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Abstract

Spotting objects that are visually adapted to their sur-
roundings is challenging for both humans and AI. Con-
ventional generic / salient object detection techniques are
suboptimal for this task because they tend to only discover
easy and clear objects, while overlooking the difficult-to-
detect ones with inherent uncertainties derived from indis-
tinguishable textures. In this work, we contribute a novel
approach using a probabilistic representational model in
combination with transformers to explicitly reason under
uncertainties, namely uncertainty-guided transformer rea-
soning (UGTR), for camouflaged object detection. The
core idea is to first learn a conditional distribution over
the backbone’s output to obtain initial estimates and as-
sociated uncertainties, and then reason over these uncer-
tain regions with attention mechanism to produce final
predictions. Our approach combines the benefits of both
Bayesian learning and Transformer-based reasoning, al-
lowing the model to handle camouflaged object detection
by leveraging both deterministic and probabilistic informa-
tion. We empirically demonstrate that our proposed ap-
proach can achieve higher accuracy than existing state-
of-the-art models on CHAMELEON, CAMO and COD10K
datasets. Code is available at https://github.com/
fanyang587/UGTR.

1. Introduction

Camouflaged object detection (COD), also known as de-
camouflaging, aims to discover the hidden targets from a
given scene. It is not only an important scientific topic
on understanding the relationship between visual perception
and camouflage, but also can facilitate many real-life appli-
cations, such as image synthesis [4], species discovery [41]
and medical image analysis [13]. However, body colours,
patterns and other morphological adaptations of camou-
flaged object(s) would significantly decrease their probabil-
ity of being detected, recognized or targeted, making de-
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Figure 1: Our idea is to consider object decamouflaging
as mixtures of probabilistic-deterministic procedures. The
probabilistic representational model is used to capture un-
certainty (dashed line), and the Transformer-based model is
learned to exploit context for overcoming ambiguity guided
by the mined uncertainty (solid line).

camouflaging difficult for both humans and machines.
Over decades, researchers and scientists have been try-

ing to build machine intelligence that is capable of see-
ing through camouflage [45, 49]. Early attempts on COD
used handcrafted features in an unsupervised way, e.g.,
colour and intensity features [21], 3D convexity [40] and
motion boundary [18]. Recently, convolutional neural net-
works (CNNs) have been used to address the COD prob-
lem. To solve the ambiguities caused by indistinguish-
able textures, unlike generic / salient object detection mod-
els [9,16,31,32,35,43,59,61], current COD approaches usu-
ally distill extra features from the shared context (e.g., fea-
tures for identification [12], classification [29] and bound-
ary detection [57]) and incorporate them for joint represen-
tation learning via cross-modality fusion techniques. De-
spite their progress, none of these approaches has explicitly
taken into account the uncertainties caused by camouflage
strategies, making the representation learning for COD not
well-targeted and even easily misguided, not to mention
the negative effects of the inherent modality difference of
auxiliary- and main-task features. Empirically, we find that
existing techniques cannot properly identify those true mas-
ters of camouflage which hide their outlines perfectly.

For better decamouflaging performance, we inject
Bayesian learning into Transformer-based reasoning, and
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propose the Uncertainty-Guided Transformer Reasoning
(dubbed as UGTR) as a new learning paradigm. That
is, we first obtain initial estimates and quantify the cor-
responding uncertainties with the probabilistic representa-
tional model [23, 24, 51]. Then, we reason about con-
text to infer the difficult-to-detect (uncertain) regions with
transformers [7, 50]. Therefore, as illustrated in Figure 1,
our UGTR converts the learning of the deterministic map-
ping [12, 29, 55, 57] to a more complicated, uncertainty-
guided context reasoning procedure. We expect that our
carefully designed UGTR will be able to reason with con-
text information under conditions of uncertainty, and reli-
ably infer the concealed objects by leveraging both deter-
ministic and probabilistic information.

More specifically, our UGTR is composed of three main
components: i) uncertainty quantification network (UQN),
ii) uncertainty-induced transformer (UGT) and iii) auxil-
iary prototyping transformer (PT). To obtain uncertainty
maps, we draw inspiration from Bayesian probability the-
ory [1, 23, 25, 26, 62] and design our UQN as a probabilis-
tic representational model, which learns probability distri-
butions rather than pixel estimates. We draw K samples
from the learned distributions to produce initial estimates
and measure the uncertainties. Then, our UGT comprehen-
sively exploits richer context to infer the difficult-to-detect
(uncertain) regions via attention mechanism. Moreover, to
get the transformer focused on uncertain regions, we in-
troduce an uncertainty-guided random masking algorithm
(UGRM) that automatically assigns higher probability of
being masked out to uncertain regions during training. Ac-
cordingly, the transformer is trained to be efficient at in-
ferring and recovering the content in uncertain regions by
exploiting context information. Last but not least, an aux-
iliary transformer, called Prototyping Transformer (PT), is
plugged to assist UGT in mining higher-level semantics.
We design multiple loss functions for our UGTR, making all
components (i.e., UQN, UGT and PT) being learned jointly
from the raw data.

