
Auto Graph Encoder-Decoder for Neural Network Pruning

Sixing Yu
Iowa State University
yusx@iastate.edu

Arya Mazaheri
Technical University of Darmstadt
arya.mazaheri@tu-darmstadt.de

Ali Jannesari
Iowa State University
jannesari@iastate.edu

Abstract

Model compression aims to deploy deep neural networks
(DNN) on mobile devices with limited computing and stor-
age resources. However, most of the existing model com-
pression methods rely on manually defined rules, which re-
quire domain expertise. DNNs are essentially computa-
tional graphs, which contain rich structural information.
In this paper, we aim to find a suitable compression policy
from DNNs’ structural information. We propose an auto-
matic graph encoder-decoder model compression (AGMC)
method combined with graph neural networks (GNN) and
reinforcement learning (RL). We model the target DNN as a
graph and use GNN to learn the DNN’s embeddings auto-
matically. We compared our method with rule-based DNN
embedding model compression methods to show the effec-
tiveness of our method. Results show that our learning-
based DNN embedding achieves better performance and a
higher compression ratio with fewer search steps. We evalu-
ated our method on over-parameterized and mobile-friendly
DNNs and compared our method with handcrafted and
learning-based model compression approaches. On over
parameterized DNNs, such as ResNet-56, our method out-
performed handcrafted and learning-based methods with
4.36% and 2.56% higher accuracy, respectively. Further-
more, on MobileNet-v2, we achieved a higher compression
ratio than state-of-the-art methods with just 0.93% accu-
racy loss.

1. Introduction
With the increasing demand to deploy deep neural net-

works (DNNs) on edge devices (e.g., mobile phones, robots,
self-driving cars, etc.), which usually have limited storage
and computing power, model compression techniques be-
came essential for efficient DNN deployment. Network
pruning [10, 11, 32], factorization [46, 38], knowledge dis-
tillation [36, 34, 16], and parameter quantization [10, 49,
19] are among the most well-known model compression
techniques. However, these methods heavily rely on hand-
crafted rules defined by experts, demanding an extensive

amount of time and might not necessarily lead to a fully
compressed model.

Recently, automatic model compression [14, 49, 27] has
gained momentum. For example, Wang et al. [49] proposed
a Bayesian automatic model compression method trained
in a one-shot manner to find reasonable quantization poli-
cies. He et al. [14] proposed an automatic model compres-
sion method based on reinforcement learning (RL). How-
ever, when representing DNNs, they rely on manually de-
fined DNN embedding vector (e.g., using one-hot vectors
to characterize DNN’s hidden layers) and ignore the rich
structural information between the hidden layers.

DNNs are essentially represented as computational
graphs in deep learning frameworks, such as TensorFlow [1]
and PyTorch [35]. A computational graph is composed
of numerous primitive operations (e.g., add, minus, mul-
tiply), where edges are operations and nodes are intermedi-
ate calculation results (i.e., feature maps in DNNs). Such
a rich structural representation can effectively delineate the
state of DNN hidden layers. Additionally, computational
graphs often contain repetitive structural patterns due to the
same set of primitive operations being used multiple times.
Thus, we aim to benefit from this feature by extracting
the structural information readily available within computa-
tional graphs to identify the redundancy and pruning policy
for DNN hidden layers.

In this paper, we propose a graph-based Auto Graph
encoder-decoder Model Compression (AGMC) method that
combines graph convolutional networks (GCNs) [21, 53,
52] and reinforcement learning (RL) [25, 45, 43] to learn
the compression strategy of DNNs without expert knowl-
edge. The graph encoder-decoder aims to learn the DNN’s
layer embeddings. The GCN-based graph encoder learns
the DNN representation from its structure information, and
the decoder decodes the representation to hidden layer em-
beddings. The RL agent takes the hidden layer embed-
dings as the environment states, looks for the pruning ratio
for each hidden layer, and generates a corresponding com-
pressed candidate model. Finally, we evaluate the candidate
compressed model performance and provide a reward value
as feedback to the RL agent. By exploiting DNN’s struc-

6362

ture information to suggest compression policies, our ap-
proach successfully applied network pruning and achieved
outstanding results on various DNNs, such as ResNet [12],
VGG-16 [44], MobileNet [17, 39], and ShuffleNet [54, 29].

In essence, this paper makes the following contributions:

• A novel automatic layer embedding based on compu-
tational graph’s structure.

• An efficient method based on GCN and RL to auto-
mate the channel pruning.

• State-of-the-art model pruning results on various DNN
models.

2. Background and related work
With the increasing demand to make edge devices

smarter using AI, efficient deep neural network design is
more important than ever. Hence, various efficient networks
have been introduced to reduce the computational complex-
ity and memory requirement of such networks. MobileNet-
v1/v2 [17, 39], ShuffleNet-v1/v2 [54, 29], DiCENet [31],
and CondenseNet [18] are among the notable efforts that
introduced custom convolutional blocks to improve the
overall efficiency. Furthermore, neural architecture search
(NAS) [55, 6, 4, 30] methods also attempt to generate effi-
cient DNNs by searching for the most optimal neural net-
work structure, given the constraints of the target hardware
platform.

Within the context of this paper, we discuss former
studies related to model compression, particularly network
pruning and the application of GCN in model compression.
In the following, we will provide a brief overview of these
methods.

Model compression. A multitude of previous work fo-
cus on model compression techniques, such as knowledge
distillation [36, 34, 16], parameter quantization [10, 49, 19],
factorization [46, 38], and network pruning [10, 11, 32].

