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Abstract

How to make the appearance and motion information in-
teract effectively to accommodate complex scenarios is a
fundamental issue in flow-based zero-shot video object seg-
mentation. In this paper, we propose an Attentive Multi-
Modality Collaboration Network (AMC-Net) to utilize ap-
pearance and motion information uniformly. Specifically,
AMC-Net fuses robust information from multi-modality fea-
tures and promotes their collaboration in two stages. First,
we propose a Multi-Modality Co-Attention Gate (MCG)
on the bilateral encoder branches, in which a gate func-
tion is used to formulate co-attention scores for balancing
the contributions of multi-modality features and suppress-
ing the redundant and misleading information. Then, we
propose a Motion Correction Module (MCM) with a visual-
motion attention mechanism, which is constructed to em-
phasize the features of foreground objects by incorporat-
ing the spatio-temporal correspondence between appear-
ance and motion cues. Extensive experiments on three pub-
lic challenging benchmark datasets verify that our proposed
network performs favorably against existing state-of-the-art
methods via training with fewer data. The code is released
at https://github.com/isyangshu/AMC-Net.

1. Introduction

Zero-shot Video Object Segmentation (ZVOS) aims to
automatically separate the primary object(s) from the back-
ground in a video sequence without any human interaction.
Since ZVOS does not require manual intervention, it has
significant value in a wide range of applications, such as
video compression [11], visual tracking [45], and person re-
identification [51]. How to distinguish the target object(s)
from complex and diverse background without any prior
knowledge is an open challenge in ZVOS.

To address this issue, several methods [38, 21, 1, 19, 53]
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Figure 1. Illustration of various multi-modality interaction ap-
proaches for fusing appearance and motion information.

design various multi-modality interaction schemes to lever-
age external object motion information, which hypothesizes
that the object moving across the video sequence is highly
related to the primary object. Despite the impressive perfor-
mance, there remain some issues in existing interaction ap-
proaches. Early methods [38, 21, 1] directly execute feature
alignment such as concatenation or addition to produce ob-
ject masks (see Figure 1 (a)). Due to the redundant and in-
valid information in flow maps and video frames, the direct
feature alignment of multi-modality features would limit the
accuracy of segmentation (see the third column in Figure 2).
Several methods [53, 19] propose to build a motion-based
attention mechanism to enhance the feature learning of ob-
ject appearance (see Figure 1 (b)). These methods learn to
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SegFlow MATNet Ours GTImage Optical Flow

Figure 2. Visual comparison of different flow-based methods. We show the video frames, optical flow maps, SegFlow [1] predictions,
MATNet [53] predictions, and our predictions in the bmx-trees, motocross-jump, and car-roundabout video sequences. The optical flow
maps are predicted by PWCNet [35].

enhance the appearance features of the significant motion
areas, which makes them rely on the quality of optical flow.
However, when complex motion conditions (e.g., deforma-
tion, motion blur, fast motion, and clutters) occur in the
video sequence, optical flow might fail to capture the object
location and influence the accuracy of object segmentation
(see the fourth column in Figure 2).

Motivated by the above observations, in this paper, we
propose an Attentive Multi-Modality Collaboration Net-
work (AMC-Net) for zero-shot video object segmentation,
which builds a novel co-attention mechanism for effective
multi-modality interaction. AMC-Net adaptively fuses ro-
bust spatio-temporal representations from multi-modality
features and promotes their collaboration in two stages to
thoroughly combine the merits of appearance and motion
features (see Figure 1 (c)). In the first stage, we pro-
pose a Multi-Modality Co-Attention Gate (MCG), which is
used to unify the appearance and motion information into
valid spatio-temporal feature representations. Considering
the disparity of the contributions of different modality fea-
tures, we utilize a gate function to predict the co-attention
scores, which are used to balance the contributions of multi-
modality features and suppress the redundant and mislead-
ing information. In the second stage, we propose a Motion
Correction Module (MCM) to perform adaptive feature fu-
sion, in which a visual-motion attention mechanism is con-
structed to emphasize the features of foreground objects by
incorporating the spatio-temporal correspondence between
appearance and motion cues. Specifically, different from
the single-directional attention guidance from motion to ap-
pearance, we model the attention based on visual saliency
and motion saliency to facilitate the feature learning of fore-
ground objects.

