semantic segmenta-
tion, which can be mainly summarized as three streams: 1)
adapt domain-invariant features by directly minimizing the
representation distance between two domains [15, 53]; ii)
align pixel space through translating images from the source
domain to the target domain [I, 25]; iii) align structured
output space, which is inspired by the fact that source out-
put and target output share substantial similarities in terms
of structure layout [38]. However, simply aligning cross-
domain distribution has limited capability in transferring
pixel-level domain knowledge for semantic segmentation.
To address this problem, the most recent studies integrate
self-training into existing UDA frameworks and demonstrate
the state-of-the-art performance [54, 18, 48, 44].

Our method instead resorts to self-supervision by integrat-
ing contrastive learning into existing UDA methods. This
strategy demonstrates two advantages: i) provides supervi-
sion for the target domain, which is proved to be robust to

the label corruption; ii) encourages the model to learn more
transferable and robust features. Another major difference
is that our method mainly focuses on improving model ro-
bustness against adversarial attacks, which is overlooked by
existing UDA methods.

Self-supervised Learning Self-supervision aims to make
use of massive amounts of unlabeled data through getting
free supervision from the data itself. This is typically
achieved by training self-supervised tasks (a.k.a., pretext
tasks) through two paradigms, i.e., pre-training & fine-tuning
and multi-task learning. Specifically, the pre-training & fine-
tuning first performs pre-training on the pretext task, then
fine-tunes on the downstream task. In contrast, multi-task
learning optimizes the pretext task and the downstream task
simultaneously. Our method falls into the latter, where the
downstream task is to predict the segmentation labels of
the target domain. To learn transferable and generalizable
features through self-supervision, it is essential to design
pretext tasks that are tailored to the downstream task. Com-
monly used pretext tasks include exemplar [8], rotation [10],
predicting the relative position between two random patches
[71, and jigsaw [26]. Motivated by this, recent UDA meth-
ods introduce self-supervision into segmentation adaptation
to learn domain invariant feature representations [43, 35].
Although these commonly used pretext tasks contribute to
cross-domain feature alignment, they are mainly designed to
capture the global feature, and therefore have limited capabil-
ity in learning fine-grained representations that are essential
in semantic segmentation.

By contrast, this paper proposes to use adversarial ex-
amples to build pretext tasks. Specifically, we maximize
agreement between each image and its adversarial example
via a contrastive loss in the output space. This is differ-
ent from [4] that performs contrastive learning in the latent
space. Furthermore, rather than focus on single-domain
tasks [14, 16], our method is tailored to UDA environments
to adapt domain knowledge and improve robustness simul-
taneously. Therefore, i) our method is encouraged to learn
more transferable features which are domain-invariant and
fine-grained; ii) the trained model is more robust to label
corruption and adversarial attacks. Another closely related
work is [46] which shares a similar spirit with us but with
clear differences: i) rather than perturb the intermediate fea-
ture maps, we perform the perturbation to the input images;
ii) we target on improving model robustness, instead of the
segmentation accuracy on clean images.

Adversarial Attacks Previous studies reveal that adver-
sarial attacks are commonly observed in machine learning
methods such as SVMs [2] and logistic regression [22]. Re-
cent publications suggest that neural networks are also highly
vulnerable to adversarial perturbations [36, 1 1]. Even worse,
adversarial attacks are proven to be transferable across differ-
ent models [37], i.e., the adversarial examples generated to
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Figure 1. Robustness study of BDL [18] on ”GTAS to Cityscapes” with backbone ResNet101. (A) the traditional paradigm uses clean test
data to evaluate the performance of BDL; (B) we use PSPNet as the surrogate model to generate perturbed test data which are then used to
evaluate BDL; (C) a clean image and its segmentation output predicted by BDL; (D), (E), and (F) indicate the perturbed images of (C) with
e = 0.1, e = 0.25, and € = 0.5, respectively, along with their BDL predictions. Although the perturbations are unnoticeable, they can easily

deceive BDL, resulting in dramatic performance degradation.