As DNNs are typically over-parameterized, network
pruning is among the most widely used model compres-
sion techniques, which has achieved outstanding results and
can dramatically shrink model size [2]. It eliminates a
portion of parameters and computation within each DNN
layer via two different methods: (1) fine-grained pruning
and (2) structured pruning. Fine-grained pruning [10] tar-
gets individual unimportant elements in weight tensors. On
the other hand, structured pruning [24] attempts to prune
entire blocks of weight tensors, such as channels, rows,
columns, and blocks. Although the fine-grained pruning
could achieve a high compression rate with minimal accu-
racy loss, they lead to irregular sparsity patterns, demand-
ing specialized hardware accelerators [20, 9] to realize any
speedup. Alternatively, using structured pruning results in
regularly pruned weights and can be used on commodity

hardware. In this paper, we particularly focus on structured
pruning.

Empirical pruning policies are uniform, shallow, and
deep [15, 24]. The uniform policy sets the compression ra-
tio uniformly. The shallow and deep policies aggressively
prune shallow and deep layers, respectively. Such hand-
crafted empirical policies heavily rely on manually defined
rules and might not lead to an optimal compression policy.
Other handcrafted methods focusing on channel pruning are
SPP[48], FP [24], and RNP [26]. SPP prunes DNNs by an-
alyzing each layer and measures the reconstruction error to
determine the pruning ratios. FP evaluates the performance
of single-layer pruning and estimates the sensitivity of each
layer. Layers with lower sensitivity are pruned more aggres-
sively. RNP introduced an RL-based method and groups all
convolutional channels into four sets for training.

Conventional network pruning methods primarily rely
on handcrafted and rule-based policies, demanding human
effort and domain expertise. Moreover, such methods might
not necessarily offer a fully compressed model. Recently,
RL-based automatic network pruning methods [51, 14, 27]
have been proposed. Liu et al. [27] proposed an ADMM-
based [3] structured weight pruning method and an innova-
tive additional purification step for further weight reduction.
He et al. [14] proposed AutoML for network pruning, which
leverages RL to predict compression policies, yet they still
use handcrafted rules (11 fixed features) to represent DNNs
and ignore the rich structural information within computa-
tional graphs.

Graph neural networks. GNN and its variants [22, 40]
are successfully applied to learn the topology informa-
tion from graphs. For instance, they have been success-
fully applied to node classification, link prediction, and
graph classification. Furthermore, graph-based NAS meth-
ods [8, 42, 5] model DNNs as computational graphs and
find the optimal DNN structure from a graph-based search
space. These methods inspired us to use a GCN-based
graph encoder to learn the DNN embeddings.

3. Methodology
To prune a given DNN, we first modeled the DNN as

a computational graph and introduced a GCN-based graph
encoder to learn the DNN’s representation g. Then the de-
coder decodes the g in to layer embeddings si ∈ S, i =
1, 2, .., T , where T is the number of hidden layers. Since
we aim to compress the DNN by predicting the pruning ra-
tio for each hidden layer, the RL agent takes the layer state
S as the environment state to search for the hidden layer’s
pruning policy ai ∈ A, i = 1, 2, .., T . The pruned DNN’s
performance is then used as a reward for the current actions
A taken by the RL agent.
Figure 1 depicts an overview of our method. In the follow-
ing, we will explain the details of the simplified computa-

6363

Figure 1. The workflow of Auto Graph encoder-decoder Model Compression (AGMC)

tional graph, graph encoder-decoder, and RL agent within
our approach.

3.1. Simplified graph representation of DNNs

The computational graph representation of DNNs is
composed of numerous primitive operations (e.g., add, mi-
nus, multiply), where edges are operations and nodes are
intermediate results (i.e., feature maps). Thus, a typical
computational graph might involve billions of primitive op-
erations [12], making it unrealistic to use the graph for
our analysis directly. To simplify the graph representation,
we choose commonly used machine learning operations as
primitive operations O ={n × n conv, Relu, BatchNorm,
(Max/Average) Pooling, Padding, Splitting}. Such a simpli-
fication can significantly reduce the graph complexity and
yet preserve important structural information.

Formally, We model a given DNN as a single-source and
single-sink computational graph G = (V,E,O), where V
is the node-set, E is the edge set, and O is the primitive op-
eration set. Each directed edge with an edge type is associ-
ated with a primitive operation in O. Figure 2 (a) shows the
idea behind the simplified computational graph using two
primitive operations O = {1×1 conv, 3×3 conv}, which
correspond to two edge types. The computation graph G
denotes a compound operation composed of the primitive
operations in O:

y = assemble(conv3(conv1(x)), conv3(conv1(x))) (1)

Figure 2 (b) shows another example for constructing a
computational graph for a ResNet block, which contains
a 1×1 convolutional layer with four output channels and
a 3×3 convolutional layer with three output channels. Al-
though different layers have different computational graphs,
they often share similar structures.

3.2. Auto graph encoder-decoder

We introduce a GCN-based graph encoder-decoder to
learn the embeddings of the target DNN’s hidden layers
automatically. The GCN-based graph encoder embeds the
graph and learns the DNN’s structure representation g ∈
R1×d, where d is the embedding size. We also introduced

an LSTM [47] based decoder that decodes the DNN’s rep-
resentation to layer embeddings S ∈ RT×d, where N is the
number of hidden layers.