Our UGTR achieves state-of-the-art (SOTA) perfor-
mance on the CHAMELEON [46], CAMO [29] and
COD10K [12] without requiring any extra information (e.g.,
fixation or boundary). Besides, by explicitly modeling un-
certainties, our UGTR also increases the interpretability of
COD models and facilitates further analysis and study of
visual camouflage. Our contributions are three-fold:

• A new learning paradigm for camouflaged object de-
tection. To our knowledge, this is the first attempt to
introduce Bayesian learning into Transformer-based rea-
soning for camouflaged object detection. It converts
the deterministic mapping process of conventional COD
models to an uncertainty-guided context reasoning pro-
cedure. By explicitly quantifying uncertainty that carries
crucial information, it enables well-directed context rea-

soning to overcome all difficulties in camouflage analysis.
• A novel uncertainty-guided transformer reasoning

model for camouflaged object detection. We present the
uncertainty-guided transformer reasoning model (UGTR)
that integrates all novel components, such as uncertainty
quantification network (UQN), prototyping transformer
(PT) and uncertainty-guided transformer (UGT), within
a unified, end-to-end framework for camouflaged object
detection. It should be noted that our proposed UGRM al-
gorithm serves as a hard-example-mining module, which
uses uncertainty guidance to enhance UGT’s context rea-
soning capability during training.

• State-of-the-art results on widely-used bench-
marks. Our fully-equipped UGTR achieves SOTA
performance on a variety of benchmarks, including
CHAMELEON [46], CAMO [29] and COD10K [12], and
outperforms existing COD models by a large margin.

2. Related Work
Camouflaged Object Detection. Camouflaged object de-
tection (COD), as a task of distinguishing the camouflaged
target from its background, has been put into wide appli-
cation. Pioneer works use handcrafted features to discrimi-
nate objects from the background in an unsupervised man-
ner, such as colour and intensity features [21], 3D convex-
ity [40], and motion boundary [18]. Recently, deep learn-
ing based approaches try to address the COD problem in a
data-driven manner and have achieved impressive results in
identifying / detecting camouflaged objects. To better han-
dle indistinguishable textures (or boundaries), the existing
approaches focus on exploring auxiliary information, e.g.,
fixations [36], boundaries [57], image-level labels [12, 29],
for joint representation learning. Unlike these methods, we
combine the benefits of Bayesian learning and Transformer-
based reasoning as a new learning paradigm. Our approach
reformulates the mainstream deterministic mapping process
into a more reliable, uncertainty-guided context reasoning
procedure, which sets new records on all benchmarks.
Bayesian Deep Learning. Bayesian neural networks
(BNN) [1, 15, 24, 37, 44] are well-known for modeling un-
certainties in neural networks. The key idea of BNN is
to learn the distribution over network weights [1] or fea-
tures [56] instead of outputing a single fixed value. Notable
works on Bayesian approaches for modern deep learning in-
clude [1, 15, 24, 37, 44]. Recently, Gal et.al. [14, 15] have
cast dropout as approximate Bayesian inference over net-
work weights. Kendall et.al. [23] show that a posterior dis-
tribution of pixel-class labels can be generated by Monte
Carlo sampling with dropout at test time. These techniques
have been successfully applied to modeling uncertainty for
semantic segmentation / scene parsing [19, 23], person re-
identification [56] and medical image analysis [28]. In-
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Figure 2: An overview of our proposed uncertainty-guided transformer reasoning model (UGTR). Our UGTR includes
three main components, i.e., UQN, PT and UGT, marked by (a)-(c). Please refer to § 3 for more details. Best viewed in color.