Base | € | GTAStoCity | SYNTHIA to City
0.1 413 — 305 39.0 —+29.3
VGG16 0.25 413 — 14.6 39.0 — 13.6
0.5 41.3 —17.10 39.0 —+5.90
0.1 48.5 —36.2 514 —41.2
ResNetl0l | 0.25 48.5 - 19.9 51.4 — 26.6
0.5 48.5 — 6.50 514 —11.0

Table 1. Performance of pre-trained BDL on clean test data vs
perturbed test data. Three sets of perturbed data are generated with
e = 0.1, e = 0.25, and € = 0.5, respectively.

attack a specific model are also harmful to other models. To
fully understand adversarial attacks in deep neural networks
(DNNs), considerable attention is received in the past few
years. Specifically, [ | 1] proposes a fast gradient sign method
(FGSM) to efficiently generate adversarial examples with
only one gradient step. DeepFool [24] generates minimal
perturbations by iteratively linearizing the image classifier.
By utilizing the differential evolution, [34] enables us to
generate one-pixel adversarial perturbations to accurately
attack DNNS.

Unlike the aforementioned studies that focus on effec-
tively creating adversarial attacks, our method uses adver-
sarial examples to build pretext tasks for UDA models, and
in turn to improve the model robustness. This is motivated
by the fact that a clean image and its adversarial example
should have the same segmentation output. Therefore, we
can get supervision for free and encourage our method to
learn discriminative representation for segmentation tasks.

3. Methodology

We first briefly recall the preliminary of UDA, adver-
sarial training, and self-supervision. We then perform the
first-of-its-kind empirical study to show that existing UDA
methods are vulnerable to adversarial attacks, which arises
tremendous concerns for the application of these methods in
safety-critical areas. To address this problem, we propose
a new domain adaptation method known as ASSUDA to
improve the model robustness without satisfying much pre-

dictive accuracy. Specifically, our method takes advantage of
adversarial training and self-supervision and thus enabling
us to generate more robust and generalizable features.

3.1. Preliminary

UDA in Semantic Segmentation Consider the problem
of UDA in semantic segmentation, where a labeled source
domain Xs{(xgi), ygz)) i<, and an unlabeled target domain
Xt{xgj )}?;1 are given. Our goal is to learn a segmentation
model fy () which guarantees accurate prediction on the
target domain. Formally, the loss function of a typical UDA
model is defined as:

Cseg(‘rsuys;QC) +a£dis($saxt)a (1)

where L., is the typical segmentation objective, L4;, mea-
sures the domain distance. The most commonly used £
is the adversarial loss L4, that encourages a discriminative
and domain-invariant feature representation through a do-
main discriminator Dy, (-) [15, 1, 38], which is formalized
as:

ﬁadv(xsy Tty 907 GD) = E[lOgDeD (f@c ((ES))]+ (2)
Ellog(1 — Do, (foc (21)))]

Adversarial Training Recall that the objective of the
vanilla adversarial training is:

arg;nin E(z,y)~D [rf?lgé( L(fo(z +n),y)] 3)

where S are allowed perturbations, T <— x + 7 is an adver-
sarial example of = with the perturbation 7. To obtain 7, the
most commonly used attack method is FGSM [ 1]:

n= ESign(Vx‘C(fG(m)7y))’ 4

where € is the magnitude of the perturbation. The gener-
ated adversarial examples  are imperceptible to human but
can easily fool deep neural networks. Recent studies fur-
ther prove that training models exclusively on adversarial
examples can improve the model robustness [21].
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3.2. Robustness of UDA Methods

Although existing UDA methods achieve record-breaking
predictive accuracy, their robustness against adversarial at-
tacks remains unexplored. We hypothesis that they are also
vulnerable to adversarial attacks, which makes it risky to
apply them in safety-critical scenarios. To fill this gap and
to validate our hypothesis, we perform black-box attacks
on BDL [18] by conducting the following two steps: 1) for
each clean image in the test data, we first generate its ad-
versarial example by attacking PSPNet [52] with € = 0.1,
e = 0.25 and € = 0.5, respectively; 2) we then evaluate the
pre-trained BDL model on the generated adversarial exam-
ples (or perturbed test data) (Figure 1). The rationale behind
this setting is that i) recent state-of-the-art UDA methods
in semantic segmentation [42, 17, 48, 44, 31] share similar
spirits with BDL, so conducting pilot studies on this method
would be representative; ii) a black-box attack assumes that
the attacker can only access very limited information of the
victim model, which is a common case in the real world.
Therefore, a black-box attack would be very dangerous if
it can work; iii) adversarial attacks are transferable across
different models [1 1], i.e., the adversarial examples gener-
ated to attack a surrogate model are also harmful to other
models. We hereby perform the black-box attack to examine
the transferability of adversarial examples on UDA models.