3.2.1 GCN-based graph encoder

The GCN embeds graphs by aggregating node features from
neighbor nodes. The message passing function can be for-
mulated as follows:

hl+1
i =

∑
j∈Ni

1

ci
W lhl

j , (2)

where hl
i is the hidden state of ith node in GCN’s lth con-

volution, ci is a constant coefficient, Ni is node i neighbors,
and W l is GNN’s learnable weight matrix.

Although standard GCN and its variants aim to learn
the node embeddings in a graph, we aim to learn the en-
tire graph representation. Thus we need to take the graph
representation from the node embeddings. One of the most
commonly used mechanisms to achieve this is to use the
graph mean pool (Equation 4), which averages the node
embeddings. The graph encoder is formulated as Equa-
tion 3. It embeds the computational graph and gets the
node-embedding matrix H . Then, the graph mean pool
reads the graph representation g from the node embeddings.

H = GCNencoder(G) ∈ RN×d, (3)

g =
1

N

N∑
i=1

hi, (4)

where H = hi, i = 1, 2, ..., N is the node-embedding ma-
trix, hi is the embedding of ith node , N is the total number
of nodes in the graph, and d is the embedding size.

3.2.2 Decoder

The decoder aims to learn the environment states of DNN
hidden layers for the RL agent. Since the state vectors in the
RL environment are determined by the previous state and

6364

Figure 2. Simplified computational graph. (a) An example of a simplified computational graph. (b) Construction of a simplified computa-
tional graph for a ResNet block [12]

the action (the pruning ratio), the decoder takes the previous
layer’s states vector and RL agent’s action as input:

s1 = LSTMdecoder (g) , (5)

st = LSTMdecoder (st−1, at−1) (6)

For the t−th hidden layer, we use the feature st−1 of the
previous hidden layer and the compression policy at−1 (the
action selected by the RL agent) to calculate the environ-
ment states.

3.3. Automatic network pruning using reinforce-
ment learning

We leverage reinforcement learning to find the optimal
pruning ratios efficiently. In the following, we describe the
details of our reinforcement learning setup.

Environment states. In contrast to existing RL-based
model compression methods that use fixed handcrafted
layer embeddings as environment states, we use DNN layer
embeddings S ∈ RT×1×d generated by the graph encoder-
decoder as environment states.

Action space. The actions made by the RL agent are
pruning ratios within a continuous space. Specifically, the
RL agent takes the layer embeddings S ∈ RT×d as envi-
ronment states and predicts corresponding pruning ratios
ai ∈ A, i = 1, 2, .., T , where ai ∈ [0, 1).

Reward function. We prune the DNN according to the
pruning ratio made by RL agent, and use the performance of
the compressed model as the reward. The reward function
is defined in Equation 7.

Rerr = −Error, (7)

where Error is the compressed DNN’s top-1 error on the
validation set.

Deep deterministic policy gradient (DDPG). Various
RL policies aim to search within a continuous action space,
such as proximal policy optimization (PPO) [41] and deep
deterministic policy gradient (DDPG) [25]. Similar to the
AMC [14] method, we opted for DDPG as the RL policy
to make a fair comparison and exclude the influence of RL
policy on the experimental results. This way we can demon-
strate the superiority of our learning-based embedding com-
pared to the handcrafted rules.

The DDPG agent’s search process can be formulated as
following:

g ∈ R1×d = GraphEncoder(G), (8)

S ∈ RT×1×d = Decoder(g), (9)

A ∈ RT×1×1 = MLP (S), (10)

where G is the computational graph, g is the graph repre-
sentation, S is the environment states, and MLP is a multi-
layer perceptron neural network. The graph encoder em-
beds the graph G and learns the DNN representation g
and the decoder decodes g into hidden layers embeddings
si ∈ S, i = 1, 2, .., T . Finally, the RL agent takes S as
environment states and uses MLP to project the embedding
into hidden layer pruning ratios ai ∈ A, i = 1, 2, .., T .

3.3.1 Action rescaling

The reward function that we use offers small or no incen-
tive for model size and FLOPs reduction. Without any con-
straint (e.g., FLOPs or #parameters), the RL agent tends to
search for a tiny compression ratio. Thus, to obtain the de-
sired model size reduction, we apply Algorithm 1 to adjust
the action space a.

In essence, Algorithm 1 computes the size we still
needed to reduce according to the original scale. Lines 1-2
compute the total model size (e.g., FLOPs and #parame-
ters) Wall and reduced size Wreduced. If the reduced size is
less than the desired model size reduction d, the algorithm
will rescale the pruning ratios to compensate the difference

6365

d−Wreduced. Lines 4-7 relate to the rescaling process, and
the for-loop in lines 5-7 adjusts the pruning ratio for each
layer according to the difference to the desired model size
reduction. Finally, in line 7, we truncate the pruning ratio
with the upper bound amax.

Algorithm 1: Rescaling the actions for the desired
model size reduction

Input: The actions a = {a0, ..., aT }, the upper
bound of actions amax, the model size
(#FLOPs/#Parameters etc.) of each hidden
layer W = {W0, ...,WT }, and the desired
model size reduction d

Output: The actions a′ after re-scaling
1 Wall =

∑
t Wt

2 Wreduced =
∑

t Wtat
3 if Wreduced < d then
4 drest = d−Wreduced

5 for i = 1, 2, ..., T do
6 ai+ = (drest ∗ (ai/

∑
t at))/Wi

7 a′i = min(amax, ai)

8 return a′

4. Experimental results
We evaluate our approach by performing FLOPs-

constrained structured pruning on several convolutional net-
works, including over-parameterized DNNs (e.g., ResNet-
20/56 [12] and VGG-16 [44]) and mobile-friendly
DNNs (e.g., MobileNet-v1/v2 [17, 39] and ShuffelNet-
v1/v2 [54, 29]). To show the superiority of our approach,
we compared our approach with various existing methods
in different categories, such as:

• Uniform, shallow, and deep empirical policies [15, 24].