spired by these works, we build our uncertainty quantifi-
cation network (UQN) as a probabilistic representational
model to capture the uncertainty for camouflaged object de-
tection. To the best of our knowledge, this is the first at-
tempt to explicitly model uncertainty and fully leverage it
to improve the reliability of camouflaged object detection.
Visual Transformers. Transformer was first introduced
by [50] to handle sequential data in the field of machine
translation. Recent works have tried to apply transformers
to various vision tasks, such as object detection [2, 5, 66],
image recognition [8,47], multi-object tracking [39,48], se-
mantic segmentation [64], and human pose and mesh recon-
struction [30]. These works have proven that images can
be learned in a sequence-to-sequence manner. Importantly,
the random masking technique enforces the transformer to
reason over context for inferring the masked contents with
attention mechanism (i.e., multi-head attention), largely im-
proving the model’s reasoning power. In this paper, we pro-
pose two novel transformers — uncertainty-guided trans-
former (UGT) and prototyping transformer (PT). UGT rea-
sons over context to achieve pixel-wise predictions while
PT works as an auxiliary transformer to mine high-level se-
mantics. Importantly, a novel uncertainty-guided random
masking (UGRM) algorithm is introduced which works as a
bridge connecting our uncertainty quantification and trans-
former reasoning so that UGT is learned to focus on difficult
(uncertain) regions during training.

3. Our Approach
3.1. Preliminaries

Task Setup and Notations. Following [12, 29, 36, 57], we
treat COD as a class-independent, pixel-wise segmentation
task. Formally, let I ∈ RH×W×3 and C ∈ RH×W×1 de-
note the input image and output camouflage map, respec-
tively. Given a large collection of such pairs {Ii,Ci}Ni=1,

our task is to learn a mapping functionFΘ parameterized by
weights Θ that can correctly transfer the novel input to its
corresponding camouflage map. For each pixel (position)
po ∈ [1, H ×W ], the estimated score cpo ∈ [0, 1] reflects
the COD model’s prediction, where a score of ‘1’ indicates
that it belongs to the camouflaged objects and vice versa.
Our Idea. Unlike prior arts [12,29,36,57] that simply con-
sider the mapping FΘ as a deterministic process, we for-
mulate it as the mixtures of probabilistic-deterministic pro-
cedures. We argue that the decamouflaging process, even
for human perception, is usually full of uncertainties, and
thus modeling the COD problem requires the use of both
probabilistic and deterministic information for reasoning.
Approach Overview. To verify our idea, we present a
novel Uncertainty-Guided Transformer Reasoning model
(UGTR). As shown in Figure 2, UGTR includes three ma-
jor components:

• Uncertainty Quantification Network (§ 3.2). Our un-
certainty quantification network (UQN), denoted as Fθ,
contains two parts: feature extractor (backbone) Fθ1 and
probabilistic module Fθ2. For Fθ1, it takes the RGB im-
age I ∈ RH×W×3 as input, and produces feature embed-
dings F ∈ Rh×w×c: I Fθ1→ F. Then, Fθ2 models the vari-
ance of backbone’s output as a measure of uncertainty.
Following [24, 56], we model the pixel-wise distribution
as Gaussian parameterized by mean map µ ∈ Rh×w×1

and variance map σ ∈ Rh×w×1: F Fθ2→ (µ,σ), and draw
K samples (camouflage maps) from the distributions to
produce the uncertainty map.

• Prototyping Transformer (§ 3.3). Our prototyping
transformer (PT) Fδ works as an auxiliary module to
learn and reason over higher-level semantics. It trans-
forms F to t semantic prototypes: F

Fδ→ X, where
X = {x1, . . . , xt} ∈ Rt×c denotes the set of the learned
prototypes. We expect that our comprehensively mined
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Figure 3: Illustration of UQN. UQN works as a probabilis-
tic model for uncertainty quantification, which is composed
of a backbone network and a probabilistic module. Please
refer to § 3.2 for details.

X can be used to assist final reasoning.
• Uncertainty-Guided Transformer (§ 3.4). Finally, our

uncertainty guided transformer (UGT) Fφ takes F, X

and U as inputs, and produces the refined features F̆ ∈
R(h×w)×c for COD in a sequence-to-sequence manner:

(F,X,U)
Fφ→ F̆. To enhance the context reasoning capa-

bility, especially for difficult (uncertain) regions, we in-
troduce an uncertainty-guided random masking algorithm
(UGRM). It is embedded in UGT and guided by U to en-
sure the difficult-to-detect regions are easier to be masked
out during training. Therefore, UGT is trained to enhance
its capability of inferring the uncertain information (by
fully exploring contextual features).

All components above work together to fully reason over
the context and deliver the final representation F̆ so that the
entire decamouflaging process involves both probabilistic
and deterministic procedures. To achieve the final predic-
tions, F̆ can be easily mapped to C with a readout function
Fout: F̆

Fout→ C, which is composed of a reshape layer,
a 1 × 1 convolutional layer and upsampling layer. In the
following sections, we will detail each major component.