As shown in Table 1, despite the remarkable performance
of BDL on the clean test data, even slight and unnoticeable
perturbations can result in dramatic performance degradation.
For instance, BDL (with VGG16 backbone) only achieves
a mean IoU (mloU) of 30.5% on the perturbed test data
generated by € = (.1, compared to 41.3% on the clean data.
By increasing the perturbation ratio €, the performance can
drop even further (Figure 1), indicating that BDL can be
easily fooled by slight perturbations on the test data, even
though the perturbation is generated by a surrogate model.
This empirical study suggests that existing UDA methods are
also possibly vulnerable to adversarial perturbations, which
can make them especially risky for some security-related
areas.

3.3. Adversarial Self-Supervision UDA

To address this problem, the most straightforward ap-
proach is adversarial training (equation 3) which requires
class labels to generate adversarial examples. However, we
are unable to access the labels of target data under the sce-
nario of UDA (equation 1). The success of existing UDA
methods heavily relies on the self-training strategy that al-
ternatively generates highly confident pseudo labels for the
target domain and re-trains the model using these labels
[18, 17,44,31,45]. Although pseudo labels provide an op-
portunity to generate adversarial examples for the target data,
these labels are usually noisy and less accurate. Hendrycks
et al. prove that self-supervision improves the robustness

domain
discriminator

<>
minimize
agreement

add perturbation
add pert;lrbation

<>

maximize
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Figure 2. An overview of the proposed method. For each sampled
pair of source image xs and target image xz:, we generate their
adversarial example Z, and Z;, respectively. A segmentation model
f(-) and a domain discriminator are trained to maximize/minimize
agreement and align cross-domain representations.

of deep neural networks for vision tasks [13]. Neverthe-
less, commonly used pretext tasks (e.g., rotation prediction
and jigsaw) model global representation and fail to provide
the critical supervision signals in learning discriminative
features for semantic segmentation.

These challenges raise the question: can we take advan-
tage of both adversarial training and self-supervision in
improving the robustness of UDA methods in semantic seg-
mentation? To answer this question, we propose to build a
pretext task by using adversarial examples (Figure 2). Specif-
ically, we consider a clean image and its adversarial example
as a positive pair and maximize agreement on their segmen-
tation outputs by a contrastive loss. This is motivated by the
fact that a clean image and its adversarial example should
share the same segmentation map. Different from [4] that
uses a contrastive loss in the latent space, our pretext task is
performed in the output space to learn discriminative repre-
sentations for semantic segmentation. To adapt knowledge
from the source domain to the target domain, a domain dis-
criminator is applied to the source and target outputs. It is
worth mentioning that the domain discriminator minimizes
the domain-level difference, while the contrastive loss is
performed on the pixel level.

Our model is built upon BDL [ 18] that generates the trans-
formed source images X;_,; and pseudo labels Y}, of X;. For
simplicity, we use X, to represent Xs_,; in the remaining
of this paper, unless otherwise specified. At each training
iteration 7, a minibatch of N source-target pairs are ran-
domly sampled from X and A}, resulting in 2N examples
{xgi), xii)}lN:l Their adversarial examples {9[:g , & (Z) N,
are generated by:

i = 20 4 esign(Va[Loeg(x “), yt(,), 0 )])

where ¢,,, is the training perturbation magnitude.

Given these 4N data points {z{”, 2" " #"N |
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each pair of examples {mﬁf), jg)} is considered as a pos-
itive pair («v can be either s or ¢ to denote a source or a target
domain), while the other 4N — 2 examples are considered
as negative examples. We define the contrastive loss for a
positive pair (i, 7) as

cap(sim(foo (z1), for (29)))

Zigl ]l[k;éi]exp(‘gim(f@c (w(i))v fec (‘T(k))))

(6)
where sim(U, V) = exp(—dist(U,V)/(20?%)) is Gaus-
sian kernel that is used to measure the similarity
between two segmentation output tensors U and V,
dist(;) is the Euclidean distance. The contrastive loss
Leon(Ts, s, xt, Ty;0c)) is computed across all positive
pairs (see Algorithm 1). Taken together, the training ob-
jective of our goal is nelin max Liotal, Where Liopq1 18:

C D

£i7j = — lOg

Liotat = Lseg(Ts,Ys; 00) + Loeg(Zs, ys; 0c)+
Leeg(we,Yrr;00) + Loeg (T, yv; )+
YLadv(Ts, x5 0c,0p)+ @)
YLadv(Ts, 5 0c,0p)+
0Leon (s, Ts, Tt, Tt 0c),

where § and - are two hyper-parameters. Therefore, our
model can leverage the regularization power of adversarial
examples through a self-supervision manner, and in turn,
improve the model robustness against adversarial attacks.
The whole training process is detailed in Algorithm 1.