To investigate the effectiveness of our proposed model,
we conduct comprehensive experiments including over-
all comparison and ablation studies on three benchmark

datasets [31, 33, 29]. The results show that our proposed
method can achieve superior performance against the state-
of-the-arts by using only DAVIS-16 [31] for training.

Our contributions can be summarized as follows:
• We propose an Attentive Multi-Modality Collaboration

Network for zero-shot video object segmentation, which
promotes deep collaboration of appearance and motion in-
formation to generate accurate object segmentation.

• We propose a Multi-Modality Co-Attention Gate to
unify the multi-modality information. A gate function is
used to produce co-attention scores to adaptively balance
the contributions of appearance and motion information.

• Our proposed method performs favorably against the
state-of-the-art methods on three public challenging bench-
mark datasets (DAVIS-16 [31], Youtube-Objects [33], and
FBMS [29]).

2. Related work

According to whether the manual intervention is re-
quired during testing, video object segmentation (VOS) can
be broadly categorized into zero-shot (ZVOS) and one-shot
(OVOS). In this paper, we focus on an object-level ZVOS
setting (i.e., do not discriminate different instances), which
extracts primary object(s) without manual annotation.

Zero-shot video object segmentation aims to automati-
cally generate masks of the primary objects in the video se-
quence without any human interaction, which is also called
unsupervised video object segmentation (UVOS) [14, 18,
32, 49, 21]. Early non-learning methods based on hand-
crafted features leverage low-level cues, such as visual
saliency information [42, 9, 5, 39], object proposals [18,
27, 49, 14, 6], or optical flow [16, 21, 13, 20, 30], which
are used as reliable prior knowledge to guide object seg-
mentation. Later, inspired by the success of deep learn-
ing on segmentation tasks, more research efforts focus on
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Figure 3. Overview of Attentive Multi-Modality Collaboration Network (AMC-Net). Given an input frame and the corresponding optical
flow map, we first use bilateral encoder branches to extract multi-modality features. Then we adopt multi-level MCG on multiple encoder
side outputs to filter information and unify robust information into spatio-temporal feature representations. Finally, we stack multiple
MCMs in a coarse-to-fine manner to produce final predictions.

fully convolutional networks based ZVOS models. For ex-
ample, several methods [34, 38, 43] use variants of recur-
rent neural networks to store previously computed segmen-
tation information implicitly. Inspired by the non-local op-
eration, COSNet [26], AGNN [41] and AnDiff [48] model
the long-term correlations between frames to explore global
information and gain a more comprehensive understanding
of the video contents. WCS [50] encodes the pixel-wise
correspondence between frames and takes object hotspots
as guidance to enhance the influence of salient regions.
3DC-Seg [28] leverages 3D convolution to jointly learn spa-
tial and temporal features. Recent method [25] proposes
episodic graph memory to store cross-frame correlations
and learn to update the segmentation model.

An alternative choice is to extract effective guidance
about motion information from optical flow. LMP [37] dis-
cards the modeling of appearance features and purely relies
on optical flow to predict foreground motion, which results
in incorrect results for static foreground objects. To address
this issue, several flow-based approaches [38, 1, 12, 19, 53]
generally adopt dual-branch full convolution networks with
feature fusion schemes, e.g., concatenation or attention
mechanism, to aggregate appearance and motion informa-
tion. Without considering the disparity of the contribu-
tions of multi-modality features, recent flow-based meth-
ods [19, 53] only consider the one-directional attention
guidance from motion to appearance and enhance the ap-
pearance features of significant motion areas. When motion
or appearance information is not significant from the back-
ground, these methods can not achieve satisfactory results
which are shown in Figure 2. In this work, we consider the
importance of deep collaboration between appearance and
motion in learning richer spatio-temporal feature represen-
tations. We propose an Attentive Multi-Modality Collabo-
ration Network (AMC-Net) to fuse robust information from
multi-modality features and promote their collaboration for
accurate zero-shot video object segmentation.