3.2. Uncertainty Quantification Network

Distribution Modeling. We build our uncertainty quantifi-
cation network (UQN)Fθ as a probabilistic representational
model to measure uncertainty. Therefore, in this stage, what
Fθ delivers for each pixel (e.g. the pixel p) is a distribu-
tion parameterized by mean µp and variance σp instead of a
scalar (e.g., a score). Following [23], we model the distribu-
tion of outputs at each pixel as Gaussian. That is to say we
think of our UQN’s prediction as a random variable. We ex-
pect that the camouflage score at the position p can be drawn
from the learned distribution: cp ∼ N (µp,σp), where µp
and σp are produced by UQN. As already observed by ex-
isting works [15, 23, 24, 56], when we use random sample
to train Fθ, the error will not be propagated back from the

output. To solve this problem, inspired by [26], we decom-
pose the direct sampling operation into a trainable part and
a random part. Specifically, we first draw a sample εp from
the standard Gaussian distribution N (0, I) randomly, i.e.,
εp ∼ N (0, I), and then obtain the sample by computing
µp + εpσp. By doing so, the gradients can be propagated
backward to optimize the parameters θ.
Network Architecture. To instantiate the formulation
above by neural network, we design our UQN by building
two separate branches upon the underlying feature extractor
(backbone) for µ and σ, respectively. As shown in Figure 3,
our UQN includes two major parts: backboneFθ1 and prob-
abilistic module Fθ2. Concretely, given the input image
I ∈ RH×W×3, the backbone Fθ1 is employed to obtain c-
dimensional feature embeddings: F = Fθ1(I) ∈ Rh×w×c.
Then, a two-branch probabilistic module Fθ2 further trans-
fers F to µp and σp:

µ = Fθ2µ(F), σ = Fθ2σ (F), (1)

where µ ∈ Rh×w×1 and σ ∈ Rh×w×1 denote the mean
map and variance map, respectively. Moreover, a standard
Gaussian distributionN (0, I) is attached to make the entire
process end-to-end differentiable.
Distribution Learning Loss LDLL. To train our UQN,
we design the following loss function LDLL, which is
a weighted combination of a standard BCE loss and a
Kullback-Leibler (KL) divergence [26]:

LDLL = LBCE(c(k),Cgt) + η · D(N (µ,σ) ‖ N (0, I))
(2)

where η means the combination weight which is set to be
0.1 to emphasize model’s prediction, c(k) means a sample
randomly drawn from the learned distribution and Cgt de-
notes the ground truth 1.
Uncertainty Quantification. To measure pixel-wise uncer-
tainty, we can sample K initial camouflage maps from the
learned distribution, denoted as Cinit = {c(1), . . . , c(K)}.
According to Bayesian probability theory [1,23,25,26], we
can simply treatCinit as empirical samples from an approx-
imate predictive distribution and measure how confident the
model is in its prediction by computing the variance:

U = Norm(Var(Cinit)), (3)

where U ∈ Rh×w×1 means the uncertainty map, Norm(·)
is the mean-max normalization operation and Var(·) de-
notes the operation of computing variance.

3.3. Prototyping Transformer

In addition to the uncertainty, the high-level, global con-
text information also plays a critical role in decamouflag-
ing. However, for the task of camouflaged object detection,

1 To promote diversity, we only draw one example to compute the loss.
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Figure 4: Illustration of PT and UGT. PT captures high-
level semantics while UGT reasons over underlying features
to learn the final representations for COD. For brevity, posi-
tional encodings are not included. Please refer to § 3.3 and
§ 3.4 for details.

the conventional techniques, such as global average pool-
ing, are not reliable due to texture similarities between cam-
ouflaged objects and the background. Thus, we tackle this
problem using metric learning, and design a prototyping
transformer (PT), denoted as Fδ , to obtain representative
and discriminative prototypes X = {x1, . . . , xt} ∈ Rt×c.

Generally, our PT is implemented in a visual transformer
framework [8,47], as shown in Figure 4 (Top). The novelty
of PT lies in its prototyping procedure under the supervision
of a prototyping loss LPL. Importantly, unlike ACT [63]
that groups the features using Locality Sensitive Hashing
(LSH) to reduce the computation cost, our PT clusters all
features in an iterative manner to overcome ambiguity.
Prototyping. Since our PT is based on transformer ar-
chitecture, given feature embeddings F ∈ Rh×w×c, we
first collapse the spatial dimensions of F into one dimen-
sion, i.e., a c × hw feature map, and encode the posi-
tional information with fixed positional encodings [2] (de-
noted as PF = {pf 1, . . . , pfhw}). Then, let us denote
V = {v1, . . . , vt} as a set of t learnable visual atoms
stored in an external memory. Inspired by the expecta-
tion–maximization (EM) algorithm [6], we employ an iter-
ative strategy to get the initial prototypes Xinit. That is, we
first fix Xinit (initially, we set X(0)

init = V), and compute
the affinity map A by:

