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Abstract

Human parsing and pose estimation are crucial for the
understanding of human behaviors. Since these tasks are
closely related, employing one unified model to perform two
tasks simultaneously allows them to benefit from each other.
However, since human parsing is a pixel-wise classification
process while pose estimation is usually a regression task,
it is non-trivial to extract discriminative features for both
tasks while modeling their correlation in the joint learning
fashion. Recent studies have shown that Neural Architec-
ture Search (NAS) has the ability to allocate efficient fea-
ture connections for specific tasks automatically. With the
spirit of NAS, we propose to search for an efficient network
architecture (NPPNet) to tackle two tasks at the same time.
On the one hand, to extract task-specific features for the
two tasks and lay the foundation for the further searching
of feature interaction, we propose to search their encoder-
decoder architectures, respectively. On the other hand, to
ensure two tasks fully communicate with each other, we
propose to embed NAS units in both multi-scale feature in-
teraction and high-level feature fusion to establish optimal
connections between two tasks. Experimental results on
both parsing and pose estimation benchmark datasets have
demonstrated that the searched model achieves state-of-the-
art performances on both tasks. 1

1. Introduction
Human parsing and pose estimation are two key tasks for

analyzing human behaviors. Human parsing aims to seg-
ment the human body into different semantic regions, while
pose estimation is to locate the keypoints of the human body
and analyze structural information. Visually speaking, these
two tasks are closely related. On the one hand, keypoints are
often included within the different semantic regions, indi-
cates that the semantic information from human parsing can
help locate these points for accurate pose estimation. On the
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Figure 1. The illustration of our motivation. As we can see, manu-
ally designed frameworks [21,31] can not improve pose estimation
and human parsing simultaneously. There is an obvious inconsis-
tency between the two tasks, which suggests it is challenging for
manually designed modules to extract task-specific features and
enhance their correlation, e.g., in MuLA [31], some keypoints are
not surrounded by the corresponding semantic parts. This moti-
vates us to search for a better network architecture that allows two
tasks to fully benefit from each other.

other hand, the group of keypoints naturally possesses rich
structural information, which can guide the generation of
semantic parts.

With the advanced learning ability of the deep neural
network, it becomes a general practice to deploy convo-
lutional neural networks (CNN) to tackle these two tasks
[28, 40]. The majority of existing models share a similar
basic encoder-decoder architecture with different learning
objectives. For human parsing, they [26, 36, 44] aim at
mapping the up-sampled output to pixel-wise annotations,
while the ground-truth of pose estimation [6, 30, 42] cor-
responds to the heatmaps of sparse keypoints. Given the
correlation between two tasks, there are recent develop-
ments [21, 31, 41, 46] that attempt to perform joint infer-
ence via neural networks from the multi-task learning per-
spective. These models conduct the representation learning
through one shared [21] or two separate encoder-decoder
structure [31,46], and design the hand-crafted modules [31]
to interact high-level features extracted for two tasks.

However, designing the suitable network architecture
and optimal feature interaction for joint learning is chal-
lenging. On the one hand, though the two tasks are visu-
ally related, they still possess their own characteristics. The
general solutions for pose estimation focus on aggregat-
ing information into small joint areas while human parsing
needs to explore the pixel-wise context information. There-
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Figure 2. The overall framework of NPPNet. The input image passes through two task-specific encoder-decoder structures to extract two
sets of features with multiple scales, each set absorbs information from the other one in the multi-scale feature interaction structure. The two
encoder-decoder structures output two sets of high-level features including main and auxiliary features and generate the initial prediction.
Then the high-level feature fusion structure fuses these features and commits the final prediction. The entire network architecture is
searchable.

fore, it is challenging to extract discriminative features for
both tasks when tackling them simultaneously. On the other
hand, it is difficult to model the correlation between the two
tasks. Existing works [31, 46] address this issue by manu-
ally designing the fusion modules to interact the high-level
features from the two branches. Yet it is rather rigid and
ignores the diverse intermediate features with multi-scale
information, considering different levels of features require
the more refined interaction. As shown in Fig. 1, existing
frameworks for joint learning cannot obtain consistent re-
sults for both tasks, which motivates us to design a more
efficient network architecture.