• Handcrafted channel reduction methods, such as
SPP[48], FP [24], and RNP [26].

• Regularization-based methods, such as MorphNet [7]
and SSL [50].

• RL-Based AutoML methods, such as auto model com-
pression method AMC [14], which manually defines
DNN layer embeddings, and random search with rein-
forcement learning (RS), which does not leverage any
layer embeddings.

• Other pruning methods, such as DSA [33] and Re-
think [28].

Finally, we show the inference acceleration and memory
saving of compressed models on a GPU platform.

RL setup. The actor network µ and the critic network Q
have two hidden layers, each with 300 units. The µ’s out-
put layer applies the sigmoid function to bound the actions
within (0, 1). We use τ = 0.01 for the soft target updates.
In the first 25 episodes, our agent searches with random ac-
tion. Then, it continues searching for 300 episodes with ex-
ponential decayed noise. The graph encoder is a two-layer
GCN with a hidden feature size of 50 units and a DNN em-
bedding size of 11 units.

Datasets. We conducted our experiments using CIFAR-
10 [23], CIFAR-100 [23] and ILSVRC-2012 (Ima-
geNet) [37] datasets. To accelerate the search process on
CIFAR-10/100, we split the training set to 15K and 5K im-
ages. We used the 15K training set to rapidly fine-tune the
candidate model and the remaining 5K images as the vali-
dation set to calculate the reward function. In the ILSVRC-
2012 dataset, we split 5K images from the training set as
the validation set to calculate the reward. The Validation ac-
curacy of the ILSVRC-2012 dataset is very sensitive to the
compression, as with high compression ratios, the accuracy
drops considerably without fine-tuning. Thus, the RL agent
can not get a valuable reward. As a remedy, we decompose
the pruning on the ILSVRC-2012 dataset into several stages
and add one epoch of fine-tuning for each search episode.
For instance, to obtain a 49% FLOPs model compared to the
original network, instead of performing a single step 49 %
FLOPs pruning, we prune the target DNN two times, each
with 70% FLOPs constraint (i.e., 70%FLOPs × 70%FLOPs
= 49 % FLOPs).

4.1. The effectiveness of DNN embeddings

In contrast to existing methods [27, 14], layer embed-
dings are essential for our learning-based automatic net-
work pruning method. In the following, we analytically
compare the effectiveness of using our DNN graph embed-
ding with existing approaches.

Learning-based vs. manually-defined layer em-
beddings. We compare AGMC with AMC [14],
which manually defines 11 features related
to each layer as the embedding vector st =
(t, n, c, h, w, stride, k, FLOPs(t), reduced, rest, at−1)
, where t is the layer id, the dimension of the kernel is
n × c × k × k, and the input is c × h × w. FLOPs(t)
is the FLOPs of layer t. Reduced is the total number of
FLOPs reduced in previous layers and finally rest is the
number of remaining FLOPs in the layers ahead. We argue
that such a strict layer embedding may miss important
information, such as the number of parameters in each
hidden layer, which are only applicable to a given DNN.
In the AGMC, the graph encoder-decoder learns the layer
states from DNN structural information. Thus, it does not

6366

stride n c H(W) FLOPs reduced at 1 layer all ours0

5

10

15

20

25

30

To
p-

1
Er

ro
r %

Figure 3. An error-rate comparison for individual AMC layer em-
bedding, overall AMC, and AGMC layer embedding. Our method
has achieved roughly 2× less error rate.

require expert knowledge and is applicable for all kinds of
DNNs.

Since AMC has defined 11 features to represent a con-
volutional layer, we also set the learning-based embedding
size to 11 (i.e., S ∈ RT×11). We evaluated our learning-
based embeddings and the AMC handcrafted embedding on
ResNet-20 pre-trained with the CIFAR-10 dataset. Figure 3
shows the spatial decomposition evaluation for the AMC’s
layer embeddings under 50% FLOPs ResNet-20. Using
stride as the only layer embedding, we get an error rate
of 31% since it is difficult to distinguish different layers.
However, combining the stride with the number of filters n
decreases the error rate to 18%. Consequently, combining
all the features leads to 10.2% error margin. On the other
hand, our learning-based layer embedding achieves an er-
ror rate of 5.38%, outperforming the manually defined layer
embedding by a factor of two.

Learning-based vs. no embedding. We compared
AGMC with random search (RS) without layer embedding.
We set all the hidden layers of the RS setup to a fixed one-
hot vector as the RL agent’s environment state and use Rerr

as a reward. Then, we leverage the DDPG reinforcement
learning agent to search pruning ratios for ResNet-20/56.
ResNets have residual connections between their blocks,
which instructs equal channel size between residual con-
nection blocks. We opted for removing all the residual con-
nections to avoid sharing the pruning ratios between resid-
ual connected layers and learn each hidden layer’s embed-
ding independently. As shown in Figure 4, AGMC achieves
better results compared with RS on ResNet-20. Particu-
larly, AGMC enabled us to find the compressed model with
fewer episodes, higher accuracy, and more FLOPs reduc-
tion. Moreover, by further layer-wise analysis, we observed
that AGMC tends to prune each layer uniformly and the
pruning ratio is more stable than the RS. Such an observa-
tion is in line with the uniform pruning policy[24], which
argues that the uniform policy can yield better pruning.