Ap,t =
eκx

T
t fp∑T

t=1 e
κxT
t fp

, (4)

where fp ∈ F denotes the p-th feature sample, xt ∈ X
means the t-th prototype, and κ denotes the concentration
parameter. Then, we fix F and update the prototypes by:

xt =

∑hw
p=1 Ap,tfp∑hw
p=1 Ap,t

. (5)

The two operations above (Eq. 4 and Eq. 5) will be repeated
for multiple times to find the cluster centroids as Xinit. It
should be noted that the visual atoms V are also optimized
through back-propagation training.
Multi-Head Self-Attention. After the previous step, we
can get t initial prototypes Xinit which represent the global
context of the given scene. To make these prototypes more
discriminative, we follow [66] to use multiple transformer
blocks 2 for representation enhancement based on multi-
head (self) attention:

Qi = XinitWQ
i ,Ki = XinitWK

i , Vi = XinitWV
i ,

Headi = Attention(Qi,Ki, Vi),

MH(Q,K, V ) = Concact(Head1, . . . ,HeadM ),

(6)

whereWQ
i ,WK

i andWV
i are learnable parameters for the

i-th head, and Qi, Ki and Vi denote the query, key, and
value features, respectively. M = 8 heads are used in our
implementation. Note that we take into account the posi-
tional information of each prototype by re-using the affinity
map A to compute prototype-level postion features PX by:

pxt =

∑hw
p=1 Ap,tpf p∑hw
p=1 Ap,t

. (7)

The encoded prototype positions are added to the input of
each multi-head self attention layer to learn the final pro-
totype features X ∈ Rc×T which carry important global
semantic information.
Prototyping Loss LPL. We find it helpful to use an auxil-
iary loss function in PT during training to push prototypes
away from each other. Therefore, we define the following
prototyping loss LPL:

LPL =
∑

xi,xj∈X

max((m− dist(xi, xj)), 0), (8)

where m is a pre-set threshold. LPL works as an unsuper-
vised objective function to train our PT.

3.4. Uncertainty-Guided Transformer

Up to this point, we have obtained the initial features
F (§ 3.2), uncertainty (difficulty) map U (§ 3.2) and the
discriminative prototypes X (§ 3.3). Now, we want to use
all these information to learn final representations for COD.
To achieve this goal, we design a novel module, i.e., the
Uncertainty-Guided Transformer (UGT), to make full use
of all information and deliver the final representations. Gen-
erally, as shown in Figure 4 (Bottom), our UGT is in com-
pliance with the standard architecture of the transformer,
which transforms initial F using multi-head self- and cross-
attention mechanisms to process features F̆. Formally, our

2 Each transformer block consists of a multi-head self-attention module and
a feed forward network (FFN).

4150



CHAMELEON [46] CAMO-Test [29] COD10K-Test [12]
Methods Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓
2017 FPN † [31] 0.794 0.783 0.590 0.075 0.684 0.677 0.483 0.131 0.697 0.691 0.411 0.075
2017 MaskRCNN † [16] 0.643 0.778 0.518 0.099 0.574 0.715 0.430 0.151 0.613 0.748 0.402 0.080
2017 PSPNet † [58] 0.773 0.758 0.555 0.085 0.663 0.659 0.455 0.139 0.678 0.680 0.377 0.080
2018 UNet++ † [65] 0.695 0.762 0.501 0.094 0.599 0.653 0.392 0.149 0.623 0.672 0.350 0.086
2018 PiCANet † [34] 0.769 0.749 0.536 0.085 0.609 0.584 0.356 0.156 0.649 0.643 0.322 0.090
2019 MSRCNN † [20] 0.637 0.686 0.443 0.091 0.617 0.669 0.454 0.133 0.641 0.706 0.419 0.073
2019 PoolNet † [33] 0.776 0.779 0.555 0.081 0.702 0.698 0.494 0.129 0.705 0.713 0.416 0.074
2019 BASNet † [42] 0.687 0.721 0.474 0.118 0.618 0.661 0.413 0.159 0.634 0.678 0.365 0.105
2019 PFANet † [60] 0.679 0.648 0.378 0.144 0.659 0.622 0.391 0.172 0.636 0.618 0.286 0.128
2019 CPD † [54] 0.853 0.866 0.706 0.052 0.726 0.729 0.550 0.115 0.747 0.770 0.508 0.059
2019 HTC † [3] 0.517 0.489 0.204 0.129 0.476 0.442 0.174 0.172 0.548 0.520 0.221 0.088
2019 EGNet † [59] 0.848 0.870 0.702 0.050 0.732 0.768 0.583 0.104 0.737 0.779 0.509 0.056
2019 ANet-SRM [29] ‡ ‡ ‡ ‡ 0.682 0.685 0.484 0.126 ‡ ‡ ‡ ‡
2020 MirrorNet [55] ‡ ‡ ‡ ‡ 0.741 0.804 0.652 0.100 ‡ ‡ ‡ ‡
2020 PraNet [13] 0.860 0.898 0.763 0.044 0.769 0.833 0.663 0.094 0.789 0.839 0.629 0.045
2020 SINet [12] 0.869 0.891 0.740 0.044 0.751 0.771 0.606 0.100 0.771 0.806 0.551 0.051
UGTR (ours) 0.888 0.918 0.796 0.031 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035