4. Experiments

Datasets Following the same setting as previous studies,
we use GTAS [29] and SYNTHIA-RAND-CITYSCAPES
[30] as the source domain, and use Cityscapes [6] as the
target domain. GTAS is composed of 24,966 images (resolu-
tion: 1914 x 1052) with pixel-level semantic labels, which
are collected from a photo-realistic open-world game known
as Grand Theft Auto V. SYNTHIA-RAND-CITYSCAPES
dataset is generated from a virtual city, including 9,400 im-
ages (resolution: 1280 x 760) with precise pixel-level se-
mantic annotations. Cityscapes is a large-scale street scene
dataset collected from 50 cities. A total of 5,000 images
(resolution: 2048 x 1024) are contained in Cityscapes, with
2,975 training images, 500 validation images, and 1,525 test
images. We follow the tradition to use the training images
from Cityscapes as the target domain and use the validation
images as the clean test data.

Implementation Details Following the same experimen-
tal protocol in this area, we use two network architectures:
DeepLab-v2 [3] with VGG16 [32] backbone, and DeepLab-
v2 with ResNet101 backbone. The domain discriminator
has 5 convolution layers with kernel 4x4 and stride of 2,
each of which is followed by a leaky ReLLU parameterized

Algorithm 1: The whole training process.

Input: Source data {Xs, Y } and target data { X },
segmentation model initialized as 6,
domain discriminator initialized as 6 p,
batch size N, number of training iteration R
Result: 0o and 6p
forr <+ 1to Rdo
Sample a batch of source-target pairs {xék), x,(fk) }szl
# adversarial attack
fork € {1,...,N}do
Generate adversarial examples: {igk), i",(sm W,
Define 2(4k—3) — xgk)’w(4k—2) _ xﬁk)’x(u—n _

end
# adversarial self-supervision
fori € {1,...,4N}and j € {1,...,4N} do
~aist(fo (29,00 09))
sig = eap( )
end

exp(si,j)
oy Liksza eop(si k)

Define ¢; ; = flogz

# contrastive loss

Leon = 1r¢ Sobe an—3,ak—1 + Lap—1,45—3 +
Lag—2,a1 + Lag,ak—2]

# update model parameters

0c < 0c — B Ve Ltotal

9D — 9D —A Veop Etotal

end
return ¢ and 60 p

by 0.2 except the last one. The channel number of each
layer is {64, 128, 256, 512, 1}. The Adam optimizer with
initial learning rate le-4 and momentum (0.9, 0.99) is used
in DeepLab-VGG16. We apply step decay to the learning
rate with step size 30000 and drop factor 0.1. Stochastic
Gradient Descent optimizer with momentum 0.9 and weight
decay Se-4 is used in DeepLab-ResNet101. The learning
rate of DeepLab-ResNetl101 is initialized as le-4 and is
decreased by the polynomial policy with a power of 0.9.
Adam optimizer with momentum (0.9, 0.99) and initial learn-
ing rate le-6 is used in the domain discriminator. We set
€mn = 1.0 in equation 5. Code and data are available at
https://github.com/uta-smile/ASSUDA.

Perturbed Test Data To evaluate model robustness, we
first generate the perturbed test data. Specifically, PSPNet
[52] is used as the surrogate model owing to its popularity.
We generate three sets of perturbed test data using FGSM
with e = 0.1, ¢ = 0.25, and ¢ = 0.5. The generated per-
turbed data sets are then used for performance assessment.
For a fair comparison with existing UDA methods, we down-
load the pre-trained models from the original papers and
perform the evaluation.