3. Method
3.1. Architecture Overview

In this work, we propose an Attentive Multi-Modality
Collaboration Network (AMC-Net) for accurate zero-shot
video object segmentation, which constructs a two-stage
multi-modality integration system. The framework of our
AMC-Net is shown in Figure 3. Specifically, given an input
frame I ∈ RH×W×3 and the corresponding flow map O ∈
RH×W×3, we employ parallel encoder branches to capture
the multi-level appearance and motion features, which are
represented as {F a

i }4i=0 and {Fm
i }4i=0. In the first stage,

with the appearance feature F a
i and motion feature Fm

i as
input, a Multi-Modality Co-Attention Gate (MCG) is pro-
posed to suppress the interference from redundant and in-
valid information and obtain effective spatio-temporal fea-
ture representations. We implement MCG on multi-level
encoder side outputs to integrate the multi-modality fea-
tures and propagate more valuable feature representations
to the decoder. In the second stage, we use Motion Cor-
rection Module (MCM) to further emphasize the features of
foreground objects by constructing a visual-motion atten-
tion mechanism. We stack multiple MCMs in a coarse-to-
fine manner to facilitate the feature learning of foreground
objects and generate the final segmentation results.

3.2. Multi-Modality Co-Attention Gate

Recent flow-based methods [19, 53] explore the appear-
ance features of significant motion areas and utilize single-
directional attention guidance from motion to appearance,
which makes them rely on the dominant motion in the
scene and ignore inherent noises in optical flow maps or
images. In this paper, we propose a Multi-Modality Co-
Attention Gate (MCG) for attentive motion-appearance in-
teraction. We identify effective information from motion
and appearance, and integrate cross-modality features into
unified spatio-temporal feature representations.

1566



Appearance 
Feature

Motion Feature C Concatenation

×
Element-wise 
multiplication

M Mask+
Element-wise 
addition

D Decoder  Block gate valueg

BCE Loss 

g

Gated/Enhanced
Appearance Feature

Gated Motion
Feature

Decoder  Feature

A Attention Value

C

+×C Conv

MA

DConv

Conv
Avg & FC

& Sigmoid

×

Max & Conv
& Sigmoid

×

×

+

C DConv

Sigmoid
&Avg

Sigmoid
&Avg

Avg & FC
& Sigmoid

×

Max & Conv
& Sigmoid

×

Next Appearance 
Encoder Block

𝐹𝑖
𝑎

𝐹𝑖
𝑚

𝑔𝑖
𝑎

𝐺𝑖
𝑎

𝐺𝑖
𝑚𝑔𝑖

𝑚

𝐸𝑖

𝐺𝑖
𝑚

𝐸𝑖

𝐷𝑖−1

Figure 4. Frameworks of Multi-Modality Co-Attention Gate (left) and Motion Correction Module (right).

The framework of MCG is shown in Figure 4. Given
an appearance feature F a

i and a motion feature Fm
i at

level i, we first combine them using cross-channel concate-
nation and convolution operation for implicit interaction,
which aligns the motion feature with the appearance fea-
ture and helps to capture the relative relationship between
multi-modality features. Then we obtain the fused feature
H ∈ Rh×w×2 and spilt the channel-wise feature maps to
two sub-branches. We perform the sigmoid function and
global average pooling on each channel to obtain a pair of
co-attention scores gai and gmi , which reflect the importance
of each modality feature on the final result. Specifically, we
integrate the features from appearance and motion to for-
mulate gate function, which plays the role of modality-wise
attention and models the overall distribution of the contribu-
tions of multi-modality features in the network from global
perspective. The entire gate function can be formulated as

gi = Avg(σ(Conv(Cat(F a
i , F

m
i )))), (1)

where gi contains a pair of co-attention scores gai and gmi .
Avg(·) is the global average pooling. σ denotes sigmoid
function scaling the weight value into (0, 1). Conv(·) refers
to the convolution layer with output channel 2 and Cat(·) is
the concatenation operation among channel axis. In Fig-
ure 5, we give some visual examples of the co-attention
scores in various videos. The tagged values show the dispar-
ity of the contributions of images and corresponding optical
flow maps. A higher co-attention score indicates that the
corresponding modality feature contains effective informa-
tion for accurate segmentation. On the contrary, the modal-
ity feature with a lower score may contain noise that affects
performance.