Table 1: Quantitative results on different benchmark datasets. ‘†’ means SOTA methods for GOD and SOD. ↑ (or ↓)
indicates that the higher (or the lower) the better. The best scores are highlighted in bold.

UGT Fφ takes F ∈ Rc×hw, U ∈ R1×hw and X ∈ Rc×T

as inputs and produces F̆ ∈ Rc×hw as output. The main
difference from PT is that we feed the uncertainty-aware
features FU = F ⊗ (1 − U) to transformers (⊗ element-
wise multiply) and add a cross-attention layer in each trans-
former block so that X can be incorporated for representa-
tion learning:

Q̆i = FUWQ̆i , K̆i = XWK̆i , V̆i = XW V̆i ,

˘Headi = Attention(Q̆i, K̆i, V̆i),

M̆H(Q,K, V ) = Concact( ˘Head1, . . . , ˘HeadM ),

(9)

where Q̆i, K̆i and V̆i are learnable parameters. The high-
level semantics are encoded by the cross-attention layer to
assist in pixel-wise representation learning.
Uncertainty-Guided Random Masking. We introduce an
uncertainty-guided random masking (UGRM) algorithm to
induce our UGT to focus on uncertain (difficult) regions
during training. Instead of adopting the widely-used ran-
dom masking technique, we assign higher probabilities to
those difficult-to-detect regions to be masked out during
training guided by U. Formally, let us denote R ∈ R1×hw

as a random probability map, where rp ∈ [0, 1]. We mask
out those features fp ∈ FU whose associated uncertainty
score up is higher than rp: up>rp. UGRM is more reli-
able than the widely-used random masking strategy [50],
because it increases the difficulty and diversity of training
samples. With this means, the uncertainty information has
been also incorporated into the learning procedure, enabling
our UGT to better deal with difficult (uncertain) regions.

Finally, the output of UGT (F̆) is mapped to final pre-
dictions by using a simple readout function Fout, which is
composed of a reshape layer, a 1×1 convolutional layer and
upsampling layer. The loss function for our fully-equipped
UGTR is a combination of multiple loss functions:

LUGTR = LDLL + ηLPT + ωLBCE (10)

where η and ω mean the combination weights, and LBCE

is the standard BCE loss for UGT.

4. Experiments

4.1. Experimental Settings

Dataset. Three public benchmark datasets are used for
performance evaluation. CHAMELEON [46] is a small
dataset, which is a collection of 76 high-resolution images
with pixel-level labels. CAMO [29] includes a total of
2, 500 images of both naturally and artificially camouflaged
objects under 8 categories. COD10K [12] is the most chal-
lenging COD dataset as it includes 10, 000 images with 10
super-classes and 78 sub-classes, where both image-wise
level and pixel-wise level annotations are provided. In our
approach, only the pixel-wise labels are used for model
training. Following [12], we build our train set as a
combination of the train sets from CAMO and COD10K.
Evaluation Metric. Following [12,29,36], four commonly-
agreed evaluation metrics are used in our experiments:
mean absolute error (MAE), mean E-measure (Eφ) [11],
mean S-measure (Sα) [10] and F-measure (Fwβ ) [38].
Training Settings. During training, the underlying back-
boneFθ1 is initialized by ResNet-50 [17] pre-trained on Im-
ageNet [27], and the remaining modules (i.e., probabilistic
module Fθ2, prototyping transformer Fδ and uncertainty-
guided transformer Fφ) are randomly initialized. Follow-
ing regular practice [12,29], we augment each training sam-
ple with random cropping, left-right flipping and scaling in
the range of [0.75, 1.25]. We train our UGTR model using
the Stochastic Gradient Descent (SGD) with ‘poly’ learning
rate policy: lr = base lr× (1− iter

maxiter
)power. We empir-

ically set the base learning rate base lr to 10−7 and power
to 0.9. Note that, our UGRM is only used in the training
phase, which enhances UGT’s capability of reasoning over
context to better handle the ambiguity in uncertain regions.
Testing Settings. Once trained, our UGTR can be applied
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Candidate CHAMELEON [46] CAMO-Test [29] COD10K-Test [12]
ResNet50 UQN UGT PT Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ Fwβ ↑ M ↓