0 2 4 6 8 10 12 14 16 18

Hidden Layers

0.0

0.2

0.4

0.6

0.8

1.0

D
e
n
s
it
y
(#

n
o
n
-z
e
ro

w
e
ig
h
t
/
#
to
ta
l
w
e
ig
h
t)

Ours 50 episodes

Ours 100 episodes

Random search 200 episodes

Random search 300 episodes

Figure 4. Comparing AGMC pruning stability across different lay-
ers with random search on ResNet-20. Random search uses 200
and 300 episodes, achieving a compressed network with 71% and
88.41% validation accuracy, respectively. AGMC searches for 50
episodes and 100 episodes with a validation accuracy of 93.8%
and 94.6%, respectively. Thus, AGMC achieved a higher com-
pression ratio with considerably fewer episodes.

0 10 20 30 40 50 60 70 80 90 100
Reduced FLOPs %

87

88

89

90

91

92

93

Va
l.

AC
C.

AGMC
Random Search

Figure 5. Validation accuracy comparison of random search and
AGMC on ResNet-56 under different FLOPs constraints.

Additionally, we pruned ResNet-56 under different
FLOPs-constraints. ResNet-56 contains 56 convolutional
layers, which is far deeper and more challenging than
ResNet-20 to prune. Figure 5 depicts the validation accu-
racy under different pruning ratios. In all cases, AGMC
outperforms RS, as more FLOPs are pruned. For instance,
with 10% FLOPs reduction, the performance of AGMC and
RS are almost the same. However, with 90% FLOPs reduc-
tion, the AGMC surpasses the RS by a large margin.

Generalizability of the graph encoder. AGMC adopts a
GCN-based graph encoder to embed DNNs topology struc-
ture. Since we model the DNNs as graphs under the same
rule, the graph encoder trained on one DNN should also
achieve similarly good performance on other similar DNNs.
Thus, we investigated whether AGMC has learned the struc-

6367

tural pattern of ResNet-56 while performing channel prun-
ing. We transferred the trained AGMC to ResNet-20, which
is a similar network. When searching the pruning ratio of
ResNet-20, we only updated the decoder parameters and
did not require the graph encoder and RL agent’s gradients.
With 100 search episodes and 50% FLOPs reduction on
ResNet-20, the result of AGMC transferred from ResNet-
56 and obtained the validation accuracy of 92.08%, which
is similar to the AGMC trained on ResNet-20 with 94.6%
validation accuracy.

4.2. Over-parameterized DNN pruning

We evaluate AGMC on ResNet-20/32/44/56/110 and
VGG-16, often considered as over-parameterized DNNs.
Such deep and compact networks involve billions of pa-
rameters, incurring high memory consumption. Thus, it is
challenging to deploy them on edge devices with limited
computing and power budgets.

We perform FLOPs-constrained pruning on over-
parameterized DNNs by leveraging the RL agent to search
for pruning ratios for each convolutional layer. However,
ResNet has residual connections, and different pruning ra-
tios between residual connected layers will lead to feature-
map dimension mismatch. To overcome this issue, we share
the pruning ratio between the residual connection layers.
Additionally, we follow the same experiment settings as in
DSA [33] since it has a significant impact on the pruning re-
sults. For instance, the number of fine-tuning epochs is one
of the key factors, where a larger value leads to higher test
accuracy but with the cost of additional time and resources.

Table 1 reports the results of AGMC in comparison with
existing pruning methods for over-parameterized networks.
Our method outperforms the empirical policies [15, 24] by
a large margin with 7.42% higher accuracy on ResNet-
20 and 4.36% on ResNet-56. Compared with the RL-
based method, AMC [14], AGMC achieved 5.02% and
2.56% higher accuracy on ResNet-20 and ResNet-56, re-
spectively. Moreover, the networks pruned by AGMC
yielded less accuracy loss compared with rule-based prun-
ing methods [7, 28, 13, 33]. Additionally, we recorded the
RL search time on ResNet-56 with 300 episodes. It takes
(320 ± 30) seconds on RTX 8000 GPU to finish the entire
search for the pruning ratios. For VGG-16 model trained on
the ILSVRC-2012 dataset, we compared AGMC with hand-
crafted channel reduction methods (i.e., SPP [48], FP [24],
and RNP [26]) and AMC [14]. Results show that AGMC
outperformed all the baselines methods by a large margin.

4.3. Mobile-friendly DNN pruning

We further evaluated AGMC on mobile-friendly DNNs,
such as MobileNet-v1/v2 [17, 39] and ShuffleNet-
v1/v2 [54, 29]. Instead of using standard convolutional lay-
ers, mobile-friendly DNNs have designed customized con-

Table 1. Pruning policy comparison of FLOPs-constrained com-
pression on ResNet-20/32/44/56/110 and VGG-16 [44]. The
ResNet family are trained on CIFAR-10 and VGG-16 is trained on
the ImageNet (ILSVRC-2012) dataset.

Model Method FLOPs
Test

Acc.%
∆Acc.