Recent studies [10, 18, 20, 24] have shown that Neural
Architecture Search (NAS) is able to flexibly search for ef-
ficient architectures for various vision tasks [13,45], includ-
ing parsing [23,29] and pose estimation [2]. Different from
them, in this paper, we propose to employ search for the
joint learning framework to tackle both tasks. We name our
searched model as NPPNet. As shown in Fig. 2, on the
one hand, to extract task-specific features for both tasks and
lay the foundation for the further searching of feature inter-
action, we propose to search for their encoder-decoder ar-
chitectures, respectively. On the other hand, to ensure both
intermediate and high-level features of two tasks interact
with each other, we propose to embed NAS units in both
multi-scale feature interaction and high-level feature fusion
to establish optimal connections between two tasks.

In this paper, we design three types of search spaces

tailed for joint human parsing and pose estimation. By ap-
plying the different search spaces during feature extraction,
interaction, and fusion, NPPNet improves the performance
of both tasks simultaneously. In summary, the main contri-
butions of this paper as follows:

• We propose an end-to-end network NPPNet entirely
searched by NAS, which conducts human parsing and
pose estimation simultaneously. To the best of our
knowledge, this is one of the first attempts towards us-
ing NAS to tackle two tasks simultaneously.

• To extract the discriminative features for both tasks
and allow them to benefit from each other, we de-
sign three searching spaces for constructing the task-
specific encoder-decoder structure, the multi-scale fea-
ture interaction, and the high-level feature fusion.

• Extensive experiments are conducted on the LIP and
the extended PASCAL-Person-Part datasets. Results
show that our proposed NPPNet achieves state-of-the-
art performances on both tasks.

2. Related works
Pose Estimation & Human Parsing. Early pose es-

timation methods [5, 34, 38] directly regress the coordi-
nates of keypoints, but perform poorly when facing flex-
ible human movements. Instead, CNN-based methods
[1,3,19,25,37,40] predicts the 2D heatmap of each joint. An
encoder-decoder structure is usually used to generate multi-
scale feature maps. [30] proposes to use skip connections
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to merge the same resolution features to fuse different scale
features. Besides, [6,19,30,40] add additional supervisions
to refine the initial output. Our NPPNet is inspired by the
pyramid feature fusion and utilizes the refinement layer to
further enhance the prediction. Similar to pose estimation
methods, many studies [12,36,44] on human parsing extract
multi-scale features by reducing the resolution of feature
maps gradually and then up-sample them through a decoder.
Given human parsing is a fine-grained task, there are vari-
ous methods to utilize the multi-task objectives to improve
the parsing performance. For example, [36] adds an addi-
tional branch to predict the edge of different regions, [12]
uses human body structure information to assist parsing.
Moreover, [21,31,36] add the refinement branch to improve
the initial accuracy. We also conduct edge prediction and
parsing refinement in our framework. However, different
from existing works, these learning objectives are guided
by the interactions between two tasks.

Joint Learning of Two Tasks. Considering the correla-
tion between two tasks, there is a line of work that explores
the joint training paradigm. In [8], Dong et al. propose
an And-Or graph model, which uses the spatial information
of keypoints to assist the parsing and also constrain their
locations with the regions generated from parsing. In the
first neural network-based method [41], authors associate
high-level features from two tasks through convolutions and
conditional random field. However, the whole framework
is trained stage-wisely. A shared backbone is used to ex-
tract common features for both tasks in [21]. However,
the performance of pose estimation is far less satisfactory
than parsing. In [31], two separate branches are utilized
to extract pose and parsing features respectively, and hand-
designed modules are proposed to interact two branches,
while in [46], an attention-based module is used to fuse
the pose, edge, and parsing features. Though these meth-
ods focus on explicitly modeling the correlations between
tasks, the manually designed interactions are sub-optimal
since the results of two tasks often present themselves in
an inconsistent way. To address the above issues, we pro-
pose to design three types of search spaces and apply NAS
to find the network architecture that is beneficial for both
tasks, including the search of encoder-decoder, the multi-
scale feature interaction, as well as the high-level feature
fusion.