4 0.767 0.799 0.535 0.094 0.742 0.786 0.538 0.130 0.729 0.692 0.436 0.079
4 0.775 0.837 0.543 0.085 0.728 0.806 0.507 0.126 0.730 0.738 0.417 0.072
4 4 0.833 0.891 0.762 0.038 0.747 0.836 0.643 0.098 0.789 0.826 0.620 0.042
4 4 4 0.888 0.918 0.796 0.031 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035

Table 2: The ablation results of our proposed approach on CHAMELEON, CAMO test and COD10K test.

CAMO-Test [29] COD10K-Test [12]
Method Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ F

w
β ↑ M ↓

UGT + GAP 0.735 0.823 0.633 0.101 0.776 0.815 0.613 0.050
UGT + MSP [58] 0.758 0.841 0.642 0.098 0.792 0.832 0.631 0.041
UGTR (UGT + PT) 0.771 0.840 0.669 0.088 0.811 0.842 0.651 0.037
UGTR (UGT + PT + LPL) 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035

Table 3: The comparison using different methods for cap-
turing high-level semantics. ‘GAP’ means the global aver-
age pooling method, ‘MSP’ means the multi-scale pooling
strategy, ‘PT’ denotes our prototyping transformer model.

CAMO-Test [29] COD10K-Test [12]
Method Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ F

w
β ↑ M ↓

UGTR w/o Mask 0.761 0.842 0.646 0.095 0.797 0.836 0.640 0.040
UGTR w/ RM [50] 0.775 0.849 0.655 0.092 0.805 0.840 0.651 0.039
UGTR w/ UGRM 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035

Table 4: The ablation results of different masking algo-
rithms on CAMO test and COD10K test.

to unseen images. It should be noted that the embedded
UGRM is removed in this stage. Both uncertainty map and
camouflage map can be generated by our model.

4.2. Main Results

We compare UGTR with previous SOTA methods in-
cluding top-ranked generic object detection (GOD) and
salient object detection (SOD) approaches and recently pub-
lished methods for COD.
CHAMELEON [46]. In Table 1 (left), we compare our
UGTR against 14 SOTA approaches on four commonly-
used metrics. The results show that GOD and SOD mod-
els tend to perform worse than customized COD models.
It is because conventional generic / salient object detec-
tion techniques are suboptimal to discover difficult-to-detect
objects. Moreover, although the existing COD approaches
achieve promising results, our UGTR surpasses all the com-
petitors by a large margin. For instance, UGTR outperforms
SINet [12] in terms of MAE, mean S-measure [10], mean
E-measure [11], and weighted F-measure [38] by 29.5%,
2.2%, 3.0% and 7.6%, respectively. Such a performance
gain proves the importance of reasoning over the uncertain
regions. Even without using any extra information, it can
dramatically boost reliability and overall performance.
CAMO [29]. The quantitative comparison with 16 SOTA
approaches on CAMO test is summarized in Table 1
(middle). We find that our UGTR again achieves the best
performance across all metrics. The high accuracy should
be attributed to the transformer-aided explicit reasoning, be-
cause it fully leverages the context information to learn rep-
resentations and infer hidden objects. We would also like to
mention that our UGTR does not require extra information,

(a) (b) (c) (d) (e)

Figure 5: Prototype visualization. (a) Images; (b)-(e) Vi-
sualizations of different prototypes. These learned proto-
types capture the high-level semantics, e.g., object parts (b)-
(c), boundaries (d) and background regions (e).

such as image-level classification information [29].
COD10K [12]. Table 1 (right) compares our UGTR with
14 SOTA models on the most challenging COD10K test.
The comparison demonstrates that our UGTR can deliver
reliable results. Although it is difficult to make improve-
ment on this dataset, our novel learning paradigm still can
help to overcome ambiguity and identity the camouflaged
object more easily. Visual comparison results on COD10K
test are provided in Figure 6.