ResNet20

Deep 50% 79.6 -12.13
Shallow 50% 83.2 -8.53
Uniform 50% 84 -7.73

SSL 52% 89.78 -2.39
MorphNet 48% 90.1 -2.07
Rethink 60% 91.07 -1.34

SFP 58% 90.83 -1.37
DSA 50% 91.38 -0.79
AMC 50% 86.4 -5.33

AGMC 50% 91.42 -0.31

ResNet56

Uniform 50% 87.5 -5.89
Deep 50% 88.4 -4.99
SSL 47% 91.22 -1.90

MorphNet 52% 91.55 -1.57
Rethink 50% 93.07 -0.73

SFP 50% 92.26 -1.33
AMC 50% 90.2 -3.19

AGMC 50% 92.76 -0.63

VGG-16

FP 20% 55.9 -14.6
RNP 20% 66.92 -3.58
SPP 20% 68.2 -2.3

AMC 20% 69.1 -1.4
AGMC 20% 70.35 -0.15

ResNet110 RS 50% 87.26 -6.42
AGMC 50% 93.08 -0.6

ResNet44 RS 50% 88.14 -4.96
AGMC 50% 92.28 -0.82

ResNet32 RS 50% 89.57 -3.06
AGMC 50% 90.96 -1.67

volutional blocks to reduce the parameters, leading to better
performance on edge devices. For instance, the MobileNet-
v1 block splits a traditional convolution into a pair of point-
wise and depth-wise convolutions. Based on MobileNet-v1,
MobileNet-v2 adds an additional linear expansion layer and
introduced residual connections. To maintain the charac-
teristics of the mobile-friendly DNNs, we have developed
specific pruning strategies for them.

MobileNet-v1. The MobileNet-v1 block contains a
depth-wise and a point-wise convolution, instead of prun-
ing them separately, we view the two convolutions together
and only prune point-wise convolutions. Since the depth-
wise convolution only operates on one input channel and

6368

Table 2. Pruning policy comparison of FLOPs-constrained
compression on MobileNet-v1/v2 and ShuffleNet-v1/v2. The
MobileNet-v1/v2 are trained on the ImageNet (ILSVRC-2012)
dataset, and the ShuffleNet-v1/v2 are trained on the CIFAR-100
dataset. The column FLOPs denotes the ratio between the FLOPs
of the compressed model and the original model.

Model Method FLOPs Test
Acc.

∆Acc.
%

MobileNet-v1

uniform[17] 56% 68.10 −2.5
uniform[17] 41% 66.90 -3.7
AMC[14] 40% 68.90 -1.7
AGMC 40% 69.40 -1.2

MobileNet-v2
uniform [39]

70%
69.80 -2

AMC[14] 70.80 -1
AGMC 70.87 -0.93

ShuffleNet-v1
RS 60% 63.70 −4.94

AGMC 60% 65.26 -3.38

ShuffleNet-v2
RS 60% 65.74 −3.11

AGMC 60% 66.28 -2.57

pruning that filter will cause information loss for the corre-
sponding channel.

MobileNet-v2. Similar to MobileNet-v1, we prune linear
expansion layers and point-wise convolutional layers. Since
residual connections are between linear expansion layers,
we share the linear expansion layers’ pruning ratio.

ShuffleNet-v1/v2. ShuffleNet uses blocks containing
depth-wise and point-wise convolutions, channel shuffle,
linear expansion, and residual connections. To avoid dimen-
sion mismatch when downsampling, we consider the Shuf-
fleNet blocks together and perform channel pruning inside
the blocks. In a ShuffleNet block, we do not prune the ex-
pansion layer (the output layer of the block) and only prune
the point-wise filters.

The results for mobile-friendly networks are given in Ta-
ble 2. On MobileNet-v1/v2, we compare AGMC with the
uniform pruning policy and the RL-based method AMC.
Compared to the uniform policy, which sets the compres-
sion ratio uniformly, AGMC achieves a higher compres-
sion ratio with only 1.2% test accuracy loss. Further-
more, our efficient layer embedding outperforms AMC on
both MobileNet-v1 and MobileNet-v2, with the same target
FLOPs. Similarly, our method succeeded in pruning 40% of
the ShuffleNet-v1/v2 FLOPs and obtaining a more accurate
compressed model than random search.

4.4. Inference acceleration and memory saving

Here, we discuss the inference speed of the compressed
ResNet-20/56, VGG-16, and MobileNet-v1 on an Nvidia
RTX 2080Ti GPU. AGMC performs channel pruning on

Table 3. Latency and GPU memory usage of pruned models using
AGMC. We analyzed ResNet-20/56 on CIFAR-10 and VGG-16
and MobileNet-v1 on ImageNet dataset.

Model FLOPs Latency GPU Mem.

MobileNet-v1 100%FLOPs 11.02ms 17MB
40%FLOPs 10.52ms 14MB

VGG-16 100%FLOPs 20.52ms 528MB
20%FLOPs 16.82ms 387MB

ResNet-56 100%FLOPs 0.52ms 3.4MB
50%FLOPs 0.48ms 1.8M

ResNet-20 100%FLOPs 0.32ms 1.1MB
50%FLOPs 0.30ms 565KB

convolutional layers, accelerating the inference on paral-
lel devices like GPUs. We calculated the inference speed
of the pruned models and compared them with the original
model. We used batch size 32, and the compressed mod-
els are tested on CIFAR-10 and ILSVRC-2012 datasets. As
shown in Table 3, the models pruned by AGMC achieve no-
table GPU memory reduction. For example, for VGG-16,
the original model’s GPU memory usage is 528 MB, since
it has dense layers and its first dense layer contains 25088
neurons. The 20% FLOPs VGG-16 with pruned convolu-
tional layers significantly reduced the feature map size in-
put to dense layers, taking 141 MB memory less than the
original. Moreover, without losing too much test accuracy,
all the models pruned by AGMC achieved remarkable in-
ference speedup. For instance, the 20% FLOPs VGG-16
achieved 1.22× speedup on the ImageNet dataset.