Neural Architecture Search. The recent develop-
ments of NAS-related algorithms can be roughly grouped
into three types gradient-based [24], reinforcement learn-
ing [48], and evolutionary algorithm [35]. Among them,
the gradient-based method PC-DARTS [43] proposes par-
tial channel connection, which reduces the redundant space
by sampling a small part of the supernet and significantly
improves search efficiency. NAS has been applied to var-
ious vision tasks to search for the suitable network archi-

tecture, including image classification [10], object detec-
tion [13], semantic segmentation [23, 45], pose estimation
[2], multi-task learning etc. In [45], a Pooled Conv oper-
ation is proposed to constrain the computation complexity
for semantic segmentation. In [2], authors make the first
attempt to employ NAS to search for the entire network ar-
chitecture for pose estimation. Note that MTL-NAS [11]
uses a two-branch architecture to solve joint learning but it
only searches the interaction part and its search space is not
flexible enough that it just searches which node of one task
should be connected to the other but ignores which opera-
tions should be applied to the node. Different from prior
works, we adopt the PC-DARTS as our main search algo-
rithm and design an entire searchable framework to address
the specific joint tasks.

3. Methods
3.1. Overview

In this section, we introduce the details of NPPNet, in-
cluding the overall network architecture and its compo-
nents. As shown in Fig. 2, we view the forward process
of NPPNet in two steps.

Firstly, to ensure the discriminative features are extracted
for each task, we adopt a two-branch structure. That is, each
task has its own task-specific encoder-decoder. The pose
branch generates both main and auxiliary pose features,
while the parsing and edge features are obtained through
the parsing branch. We formulate the cell-based space to
search for the optimal network architecture. Secondly, since
two tasks are also highly correlated, to build more inter-
actions and free the interaction between tasks from man-
ually designed modules, we propose to search the con-
nections between intermediate features as well as between
high-level features. Specifically, for intermediate feature in-
teraction, we densely connecting multi-scale features from
two branches to let two tasks fully communicate with each
other. On the other hand, the searching for the fusion of
high-level features is conducted by feeding four features,
the main pose and parsing features as well as the auxil-
iary pose feature and edge feature, to the designed pose and
parsing cells. With the optimization of multi-task loss, PC-
DARTS search strategy, and the proposed search spaces,
we obtain the optimal network architecture, which is then
trained for further inference.

3.2. Search Algorithm

PC-DARTS [43] has demonstrated superior perfor-
mances in searching for classification architecture while
keeping memory usage constrained. Therefore, we employ
it as the basic searching method in our framework and cus-
tomize it to suit our purpose. Specifically, a searchable cell
can be represented as a Directed Acyclic Graph (DAG) con-
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taining N nodes. Each node is connected to all the nodes
before it, while each connection represents a mixed opera-
tion. For the mixed operation, in order to reduce the mem-
ory cost, PC-DARTS performs the partial channel connec-
tion on the feature of the input node. It samples and extracts
1/k channels for the computation 2, in this way, the mixed
operation can be formulated as:

MixOP(x) = [
∑
o∈O

exp (αo)∑
o′∈O exp (αo′ )

· o(xk+);xk−] (1)

where xk+ is the sampled 1/k channels of input tensor, and
xk− is the remaining channels. O is a predefined set of
operations, and o(·) represents one of the operation from
O, such as 3x3 conv etc. αo indicates attaching a weight
to the given operation o(·), and [; ] stands for concatenating
tensors on the channel dimension.