We apply the co-attention scores to the corresponding
features to generate gated appearance feature Ga

i and gated
motion feature Gm

i ,

Ga
i = F a

i ∗ gai , Gm
i = Fm

i ∗ gmi , (2)

which can be viewed as suppressing redundant and mislead-
ing information and enhancing more effective information.
By assigning reliability scores for appearance and motion
features, the network would not rely too much on either
of the two information. It learns to adaptively exploit the
merits of appearance and motion information to obtain sat-
isfactory results. Considering the uncertainty of the pre-
dicted flow maps, we use channel-wise and spatial-wise at-
tentions on motion features to emphasize the motion areas.
Instead of treating all channels equally, we first build the
inter-channel relationship of Gm

i ,

M ′ = σ(MLPfc(Avg(Gm
i ))) ∗Gm

i , (3)

where MLPfc denotes fully connected layers. By doing
this, we strengthen the responses of multi-level attributes,
including texture, boundaries, color and semantics. Then
we utilize the inter-spatial relationship of M ′ to emphasize
the spatial locations of salient motion areas,

M ′′ = σ(MLPconv(Max(M ′)) ∗M ′, (4)

where MLPconv denotes convolution layers and Max(·) is
the global max pooling. We emphasize the features closely
associated with motion-salient objects, which can take ad-
vantage of more effective salient motion information and
temporal features. With the implicit interaction of appear-
ance and motion information, we can aggregate features
complementarily to obtain unified spatio-temporal feature
representations. We devise the aggregation operation as an
element-wise addition of the two modalities,

Ei = Ga
i +M ′′. (5)

Ei is fed to the next stage of the appearance branch and
exploited in the decoder for mask generation. In particu-
lar, Gm

i is applied to the decoder instead of the next stage
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Figure 5. Visual samples of the co-attention scores. We show var-
ious video frames and the corresponding flow maps, along with
the tagged scores to characterize the disparity of the contributions
in motocross-jump, blackswan, bmx-trees and soapbox.

of the motion branch, ensuring the effectiveness of motion
features during the long-term spread.

In order to capture the global features of primary objects,
we compute the similarity between temporal and spatial in-
formation on the last encoder block. Specifically, we cal-
culate a similarity matrix P to establish dense correspon-
dences between each pair of pixels from gated motion fea-
ture Gm

4 and enhanced appearance feature E4. Similarly
to [44], we combine the similarity matrix P with E4 to yield
the attention-enhanced feature map Ê4,

Ê4 = softmax(
1√
c
Gm

4 ⊙ ET
4 )⊙ E4, (6)

where ⊙ indicates matrix multiplication. Following [23,
40], we scale the dot product by 1√

c
, where c is the channel

size of Gm
4 and E4.

3.3. Motion Correction Module

With the adaptively multi-modality interaction by MCG,
we obtain effective spatial-temporal correspondence en-
coder features, which may be well-aligned with the pri-
mary foreground objects in frames. Considering the com-
plex scenes in video sequences, we unify the visual and mo-
tion significant areas to correct the intermediate features.
We employ Motion Correction Module (MCM) to leverage
appearance and motion features to supplement effective de-
tails and suppress the activation of non-salient regions. Be-
sides, we construct visual-motion attention to emphasize the
features of foreground objects by combining visual and mo-
tion cues. The details of MCM are shown in Figure 4.