5. Conclusion

This paper proposed an Auto Graph encoder-decoder
Model Compression (AGMC), which combines graph con-
volutional networks and reinforcement learning to explore
network compression policies automatically. To the best
of our knowledge, this is the first work to model DNNs
as computational graphs to enhance model compression.
Furthermore, we conducted comprehensive experiments on
over-parameterized and mobile-friendly DNNs. In the ex-
periment, we show the superiority of our learning-based
DNN embedding. By learning DNNs’ embedding from
their structure information, AGMC outperforms all the rule-
based DNN embedding methods by a large margin. On
over-parameterized, such as ResNet-56, our method defeats
all the baselines with only 0.63% accuracy loss. Addi-
tionally, AGMC successfully compressed mobile-friendly
DNNs, which are already compact. For instance, in the
MobileNet-V1, we achieve a higher compression ratio than
baselines with only 1.2% accuracy loss.

6369

References
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Mur-
ray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete War-
den, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Ten-
sorflow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Im-
plementation (OSDI 16), pages 265–283, 2016. 1

[2] Cody Blakeney, Yan Yan, and Ziliang Zong. Is pruning com-
pression?: Investigating pruning via network layer similarity.
WACV, pages 903–911, 2020. 2

[3] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and
Jonathan Eckstein. Distributed optimization and statistical
learning via the alternating direction method of multipliers.
Found. Trends Mach. Learn., 3(1):1–122, Jan. 2011. 2

[4] Yukang Chen, Gaofeng Meng, Qian Zhang, Shiming Xiang,
Chang Huang, Lisen Mu, and Xinggang Wang. Renas - rein-
forced evolutionary neural architecture search. CVPR, pages
4787–4796, 2019. 2

[5] Lukasz Dudziak, Thomas Chau, Mohamed S. Abdelfattah,
Royson Lee, Hyeji Kim, and Nicholas D. Lane. BRP-NAS:
Prediction-based NAS using gcns. 2021. 2

[6] Yang Gao, Hong Yang, Peng Zhang, Chuan Zhou, and Yue
Hu. Graphnas: Graph neural architecture search with rein-
forcement learning. arXiv: Learning, 2019. 2

[7] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu,
Tien-Ju Yang, and Edward Choi. MorphNet: Fast & Sim-
ple Resource-Constrained Structure Learning of Deep Net-
works. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1586–1595, Salt Lake City,
UT, June 2018. IEEE. 5, 7

[8] Yong Guo, Yin Zheng, Mingkui Tan, Qi Chen, Jian Chen,
Peilin Zhao, and Junzhou Huang. NAT: Neural architecture
transformer for accurate and compact architectures. In Proc.
of the Advances in Neural Information Processing Systems,
volume 32, pages 737–748. Curran Associates, Inc., 2019. 2

[9] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li,
Yubin Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang,
Huazhong Yang, and (Bill) J. William Dally. ESE: Efficient
speech recognition engine with sparse LSTM on FPGA.
Proc. of the ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 75–84, 2017. 2

[10] Song Han, Huizi Mao, and J. William Dally. Deep com-
pression: Compressing deep neural network with pruning,
trained quantization and huffman coding. International con-
ference on learning representations, 2015. 1, 2

[11] Babak Hassibi and G. David Stork. Second order derivatives
for network pruning: Optimal brain surgeon. NIPS, pages
164–171, 1992. 1, 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. pages 770–
778, 2016. 2, 3, 4, 5

[13] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and
Yi Yang. Soft Filter Pruning for Accelerating Deep Con-
volutional Neural Networks. In Proceedings of the Twenty-

Seventh International Joint Conference on Artificial Intelli-
gence, pages 2234–2240, Stockholm, Sweden, July 2018. In-
ternational Joint Conferences on Artificial Intelligence Orga-
nization. 7

[14] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and
Song Han. Amc: Automl for model compression and accel-
eration on mobile devices. In Proc. of the European Confer-
ence on Computer Vision (ECCV), pages 784–800, 2018. 1,
2, 4, 5, 7, 8

[15] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning
for accelerating very deep neural networks. In Proc. of the
IEEE International Conference on Computer Vision, pages
1389–1397, 2017. 2, 5, 7

[16] E. Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean. Dis-
tilling the knowledge in a neural network. CoRR, 2015. 1,
2

[17] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. 2, 5, 7, 8

[18] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-
ian Q Weinberger. Condensenet: An efficient densenet us-
ing learned group convolutions. In Proc. of the IEEE con-
ference on computer vision and pattern recognition, pages
2752–2761, 2018. 2

[19] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In Proc. of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2704–2713, 2018. 1, 2

[20] Houxiang Ji, Linghao Song, Li Jiang, Hai Halen Li, and
Yiran Chen. Recom: An efficient resistive accelerator for
compressed deep neural networks. In Proc of. Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE),
pages 237–240. IEEE, 2018. 2

[21] Thomas N Kipf and Max Welling. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016. 1

[22] Thomas N. Kipf and Max Welling. Semi-supervised classifi-
cation with graph convolutional networks. In Proc. of the In-
ternational Conference on Learning Representations (ICLR),
2017. 2