To stabilize the searching process, the partial channel
connection adds a weight βi,j to each connection from node
j to node i, the computation of node xi is:

xi =
∑
j<i

exp (βi,j)∑
j′<i exp (βi,j′ )

· MixOPi,j(xj)

γo
i,j =

exp (βi,j)∑
j′<i exp (βi,j′ )

·
exp (αo

i,j)∑
o′∈O exp (αo′

i,j)

(2)

Here, MixOPi,j indicates attaching the operation weight
vector αi,j . αi,j and βi,j are updated by gradients, and the
contribution of the operation o(·) in connection from node j
to node i can be expressed as γo

i,j . After the search is done,
we perform the pruning scheme to keep the operations that
contribute the most. We adopt the above searching algo-
rithm throughout the proposed framework and design the
unique search space for each search type. We denote all
architecture parameters as: A = {α, β}.

Inspired by the related works, the operation set we adopt
is as follows:
• stand conv 3x3 • stand conv 1x1
• max pooling 3x3 • skip connect
• dilated conv 3x3 with rate 2 • SE connect
• dilated conv 3x3 with rate 4 • pooled conv
We use two types of dilated convolution with different di-
lation rates in the searching space since the larger recep-
tive field is favorable for both parsing and pose estimation,
and the SE connect [16] helps to enhance the spatial-wise
and channel-wise information. The pooled conv [45] re-
duces the computation complexity while enlarges the recep-
tive field, and the skip connection is selected to prevent the
gradient from disappearing.

3.3. Encoder-Decoder Search

Though there are visual correlations between pose esti-
mation and human parsing in extracting structural and se-

2We empirically set k = 2 in our experiments.

(a) (b) (c)

Figure 3. Feature maps generated by different methods. (a) is gen-
erated by shared encoder architecture, (b) is generated by manu-
ally designed unshared encoder architecture, and (c) is generated
by an unshared encoder-decoder structure searched by our method.
In both (b) and (c), the first column is generated from the pose
branch, and the second column is generated by the parsing branch.
Compared to other methods, our model learns more discriminative
features for both tasks.
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Figure 4. The details of encoder-decoder architecture. Our encoder
design the normal cell and reduction cell by referring to DARTS
[24]. And the decoding cell is modified from the normal cell and
can process two features with different scales. We set M to 1/4
of the total number of cells in the encoder. Each encoder-decoder
generates 7 intermediate features for further interaction.

mantic information from the human body, the differences
between these two tasks inevitably require the discrimina-
tive features learned for their own. Therefore, it is challeng-
ing to improve performances for both of them simultane-
ously with existing encoder-decoder structures. As shown
in Fig. 3, we have conducted a series of experiments to ex-
amine this issue. (a) shows the attention map when employ-
ing a shared encoder (ResNet50-based) for two tasks. It can
be seen that the network is unable to focus on the human
body, which indicates that each task requires its own task-
specific feature. (b) illustrates the attention map after two
separate encoders are applied. Though it is improved com-
pared to (a), there are still many areas of ambiguity, which
leaves room for further improvements.

To address the above issue and obtain a flexible architec-
ture that is free from the manual design, given its potential
to search for efficient network architectures, we propose to
utilize NAS to search for the customized encoder-decoder
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structure of each task, which also lies the foundation for the
feature interaction and fusion. More specifically, we use a
cell-based search space to construct a searchable architec-
ture. For the encoder, we use a stack of normal cells and
reduction cells. As for the decoder, we design the decoding
cell based on the normal cell, which accepts two input fea-
tures with different scales, of which features with low scales
are upsampled first. We use three decoding cells to build the
search space which is similar to FPN [22]. Fig. 4 shows our
encoder-decoder search space. It is worth noting that the
search spaces of the two branches are the same, but we do
not share their architecture parameters. Fig. 3 (c) shows
the attention map after we use NAS to search the encoder-
decoder structure for two branches. It can be seen that two
branches focus on the respective areas that are effective for
each task.

3.4. Multi-Scale Feature Interaction Search

The search of encoder-decoder structure extracts dis-
criminative features for both tasks by maintaining a two-
branch architecture. However, it requires necessary con-
nections between two branches to model their correlation.
Therefore, we propose a feature interaction search to allow
multi-scale features generated by two branches to benefit
from each other. As shown in Fig. 4, we denote the fea-
tures generated by the pose branch in the encoder-decoder
structure as below:

{FLpos
i ∈ Rj·C×H/j×W/j} (3)

where j = 2i−1, i ∈ [1, 4] among encoder outputs, and
j = 27−i, i ∈ [5, 7] among decoder outputs. (H,W ) is the
one fourth of the input size. Similarly, the features of the
parsing branch can be expressed as {FLpar

i (·), i ∈ [1−7]},
and the shape is the same as the pose feature. The two sets
of multi-scale features are generated in a down-sampling
and then up-sampling fashion.