Taking the gated motion feature Gm
i , enhanced appear-

ance feature Ei from MCG and the decoder feature Di−1

from the previous decoder block as input, MCM aims to
promote deep collaboration further to generate accurate re-
sults. When the previous decoding step is not available, we
use Ê4 as the decoder feature to provide global informa-
tion. One branch of the parallel branch aims to fuse visual
saliency and motion saliency to extract visual-motion atten-
tion. This operations could be formulated as

F = Cat(Up(Di−1), G
m
i ), (7)

where Up(·) is the upsampling operation with stride 2.
Then we exploit the inter-channel relationship of fused fea-
ture F to improve the channel response of the significant
information (visual or motion),

F ′ = σ(MLPfc(Avg(F ))) ∗ F. (8)

We select and strengthen the responses with higher signifi-
cance. Then we utilize the inter-spatial relationship to cal-
culate the comprehensive responses (visual and motion) of
each pixel to generate attention maps,

A = σ(MLPconv(Max(F ′)), (9)

where A refers to the visual-motion attention, which can be
viewed as salient areas to suppress the activation of back-
ground and facilitate the feature learning of foreground ob-
jects. We argue these attention maps should be consistent
with the final mask and equally weigh the cross-entropy
loss for both the intermediate attention maps and the final
prediction.

The other branch is designed as a residual structure,
which is used to enhance the details of Di−1 by encoder
features Ei with higher resolution. Finally, we combine A
with the fused feature to correct feature and add Di−1 to
obtain Di. The entire process can be formulated as

Di = Conv(Cat(Up(Di−1), Ei)) ·A+Di−1, (10)

where · refers to element-wise multiplication.

3.4. Training and Inference

Implementation details. Following the most state-of-
the-art flow-based methods, we take the ResNet-101 [8]
pre-trained on ImageNet [3] as backbone. Given the current
frame It and next frame It+1, we adopt PWCNet [35] to
formulate optical flow maps Ot. Unlike the training strat-
egy of other methods, we only use DAVIS-16 for training
without applying any image datasets [47, 2, 22].

Training. Given images and optical flow maps as input,
we train the model for 100 epochs with a mini-batch size as
4. We resize the images and flow maps to 384 × 384 for the
balance between speed and performance. We adopt stochas-
tic gradient descent (SGD) to train our AMC-Net, where the
momentum, weight decay, and initial learning rate are set as
0.9, 0.0005 and 0.001. We use the “poly” policy [24] with
the power of 0.9 to adjust the learning rate during train-
ing. We conduct data augmentation with random horizon-
tally flipping and random rotation to avoid over-fitting and
make the learned model more robust.

Inference. We use the same resolution 384 × 384 for
each testing video sequence without any data augmentation
and human interaction. Following the common protocol in
ZVOS, we employ the fully-connected CRF [17] to obtain
the final binary segmentation results.
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Method J mean ↑ F mean ↑ J&F ↑
Baseline 77.4 77.4 77.4

+ Multi-Modality Co-Attention Gate

w/o gate 78.5(+1.1) 78.9(+1.5) 78.7(+1.3)
w/ gate 80.7(+3.3) 81.3(+3.9) 81.0(+3.6)

+ Motion Correction Module

single MCM 81.1(+0.4) 81.7(+0.4) 81.4(+0.4)
3 stacked MCMs 81.9(+1.2) 83.9(+2.6) 82.9(+1.9)
5 stacked MCMs 83.0(+2.3) 84.3(+3.0) 83.7(+2.7)

+ Fully-Connected CRF

AMCpwc w/ crf 84.2(+1.2) 84.5(+0.2) 84.4(+0.7)

+ Better Quality Optical Flow

AMCraft w/ crf 84.5(+0.3) 84.6(+0.1) 84.6(+0.2)

Table 1. Ablation analysis of our proposed AMC-Net on DAVIS-
16, measured by the J mean, F mean and J&F . Red indicates
the performance improvement compared to the previous setting.
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Figure 6. Distribution of the co-attention scores at each stage.
With the convolution stage as the horizontal axis, we statistically
demonstrate the curves about ga/gm in (a), evaluating the rela-
tive importance between multi-modality features. Meanwhile, we
demonstrate the curves of co-attention scores gai and gmi in (b).

Runtime. For each test image of size 384 × 384 × 3,
the forward inference of our AMC-Net takes about 0.057s
with a single Nvidia 1080Ti GPU.

4. Experiments
4.1. Dataset and Metrics

To evaluate the performance of our proposed method
AMC-Net, we conduct comparison experiments on three
public challenging benchmark datasets, including DAVIS-
16 [31], Youtube-Objects [33] and FBMS [29].