[23] A Krizhevsky and G Hinton. Learning multiple layers of
features from tiny images. 2009. 5

[24] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. CoRR,
abs/1608.08710, 2016. 2, 5, 6, 7

[25] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel,
Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and
Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015. 1, 4

[26] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime
neural pruning. In Proc. of the Advances in Neural Infor-
mation Processing Systems, pages 2181–2191, 2017. 2, 5,
7

6370

[27] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang, Jian
Tang, and Jieping Ye. Autocompress: An automatic dnn
structured pruning framework for ultra-high compression
rates. In Proc. of Artificial Intelligence Conference (AAAI),
pages 4876–4883, 2020. 1, 2, 5

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning. In-
ternational Conference on Learning Representations (ICLR),
2019. 5, 7

[29] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In Proc. of the European conference on com-
puter vision (ECCV), pages 116–131, 2018. 2, 5, 7

[30] Rahim Mammadli, Felix Wolf, and Ali Jannesari. The art
of getting deep neural networks in shape. volume 15, pages
62:1–62:21, Jan. 2019. 2

[31] Sachin Mehta, Hannaneh Hajishirzi, and Mohammad Raste-
gari. Dicenet: Dimension-wise convolutions for efficient net-
works. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2020. 2

[32] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 1, 2

[33] Xuefei Ning, Tianchen Zhao, Wenshuo Li, Peng Lei, Yu
Wang, and Huazhong Yang. DSA: More Efficient Bud-
geted Pruning via Differentiable Sparsity Allocation. In An-
drea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael
Frahm, editors, European Conference on Computer Vision –
ECCV 2020, volume 12348, pages 592–607, Cham, 2020.
Springer International Publishing. Series Title: Lecture
Notes in Computer Science. 5, 7

[34] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Re-
lational knowledge distillation. In Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
3967–3976, 2019. 1, 2

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32, pages 8026–8037.
Curran Associates, Inc., 2019. 1

[36] Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model
compression via distillation and quantization. ICLR, 2018.
1, 2

[37] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-
lenge. International Journal of Computer Vision (IJCV),
115(3):211–252, 2015. 5

[38] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B.
Ramabhadran. Low-rank matrix factorization for deep neural
network training with high-dimensional output targets. In
2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6655–6659, 2013. 1, 2

[39] Mark Sandler, G. Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. MobileNetV2: Inverted
residuals and linear bottlenecks. pages 4510–4520, 2018. 2,
5, 7, 8

[40] Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Ri-
anne van den Berg, Ivan Titov, and Max Welling. Model-
ing relational data with graph convolutional networks. In
Aldo Gangemi, Roberto Navigli, Maria-Esther Vidal, Pascal
Hitzler, Raphaël Troncy, Laura Hollink, Anna Tordai, and
Mehwish Alam, editors, The Semantic Web, pages 593–607,
Cham, 2018. Springer International Publishing. 2

[41] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms, 2017. 4

[42] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James T. Kwok,
and Tong Zhang. Bridging the gap between sample-based
and one-shot neural architecture search with BONAS. 2020.
2

[43] David Silver, Guy Lever, Nicolas Heess, Thomas Degris,
Daan Wierstra, and Martin Riedmiller. Deterministic policy
gradient algorithms. volume 1, 06 2014. 1

[44] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. inter-
national conference on learning representations, 2015. 2, 5,
7

[45] S. Richard Sutton, A. David Mcallester, P. Satinder Singh,
and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. Neural Informa-
tion Processing Systems, pages 1057–1063, 1999. 1

[46] Sridhar Swaminathan, Deepak Garg, Rajkumar Kannan, and
Frederic Andres. Sparse low rank factorization for deep neu-
ral network compression. Neurocomputing, pages 185–196,
2020. 1, 2

[47] Sheng Kai Tai, Richard Socher, and D. Christopher Man-
ning. Improved semantic representations from tree-
structured long short-term memory networks. International
Workshop on the ACL2 Theorem Prover and Its Applications,
2015. 3

[48] Huan Wang, Qiming Zhang, Yuehai Wang, and Roland Hu.
Structured probabilistic pruning for deep convolutional neu-
ral network acceleration. British Machine Vision Conference,
2017. 2, 5, 7

[49] J. Wang, H. Bai, J. Wu, and J. Cheng. Bayesian automatic
model compression. IEEE Journal of Selected Topics in Sig-
nal Processing, 14(4):727–736, 2020. 1, 2

[50] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning Structured Sparsity in Deep Neural Net-
works. In Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc., 2016. 5

[51] Xia Xiao, Zigeng Wang, and Sanguthevar Rajasekaran. Au-
toprun: Automatic network pruning by regularizing auxiliary
parameters. Advances in Neural Information Processing Sys-
tems (NIPS), pages 13681–13691, 2019. 2

6371

[52] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka.
How powerful are graph neural networks? In Proc. of In-
ternational Conference on Learning Representations (ICLR),
2019. 1

[53] Muhan Zhang and Yixin Chen. Link prediction based on
graph neural networks. In Advances in Neural Information
Processing Systems, pages 5165–5175, 2018. 1

[54] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proc. of the IEEE conference on
computer vision and pattern recognition, pages 6848–6856,
2018. 2, 5, 7

[55] Barret Zoph and V. Quoc Le. Neural architecture search with
reinforcement learning. international conference on learning
representations, 2017. 2

6372