4.3. Ablation Study

Effectiveness of Each Module. To verify the effective-
ness of each novel module, we provide a baseline model for
comparison, i.e., the ResNet50-FCN. First, as shown in Ta-
ble 2, our UQN achieves similar performance as ResNet50-
FCN. Note that because our UQN is a probabilistic repre-
sentational model, the results are computed by averaging
K = 50 samples from the learned distribution. Importantly,
unlike the deterministic ResNet50-FCN, UQN can deliver
the uncertainty map as meaningful guidance for our subse-
quent operations. Then, with our UGT, we observe clear
performance improvements on all benchmarks. This is be-
cause UGT is able to reason over context to significantly
enhance underlying representations. It should be noted that
our UGT used here does not include the global semantic
information from PT (i.e., we remove the cross-attention
module from UGT). Finally, with the aid of PT, our fully-
equipped UGTR achieves the best performance. This indi-
cates that semantic information is also important, because it
can help the model infer local information reliably.
Superiority of the Prototyping Transformer. To under-
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(b) GT (c) UGTR(ours) (d) SINet (e) EGNet (f) PoolNet (g) PFANet(a) Image

Figure 6: Qualitative comparisons between different models: (c) UGTR, (d) SINet [12], (e) EGNet [59], (f) POOLNet [33],
and (g) PFANet [60]. Our UGTR can accurately identity the camouflaged object in different challenging scenarios.

CAMO-Test [29] COD10K-Test [12]
Settings Sα ↑ Eφ ↑ Fwβ ↑ M ↓ Sα ↑ Eφ ↑ F

w
β ↑ M ↓

T=8,K=50 0.778 0.851 0.679 0.088 0.806 0.838 0.660 0.037
T=16,K=50 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035
T=32,K=50 0.782 0.859 0.685 0.086 0.817 0.854 0.670 0.035
T=16,K=10 0.777 0.851 0.676 0.087 0.815 0.846 0.666 0.036
T=16,K=50 0.785 0.859 0.686 0.086 0.818 0.850 0.667 0.035
T=16,K=100 0.788 0.858 0.682 0.086 0.817 0.856 0.668 0.035

Table 5: Analysis of parameter settings on CAMO test
and COD10K test. ‘T ’ means the number of prototypes
and ‘K’ means the number of extracted samples.

stand the role of our PT in learning high-level semantics,
we conduct a comparative analysis on our prototyping ap-
proach. First, we replace PT with conventional strategies
/ modules: i) global average pooling (GAP) and ii) multi-
scale pooling (MSP) [58]. As shown in Table 3, PT outper-
forms other strategies, while LPL brings additional perfor-
mance boosts. Second, we show that T = 16 protoypes
can ensure reliable performance in Table 5. Finally, we
provide the visualizations of some prototypes in Figure 5.
Clearly, our PT can group semantically similar pixels to-
gether, which helps to summarize / understand the given
scene in a more global view.
Uncertainty-Guided Random Masking. UGRM is an-
other important component in our UGTR. It works as a
hard-example-mining module, which induces our UGT to
focus on difficult (uncertain) regions during training. To
show its comparative advantages, we provide two base-
line models. The first one is trained by simply removing
the UGRM in the training phase, and the second employs
the widely-used random masking (RM) technique [50] for
training. As shown in Table 4, our UGRM can bring clear
improvements across different metrics. Thus, we can con-
clude that our UGRM can help the model learn to better deal
with uncertain information and improve overall accuracy.
Do We Really Need Uncertainty? To answer this ques-
tion, we first provide some visual examples in Figure 7.
We observe that the estimated uncertainty maps consistently
highlight object boundaries and indistinguishable textures,
which means that those regions confuse deep COD model.

Certain Uncertain

(a) (b) (c) (d) (e)

0.0 1.0

Figure 7: Visualization of uncertainty map. (a) Input im-
ages; (b) Ground truth; (c) Uncertainty map; (d) Initial pre-
diction; (e) Final prediction by our approach.

Our observation is entirely consistent with the discoveries
made by biological research [22, 52, 53] which find captur-
ing the true body / object shape is the key to decamouflaging
for human beings. Uncertainty quantification is meaningful
because it i) increases the interpretability of COD models,
ii) reveals the shortcomings of conventional solution and,
iii) points out the future directions of COD research. UGT is
trained to focus on uncertain regions so that significant ac-
curacy improvement can be achieved by our UGTR. More-
over, we show that K = 50 samples from UNQ can quan-
tify the uncertainty very well in Table 5.

5. Conclusion
In this paper, we inject Bayesian learning into Trans-

former based reasoning to handle camouflaged object de-
tection. A probabilistic representational model (UQN) is
learned to obtain initial estimates and associated uncertain-
ties, and then transform-based modules (PT and UGT) fur-
ther reason with context information to overcome ambigu-
ity. All modules are carefully integrated as a new learning
paradigm for COD, which mingles both probabilistic and
deterministic procedures. We believe that our approach is
also potentially applicable for other computer vision tasks.
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