DAVIS-16 consists of total 50 high-quality video se-
quences with 3455 densely annotated frames. We use 30
video sequences for training and the remaining 20 for test-
ing. Each frame contains pixel-precise annotation of only
one foreground object.

Youtube-Objects contains 126 video sequences of 10
object categories. The ground-truth in Youtube-Objects is
sparsely labeled in every ten frames.

FBMS is comprised of 59 video sequences, with only
720 frames sparsely annotated. Certain video sequences are
annotated with multiple target foreground objects.

Stage w/o 0 0-1 0-2 0-3 0-4

J&F 81.1 82.7 82.8 83.2 83.5 83.7

Table 2. Effectiveness of the Multi-Modality Co-Attention Gate
(MCG) at multiple encoder side on DAVIS-16.

Supervision 0 1 2 3 4 5

J&F 81.5 82.6 82.7 82.7 83.5 83.7

Table 3. Performance comparisons with different numbers of su-
pervision for visual-motion attention on DAVIS-16.

Model MATNet [53] AMC-Net AMC-Net AMC-Net

Flow Model PWCNet [35] FlowNetS [4] FlowNet2CS [10] PWCNet [35]
J&F 81.6 80.5 83.1 84.4

Table 4. Performance comparisons with different quality of optical
flow maps on DAVIS-16.

4.2. Ablation Study

In this section, we conduct ablation studies of AMC-Net
on the DAVIS-16. We add each component into the network
in turn to verify the effectiveness. In Table 1, we report de-
tailed results in terms of J mean, F mean and their aver-
age J&F . To analyze the contribution of each component,
we implement a simple baseline by employing bilateral en-
coder branches with performing a concatenation to integrate
the multi-modality cues (as shown in Figure 1 (a)).

Effectiveness of Multi-Modality Co-Attention Gate.
By adding MCG into the baseline, the model (“w/ gate”)
significantly outperforms the baseline by 3.6% on J&F .
To investigate the effect of our proposed gate function, we
implement a variant (“w/o gate”) without the gate func-
tion. This variant encounters a huge performance degrada-
tion (2.2% in J mean and 2.4% in F mean), which demon-
strates the effectiveness of the gate function. Furthermore,
we add MCG into the bilateral encoder branches in turn
from the first stage and use simple feature aggregation at
other stages. As shown in Table 2, MCG propagates more
valuable information while minimizing interference.

Effectiveness of Motion Correction Module. To ex-
plore the impact of the number of stacked MCMs on per-
formance, we first deploy a single MCM on the last decoder
block, which has an improvement of 0.4% on J&F . The
variant (“3 stacked MCMs”) with MCMs staked at last three
decoder blocks achieves gains of 1.2% and 2.6% on J mean
and F mean, respectively. When we use MCMs on all de-
coder blocks, the variant (“5 stacked MCMs”) achieves the
highest performance with a J mean score of 83.0. In ad-
dition, we explore the impact of the visual-motion atten-
tion mechanism on performance with five stacked MCMs.
In Table 3, we report the results of adding supervision for
visual-motion attention in turn from the first decoder block.

Effect of the quality of optical flow maps. To ver-
ify the effect of the optical flow quality on our full model,
we first implement a variant (AMCraft) by using the op-
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Model Operations Metrics J Metrics F J & FS D Y PP Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓
SFL [1] ✓ ✓ 67.4 81.4 6.2 66.7 77.1 5.1 67.1

LMP [37] ✓ ✓ ✓ 70.0 85.0 1.3 65.9 79.2 2.5 68.0
PDB [34] ✓ ✓ ✓ 77.2 90.1 0.9 74.5 84.4 -0.2 75.9
ARP [14] ✓ 76.2 89.1 7.0 70.6 83.5 7.9 73.4
AGS [43] ✓ ✓ ✓ 79.7 91.1 1.9 77.4 85.8 1.6 78.6