4.1. Experimental Results

Since the robustness of existing UDA methods remains
unexplored, we first comprehensively evaluate their robust-
ness against adversarial attacks in this section (Table 2 and
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FDA [48] 739 185 69.7 7.5 64 18.7 239 21.5 76.7 122 66.3 452 18.4 70.2 189 139 14.6 93 22.0(32.0 102 424
AdaptSegNet [35] 719 227 70.8 7.6 79 165 154 83 71.8 122 52.6 33.8 0.6 658 158 7.6 00 0.7 0.1 254 9.6 35.0
PCEDA [47] 0.1 1909 25.0 735 63 72 142 24.0 274 762 23.4 70.3 450 199 70.0 163 203 0.0 9.8 251|334 11.2 44.6
BDL [18] 64.0 219 70.0 10.0 39 84 20.5 128 77.4 223 79.2 49.8 13.8 73.2 17.8 12.1 0.0 7.8 152|305 10.8 41.3
Ours 90.6 41.5 80.1 22.6 10.4 154 23.0 16.0 82.7 349 81.6 52.5 23.9 82.2 225 219 7.0 154 214|393 04 39.7
FDA 254 34 245 05 1.6 24 77 64 586 12 448 65 14 146 49 04 01 0.1 13108 314 424
AdaptSegNet 54 50 438 1.2 22 37 63 25 313 39 228 62 00 119 43 01 00 00 00|79 27.1 350
PCEDA 0.25|346 15 409 06 16 22 96 11.1 564 05 438 127 2.0 280 7.0 3.7 00 1.0 5.0|13.8 30.8 44.6
BDL 254 47 551 28 15 13 9.1 43 613 15 541 267 0.1 207 65 15 00 07 1.0 |14.6 26.7 413
Ours 89.7 30.4 78.2 134 11.4 11.1 194 14.5 79.2 27.0 84.8 49.7 19.0 78.6 17.1 18.1 3.0 7.2 17.2|352 4.5 39.7
FDA 220 04 32 00 13 01 19 06 338 1.1 226 0.1 00 01 00 00 00 0.0 00|46 376 424
AdaptSegNet 0.1 00 144 00 21 07 29 04 233 00 84 02 00 01 00 00 00 0.0 00|28 322 350
PCEDA 0.5 (268 0.1 150 0.1 13 01 25 23 181 00 154 0.1 00 20 02 00 00 0.0 00|44 402 446
BDL 27.8 09 368 05 12 01 27 09 341 00 251 54 00 07 00 00 00 00 00|7.1 342 413
Ours 75.7 11.7 66.1 2.7 6.0 3.7 13.6 8.6 66.8 14.0 79.1 37.2 4.0 59.0 7.2 9.6 04 0.1 6.0 |24.8 149 39.7
FDA [48] 85.8 27.8 702 8.6 7.4 179 30.7 234 70.8 22.4 59.7 53.8 26.5 71.6 29.2 26.8 6.3 23.1 383|369 13.5 50.4
FADA [41] 532 19.7 652 63 14.1 213 19.0 82 744 21.6 557 50.3 148 732 134 9.1 10 9.6 20.5|29.0 20.2 49.2
IntraDA [27] 89.1 31.1 76.6 11.3 164 149 253 158 80.8 29.4 749 543 233 78.7 32.1 39.2 0.0 21.5 30.8|39.2 7.1 463
CLAN [20] 758 213 69.8 11.9 7.3 127 246 8.8 77.1 204 669 51.0 19.6 654 28.7 31.3 25 152 248|334 9.8 432
MaxSquare [23] | 0.1 [28.6 9.3 52.0 39 3.1 97 29.1 103 73.6 102 41.7 46.1 19.1 36.1 26.5 10.7 0.2 17.2 28.0|24.0 22.4 46.4
AdaptSegNet [38] 80.9 212 663 74 57 74 252 65 762 125 699 456 11.7 71.3 21.8 80 1.6 6.5 143295 129 424
PCEDA [47] 89.8 31.8 75.8 17.4 9.2 269 31.1 30.0 80.0 19.3 85.6 55.2 27.5 79.4 30.2 344 0.0 20.3 383|412 9.3 505
BDL [18] 755 31.3 753 8.8 85 17.1 293 23.0 76.9 22.4 80.5 51.2 258 51.9 24.0 333 1.6 20.3 31.3|36.2 12.3 48.5
Ours 89.3 37.7 81.3 21.0 18.3 28.6 29.0 31.4 81.8 33.9 822 51.9 259 804 349 313 0.0 30.4 33.1|43.3 0.6 43.9
FDA 50.8 6.7 51.0 1.6 37 35 172 63 495 15 609 283 12.8 49.1 145 46 12 26 250|20.6 29.8 50.4
FADA 541 148 504 22 82 6.8 47 09 594 74 328 299 30 536 41 03 12 07 59179 31.3 492
IntraDA 264 3.0 463 04 45 07 86 0.5 309 04 439 213 1.2 475 833 75 00 02 6.5 |13.6 32.7 463
CLAN 583 94 527 50 27 13 147 21 585 3.0 645 37.6 14.0 46.1 200 13.6 1.8 3.6 173|224 20.8 432
MaxSquare 0.25|152 23 379 27 15 1.0 158 1.8 541 15 306 143 72 315 11.8 1.6 0.0 0.7 13.8]|129 335 464
AdaptSegNet 669 48 328 13 24 07 132 1.2 606 24 653 196 15 490 82 12 00 0.1 08 |17.5 249 424
PCEDA 76.4 3.0 509 15 33 115 18.1 10.0 59.3 0.6 594 37.0 16.1 49.6 11.6 56 00 26 252|233 272 50.5
BDL 40.7 72 566 3.1 20 40 203 55 627 1.5 658 194 153 302 80 84 00 64 212[199 28.6 48.5
Ours 87.9 26.6 75.0 11.1 12.5 24.4 26.0 28.3 74.2 19.5 81.8 48.7 22.9 78.5 31.8 342 0.0 27.2 30.2|39.0 4.9 439
FDA 145 09 232 10 53 1.1 76 09 284 00 579 30 02 82 38 00 00 00 16|83 421 504
FADA 174 76 181 12 21 04 05 01 292 00 11.8 3.8 02 185 0.0 0.1 00 0.0 00|58 434 492
IntraDA 264 3.0 463 04 45 07 86 05 309 04 439 213 12 475 83 75 00 02 65 [13.6 32.7 463
CLAN 330 06 392 23 18 01 84 02 362 03 381 21.5 34 38.0 94 34 00 0.1 43 |12.6 30.6 432
MaxSquare 0.5 [17.0 03 336 06 22 04 99 04 295 00 312 35 04 288 57 04 00 00 13|87 37.7 464
AdaptSegNet 430 02 101 0.7 28 02 73 0.1 348 00 581 49 00 186 0.8 03 00 00 0.0 |96 328 424
PCEDA 304 00 366 02 1.7 15 40 12 271 00 81 97 04 74 12 00 00 00 53 |7.1 434 505
BDL 97 0.1 259 00 08 02 81 0.6 435 00 137 48 43 76 26 00 00 02 19|65 420 485
Ours 82.9 10.0 498 34 45 12.7 20.7 19.9 59.9 58 78.6 359 12.6 60.2 189 182 0.0 10.8 15.5|27.4 16.5 43.9