Our objective here is to find the optimal connections be-
tween these two sets of features. On the one hand, we ex-
pect that the communication between two sets travel across
scales so that the search space can be increased. On the
other hand, we tend to avoid cycles when constructing the
search space. Therefore, we design a densely connected
search space, allowing the network to discover efficient con-
nections by itself. As shown in the red dashed box in Fig. 2,
We represent these features as two sets of nodes. Each
node is connected with all the previous nodes from another
branch, among which each connection indicates a mixed op-
eration. Each node can be computed as:

FLpos
′

i =
∑
j≤i

βlposi,j · MixOPpos
i,j (FLpar

j ) + FLpos
i (4)

FLpar
′

i =
∑
j≤i

βlpari,j · MixOPpar
i,j (FLpos

j ) + FLpar
i (5)

where the input of MixOP(·) in each branch comes from
the other one, though the search space of the proposed in-
teraction search is not cell-based, the searching algorithm
described in Sec. 3.2 can still be applied.

3.5. High-Level Feature Fusion Search

As the input image passes through the encoder-decoder,
there are four high-level features generated. Each branch
contains two types: one is the main features for the given
task, the other is the auxiliary features to help the predic-
tion of the main task. With these four features, we consider
utilizing the NAS to search for the way to fuse them, which
helps them to benefit from each other’s abundant structural
and semantic information.

Specifically, we include the edge prediction as an auxil-
iary task to the parsing branch. Moreover, in order to bal-
ance the pose branch, we also add an auxiliary branch to
it, the ground-truth of which is the heatmap after the Gaus-
sian blurring. The two sets of high-level features can be
expressed as: {FHpos, FHpos aux}, {FHpar, FHedg} re-
spectively, and the sizes of FH∗ are all (C,H,W ). We
concatenate {FLi, i ∈ [5, 7]} from the outputs of encoder-
decoder, and use two 1×1 convolutions to generate the main
and auxiliary features respectively:

FHm = ϕ([FLpos
5 ;FLpos

6 ;FLpos
7 ])

FHn = ϕ([FLpar
5 ;FLpar

6 ;FLpar
7 ])

(6)

where ϕ(·) stands for the 1 × 1 convolution, and m ∈
{pos, pos aux}, n ∈ {par, edg} represent two branches.
At last, the two sets of features are used as the inputs of
high-level feature fusion.

To allow them fully interacted, we design a parallel
stacked cell-based search space. The basic normal cell only
has two input nodes and one output node, which indicates
a relatively smaller search space. To input more features
and enlarge the search space, we design two new cells,
named pose cell and parsing cell, which both have three in-
put nodes, four intermediate nodes, and two output nodes.
The search space is thereby expanded. As shown in purple
dashed box in Fig. 2, we set the input nodes of pose cell
as: {FHpos, FHpos aux, FHpar}, and the input nodes of
parsing cell as: {FHpar, FHedg, FHpos}. The first output
node of the pose cell is obtained by concatenating four in-
termediate nodes, while we generate the second output node
by concatenating three input nodes. In this way, we utilize
all available nodes and establish connections among them.
Moreover, we fuse features from two branches iteratively
by stacking the pose cell and the parsing cell to enhance the
interaction among them.

3.6. Training & Optimization

We apply a Gaussian heatmap generated from keypoints
to supervise the pose estimation and use the Mean Square
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Error as the loss function. The same setting is adopted for
the pose auxiliary task. For training the parsing branch,
Cross-Entropy loss is employed for two sets of predictions.
In order to adjust the proportions of these losses, we adopt
the uncertainty loss [17] to learn the weights for each loss.
More details can be referred to the supplementary materials.