COSNet [26] ✓ ✓ ✓ 80.5 93.1 4.4 79.5 89.5 5.0 80.0
AGNN [41] ✓ ✓ ✓ 80.7 94.0 0.0 79.1 90.5 0.0 79.9
ANDiff [48] ✓ ✓ ✓ 81.7 90.9 2.2 80.5 85.1 0.6 81.1
MATNet [53] ✓ ✓* ✓ 82.4 94.5 5.5 80.7 90.2 4.5 81.6
EGMN [25] ✓ ✓ ✓ 82.5 94.3 4.2 81.2 90.3 5.6 81.9
WCS [50] ✓ ✓ 82.2 - - 80.7 - - 81.5

DFNet [52] ✓ ✓ ✓ 83.4 - - 81.8 - - 82.6
3DC-Seg [28] ✓ - - - - - - 82.2
3DC-Seg* [28] ✓ ✓ ✓ 84.3 95.7 7.4 84.7 92.6 5.2 84.5

Ours ✓ ✓ 84.2 96.0 3.5 84.5 94.4 2.2 84.4
Ours-raft ✓ ✓ 84.5 96.4 2.8 84.6 93.8 2.5 84.6

Table 5. Overall comparison with the state-of-the-arts on DAVIS-16 validation dataset. Use “✓” in the table to indicate whether the method
uses the static segmentation datasets (S), DAVIS-16 (D), Youtube-VOS (Y) or Post-processing (PP). The “✓*” in the Y-column indicates
that MATNet uses a subset of 12K frames selected from the training set of Youtube-VOS.

Model Aeroplane Bird Boat Car Cat Cow Dog Horse Motorbike Train Avg ↑
ARP [14] 73.6 56.1 57.8 33.9 30.5 41.8 36.8 44.3 48.9 39.2 46.2
FST [30] 70.9 70.6 42.5 65.2 52.1 44.5 65.3 53.5 44.2 29.6 53.8
SFL [1] 65.6 65.4 59.9 64.0 58.9 51.1 54.1 64.8 52.6 34.0 57.0

PDB [34] 78.0 80.0 58.9 76.5 63.0 64.1 70.1 67.6 58.3 35.2 65.4
FSEG [12] 81.7 63.8 72.3 74.9 68.4 68.0 69.4 60.4 62.7 62.2 68.4

MATNet [53] 72.9 77.5 66.9 79.0 73.7 67.4 75.9 63.2 62.6 51.0 69.0
AGS [43] 87.7 76.7 72.2 78.6 69.2 64.6 73.3 64.4 62.1 48.2 69.7

COSNet [26] 81.1 75.7 71.3 77.6 66.5 69.8 76.8 67.4 67.7 46.8 70.5
AGNN [41] 81.1 75.9 70.7 78.1 67.9 69.7 77.4 67.3 68.3 47.8 70.8
WCS [50] 81.8 81.2 67.6 79.5 65.8 66.2 73.4 69.5 69.3 49.7 70.9

EGMN [25] 86.1 75.7 68.6 82.4 65.9 70.5 77.1 72.2 63.8 47.8 71.4

Ours 78.9 80.9 67.4 82.0 69.0 69.6 75.8 63.0 63.4 57.8 71.1

Table 6. Overall comparison with the state-of-the-arts on Youtube-Objects dataset. We report the per-category performance and the average
result of the 10 categories with J mean.

tical flow maps generated by a more accurate network
RAFT [36]. Compared to AMCpwc, AMCraft has an
improvement of 0.3%, 0.1% in terms of the J mean and
F mean, respectively. Furthermore, we implement several
variants to use the optical flow maps in slightly inferior
quality calculated by FlowNetS [4] and FlowNet2CS [10].
As shown in Table 4, all of the network variants produce
competitive results, which demonstrates that our proposed
model can benefit from optical flow of different quality and
adaptively fuse multi-modality features.