Table 2. Quantitative study of "GTAS to Cityscapes”. VGG16 (upper part) and ResNet101 (lower part) are used as backbones in this
experiment. The performance is measured on 19 common classes with criteria: per-class IoU, mean IoU (mloU), mloU drop (performance
degradation of the model after being attacked), and mIoU™. The higher the mIoU and the lower the mIoU drop, the more robust the model is.
The best result in each column is highlighted in bold.

Table 3). We then perform a comparison of our method
on two widely used benchmark settings, i.e., "GTAS to
Cityscapes” and "SYNTHIA to Cityscapes”. Three criteria,
i.e., mIoU, mloU drop, and mIoU* are used for performance
assessment. Specifically, mloU and mloU* indicate the
mean IoU on the perturbed test data and the clean test data,
respectively, while mIoU drop indicates the performance

degradation (i.e., the difference between mloU and mloU*).
Therefore, the higher the mIoU and the lower the mIoU drop,
the more robust the model is.

GTAS to Cityscapes As shown in Table 2, we achieve the
best performance on all three adversarial attacks. In particu-
lar, even slight adversarial perturbations can mislead Adapt-
SegNet [38] and BDL [18] and dramatically degrade their
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SYNTHIA to Cityscapes

= on %D & g :u%) 5] g *

T £ £ 3 82 =5 75 28 8 = 3 % 2R 2R

€18 .“.; E E 8 & % EE g) = g & 8 3 é 3 g % ~;

FDA [48] 68.5 284 727 04 0.3 222 5.1 19.1 57.6 75.7 45.8 18.8 55.6 18.5 5.1 31.5|32.8 7.7 40.5
PCEDA [47] 0.1 80.9 25.0 73.5 6.3 7.1 14.2 24.0 27.4 76.2 70.3 45.0 199 70.0 20.3 9.8 25.1|37.2 3.9 4l1.1
BDL [18] 1349 21.2 478 0.0 0.2 20.5 92 202 67.2 743 49.0 17.5 57.2 119 2.5 34.6(29.3 9.7 39.0
Ours 88.2 46.5 46.5 0.0 0.1 24.6 84 23.8 79.3 81.2 544 24.5 78.2 224 9.2 444|413 -2.2 39.1
FDA 463 16.0 38.7 0.0 0.2 49 25 89 313 389 86 53 177 60 13 541|145 26.0 40.5
PCEDA 0.25 75.6 11.4 59.1 0.0 0.4 9.6 5.5 129 63.1 45.0 30.7 13.4 349 86 25 245|24.8 16.3 41.1
BDL : 8.0 89 31.1 00 0.1 87 6.9 9.8 52.0 54.1 229 49 256 25 08 13.3|13.6 254 39.0
Ours 87.4 41.6 73.7 0.0 0.1 23.2 8.7 23.0 75.7 78.8 49.7 21.1 72.5 20.3 7.5 39.5(38.9 0.2 39.1
FDA 422 49 142 00 0.1 06 10 17 262 19 05 04 15 01 0.1 0.1]| 6.0 345 40.5
PCEDA 05 662 1.1 479 0.0 04 3.1 25 50 47.8 188 100 1.9 83 32 1.1 102|142 269 41.1
BDL : 06 10 248 00 00 16 19 23 358 186 22 0.1 41 01 00 05|59 331 39.0
Ours 68.8 21.8 57.1 0.0 0.1 17.9 6.8 15.6 65.9 54.2 304 12.8 43.1 59 4.1 253|269 12.2 39.1
FDA [48] 834 324 735 X X X 13.1 189 71.6 79.5 56.1 249 77.5 27.6 18.2 42.8(47.7 4.8 525
FADA [41] 74.0 325 698 X X X 6.8 158 57.0 58.3 46.7 8.6 55.1 18.0 45 98 |35.1 174 52.5
DADA [40] 80.0 33.8 750 X X X 80 94 62.1 763 49.7 143 76.3 27.8 52 31.7|423 7.5 49.8
MaxSquare [23] 0.1 70.1 233 728 X X X 6.7 72 602 77.6 48.7 13.8 63.7 17.4 3.1 20.1|37.3 10.9 48.2
AdaptSegNet [38] 1795 347 76,6 X X X 41 54 61.0 80.8 49.3 183 72.1 26.1 7.5 29.8/41.9 4.8 46.7
PCEDA [47] 645 334 771 X X X 17.6 165 50.1 81.3 489 24.8 71.9 257 13.3 41.0|43.6 10.0 53.6
BDL [18] 792 337 753 X X X 56 8.7 61.1 80.6 450 21.7 65.7 267 8.5 24.5|41.2 10.2 514
Ours 89.1 46.6 782 X X X 114 169 76.1 81.5 52.6 26.7 79.9 35.3 25.0 37.5/50.5 -1.1 494
FDA 86 90 408 X X X 39 7.1 21.5 513 145 69 353 54 00 14.4|16.8 357 52.5
FADA 80.8 235 593 X X X 1.7 37 506 156 262 0.8 212 62 03 2.1 (225 30.0 52.5
DADA 580 11.5 427 X X X 45 42 319 412 234 6.0 539 83 04 14.0|23.1 26.7 49.8
MaxSquare 0.25 703 46 531 X X X 81 6.0 372 61.0 11.2 39 423 69 04 34 |23.7 245 482
AdaptSegNet ' 284 76 568 X X X 44 26 264 628 225 98 442 83 1.1 10.2|21.9 248 46.7
PCEDA 154 72 649 X X X 93 98 27.0 71.4 353 13.9 52.0 123 2.2 254(26.7 269 53.6
BDL 469 9.1 655 X X X 40 59 347 685 227 125 507 10.8 1.2 12.8(26.6 21.3 514
Ours 874 25.0 70.7 X X X 109 18.2 60.0 74.9 43.8 20.7 64.8 17.7 4.5 29.9/40.7 8.7 494
FDA 00 00 72 X X X 13 07 178 137 0.0 00 25 02 00 00|33 492 525
FADA 76.0 159 563 X X X 02 06 450 02 7.6 00 52 09 00 O0.1]16.0 365 52.5
DADA 429 23 163 X X X 1.8 07 241 125 25 08 235 2.1 00 4.8 (103 39.5 49.8
MaxSquare 05 427 02 253 X X X 50 27 245 180 0.8 0.1 150 1.5 0.0 02 [10.5 37.7 482
AdaptSegNet : 21 04 245 X X X 21 05 192 214 14 22 117 1.7 0.1 25|69 39.8 46.7
PCEDA 0.1 01 400 X X X 24 18 210 372 131 13 93 25 0.7 16 [10.1 43.5 53.6
BDL 28 07 321 X X X 20 18 203 537 27 13 223 14 04 1.7 |11.0 404 51.4
Ours 655 43 440 X X X 6.6 13.7 319 60.8 126 7.8 248 34 1.2 144224 27.0 494