Effect of optical flow quality on co-attention scores.
In order to qualitatively measure the effect of optical flow
quality on co-attention scores, we calculate the average
scores of appearance and motion features from AMCpwc

and AMCraft. As shown in Figure 6 (a), we compute
ga/gm to evaluate the relative importance between ap-

pearance and motion features. For both AMCpwc and
AMCraft, the high-level ratios ga/gm are significantly
smaller than the low-level ones. The relative importance
of optical flow maps gradually increases with the promo-
tion of levels. More importantly, compared to AMCpwc,
AMCraft gets lower ratios at low-level. In Figure 6 (b), we
statistically demonstrate the curves of co-attention scores
gai and gmi . It can be seen that the high-level motion
features contribute more effective guidance than low-level
ones. This trend is just the opposite of the appearance fea-
tures. Since AMCraft uses flow maps with more precise
image boundary details, its gate values corresponding to
low-level motion features significantly increase. It can be
seen that AMC-Net can adaptively and fully combine the
merits of appearance and motion features.
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Figure 7. Qualitative results on three video sequences from DAVIS-16. From top to bottom: motocross-jump, dance-twirl, horsejump-high.

Method NLC [5] FST [30] SFL [1] ARP [14]

J mean ↑ 44.5 55.5 56.0 59.8

Method MSTP [9] FSEG [12] IET [20] OBN [21]

J mean ↑ 60.8 68.4 71.9 73.9

Method PDB [34] COSNet [26] MATNet [53] Ours

J mean ↑ 74.0 75.6 76.1 76.5

Table 7. Overall comparison with the state-of-the-arts on FBMS.
We use the mean region similarity (J mean) to measure the seg-
mentation performance.

4.3. Quantitative and Qualitative Results

Evaluation on DAVIS-16. We compare the performance
of our proposed method with the state-of-the-art methods.
In Table 5, we list comparison results with ZVOS methods.
We list the datasets widely used in existing methods, in-
cluding DAVIS-16 [31], Youtube-VOS [46], and static seg-
mentation datasets (DUT [47], MSRA10k [2], COCO [22],
etc). Besides, we provide the indicator of post-processing
(PP) in the existing methods. Compared with the exist-
ing ZVOS methods, our model outperforms the best perfor-
mance 3DC-Seg [28] by 0.1% on J&F . In addition, com-
pared to our proposed method, 3DC-Seg uses pre-trained
weights from much larger video datasets IG-65M [7] and
Kinetics [15] (65.8M video clips), and further fine-tunes
jointly on three datasets [22, 46, 31] to yield the best score.

Evaluation on Youtube-objects. Table 6 illustrates the
results of all compared methods for different categories.
Our proposed method is comparable with recent ZVOS
methods AGS [43], AGNN [41] and WCS [50] across all
categories. Since memory mechanism can better handle
static objects in video sequences, EGMN [25] achieves a
higher J&F score (0.3%) on YTB-Objects.

Evaluation on FBMS. Multiple target objects labeled
in the video sequence share a similar appearance but have
different motion patterns (moving or non-moving), which
weakens the role of optical flow in the corresponding scene.
In order to deal with the above problem, we design a variant
by adding a separate FCN-like decoder that uses the gated
appearance features from MCG. We train the entire network

variant on DAVIS-16 and combine two decoder branches to
produce the final results. Table 7 shows that our proposed
method performs better than the state-of-the-art methods.

Qualitative results. As shown in Figure 7, we illustrate
the segmentation results of our proposed method on three
video sequences. These three video sequences contain some
tough challenges: Deformation, Scale-Variation, etc. The
qualitative results show that our method can cope well with
the tough challenges posed by the tricky motion conditions
in the video sequences and generate precise segmentation
masks with well-defined details.

5. Conclusion
In this paper, we propose an Attentive Multi-Modality

Collaboration Network for ZVOS, which adopts a novel
mechanism to achieve deep collaboration between appear-
ance and motion. AMC-Net adaptively fuses robust in-
formation from multi-modality features and promotes their
collaboration in two stages. We first adopt multi-level MCG
to balance the contributions of multi-modality features at
each stage and suppress redundant and misleading informa-
tion, propagating valid spatio-temporal feature representa-
tions while minimizing interference. Then we adopt five
stacked MCMs with a visual-motion attention mechanism
to emphasize the features of foreground objects utilizing the
spatio-temporal correspondence between appearance and
motion cues. The experimental results on three benchmarks
demonstrate that AMC-Net learns from fewer data and out-
performs existing competitors. We yield a neat yet effective
framework with a novel strategy for the interaction of mo-
tion and appearance information, which will generalize well
to ZVOS in complex scenes.
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