Table 3. Quantitative study of "SYNTHIA to Cityscapes”. VGG16 (upper part) and ResNet101 (lower part) are used as backbones in this
experiment. The comparison is performed on 16 common classes for VGG16 and 13 common classes for ResNet101.

performance. For instance, when evaluated with VGG16
backbone on perturbed test data from € = 0.25, they only
achieve mIoU 7.9 and mloU 14.6, with mloU drop 27.1 and
26.7, respectively. Similarly, two recently proposed UDA
methods, i.e., FDA [48] and PCEDA [47] suffer from mloU
drop of 31.4 and 30.8, respectively. By contrast, our method
still gets mIoU 35.2 and only has a performance drop of
mloU 4.5. The results suggest that existing UDA methods
in semantic segmentation are broadly vulnerable to adver-
sarial attacks. The reason is that although these methods
demonstrate remarkable performance on the clean test data
(as indicated by mloU*), none of them, however, take the
adversarial attack into account during learning transferable
representations. Instead, we innovatively propose adversarial

self-supervision to improve the robustness of UDA models
by taking advantage of both adversarial training and self-
supervision. This is evidenced by the qualitative study in
Figure 3, where our method demonstrates accurate predic-
tions on the perturbed test data.

In terms of the clean performance (or mIoU*), our method
usually lags behind the existing state of the arts. This is
consistent with recent studies that clean performance and
adversarial robustness might be at odds [39, 50].

SYNTHIA to Cityscapes Table 3 shows the performance
comparison on "SYNTHIA to Cityscapes”, where our
method again demonstrates significant robustness improve-
ment. In contrast, other UDA methods can be easily fooled
by small perturbations in the test data. Interestingly, our
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Figure 3. Qualitative comparison of our method against BDL [18], FDA [48], and FADA [41] on the perturbed test data (¢ = 0.25). All of
these models are trained on "GTAS to Cityscapes” with ResNet101. The first column indicates perturbed test images.

Figure 4. Qualitative study of our method under three adversarial
attacks, i.e., ¢ = 0.1, ¢ = 0.25, and € = 0.5. All of these models
are trained on "SYNTHIA to Cityscapes” with ResNet101.

method achieves better performance on the perturbed test
data (¢ = 0.1) than on the clean test data. This can be
explained by the fact that training on adversarial examples
can regularize the model somewhat, as reported in [1 [, 36].
We further perform a qualitative study of our method when
evaluated on the test data with different magnitudes of the
perturbation. As shown in Figure 4, although large € usually
results in worse performance, our method still demonstrates
robust predictions.

Ablation Study To learn the contribution of the self-
supervision, we conduct the ablation study in Table 4. Com-
pared to 6 = 0 which only contains self-training, incorporat-
ing self-supervision consistently improves the performance.
We further investigate the training perturbation magnitude
€m 1n equation 5. Table 5 reveals that ¢,,, = 1.0 (Ours) re-
sults in more robust UDA model than €,, = 0.1. The reason
is that the adversarial examples generated by ¢, = 1.0 are
highly perturbed compared to the adversarial examples from
€m = 0.1, which in turn encourages our model to be more
robust against perturbations.

5. Conclusion

In this paper, we introduce a new unsupervised domain
adaptation framework for semantic segmentation. This is

GTAS to Cityscapes SYNTHIA to Cityscapes

€ ‘ 6=0 ‘ Ours ‘ 6=0 ‘ Ours
0.1 39.2 39.3 41.5 41.3
0.25 33.8 35.2 36.7 38.9
0.5 21.8 24.8 23.6 26.9
0.1 43.3 433 49.7 50.5
0.25 37.8 39.0 37.8 40.7
0.5 24.3 274 15.7 224

Table 4. Ablation study of § with backbone VGG16 (upper part)
and ResNet101 (lower part).

VGG16 ResNet101
€ | em=01 | en=10 | en=01 | en =10
0.1 36.4 393 44.9 433
0.25 17.8 352 343 39.0
0.5 7.4 248 157 274

Table 5. Ablation study of ¢,, on "GTAS to Cityscapes”.

motivated by the observation that the robustness of seman-
tic adaptation methods against adversarial attacks has not
been investigated. Our pilot studies reveal that existing UDA
methods can be easily deceived by unnoticeable perturba-
tions. We therefore propose adversarial self-supervision by
maximizing agreement between clean samples and their ad-
versarial examples to improve model robustness. Extensive
empirical studies are performed to explore the benefits of
our method in improving the model robustness against adver-
sarial attacks. The effectiveness of our method is thoroughly
proved on commonly used benchmarks.
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