In the searching phase, the network has two sets of pa-
rameters, the architecture parameters A and the weight pa-
rameters W . We use an alternate optimization strategy in
each epoch:

W∗ = argmin
W

Ltra w(W,A∗)

A∗ = argmin
A

Ltra α(W∗,A) + E(A)
(7)

where tra w and tra α are two equal parts randomly di-
vided in the training set, E(A) is the entropy of architecture
parameters, which is calculated by:

E(A) =
∑

αi,j∈A
−

exp (αo
i,j)∑

o
′∈O exp (αo

′

i,j)
· log(

exp (αo
i,j)∑

o
′∈O exp (αo

′

i,j)
) (8)

In order to address the instability of the search algorithm,
we use E(A) as a regularization to constrain the distribu-
tion of architecture parameters to be more concentrated so
that after the network converges and prunes, the remaining
connections will occupy a large proportion, and the perfor-
mance gap between the searching phase and the retraining
phase can be narrowed. In the retraining phase, we use the
full training set, and we only need to update weight param-
eters W .

4. Experiments

4.1. Datasets & Metrics

We evaluate our proposed NPPNet on two benchmark
datasets that contain both human parsing and pose estima-
tion annotations: the LIP [21] and the extended PASCAL-
Person-Part [41]. LIP contains 50,462 images with elab-
orated pixel-wise annotations of 19 semantic human part
labels and 2D human poses with 16 keypoints, of which
30,462 are used for training, 10,000 for validation, and
10,000 for testing. The extended PASCAL-Person-Part is
a challenging multi-person dataset containing annotations
for 14 body joints and 6 semantic parts. There are 3,533
images, which are split into 1,716 for training and 1,817 for
testing. Since the extended PASCAL-Person-Part dataset is
a multi-person dataset, we use Mask R-CNN [14] to gen-
erate single-person images. For the LIP dataset, following
[21], we use Mean Intersection-over-Union (mIOU) to eval-
uate human parsing performance and Percentage of Correct
Keypoints (PCK) to evaluate pose estimation. For the ex-
tended PASCAL-Person-Part, we use mIOU and Mean Av-
erage Precision (mAP), respectively.

4.2. Implementation Details

In the searching phase, we set C in Sec. 3.4 and Sec. 3.5
to 64. The total number of cells L in the encoder is set to
12, and the number of pose cells and the parsing cells are
both 3. The entire search process is divided into two stages.
First, we only search for the encoder-decoder structure for
50 epochs, then we fix its architecture and search for the
feature interaction and fusion architectures for another 50
epochs. In both stages, we use the Adam optimizer with
an initial learning rate of 0.001 and drop it to one-tenth at
epoch 35 and 45. In the retraining phase, we set C and L to
128 and 16, respectively, and keep the number of pose cells
and parsing cells unchanged. The input size of the image is
384 × 384, and we conduct a series of data augmentations,
including random rotation in [−40◦, 40◦], random scaling
in [0.5, 1.5], and random left-right flipping. We employ
Adam as the optimizer with an initial learning rate of 0.001,
and we train NPPNet for 120 epochs and drop the learn-
ing rate to one-tenth at epoch 85 and 105. In the inference
phase, by referring to [31], we use flipping and multi-scale
with an interval of 0.25 from 0.5 to 1.5. We test our net-
work on a 12GB TITAN V for a fair comparison and NPP-
Net achieves 7 FPS which is faster than JPPNet (2 FPS) and
MuLA (5 FPS).

4.3. Search on LIP

We conduct searching experiments on the LIP dataset
and search for 5 times. During each search, the training
set is randomly divided into two equal parts, corresponding
to train w and train α in Sec. 3.6. And we select the best
performing architecture from them. The entire searching
takes 3 days on four P40 GPUs.

After the search, we combine two pruning schemes. First
of all, since the search of encoder-decoder and feature fu-
sion are both cell-based, we apply the pruning scheme in
DARTS [24]. However, the search for the multi-scale fea-
ture interaction is not cell-based, and the connections are
much denser. More valuable connections should be retained
to ensure the efficiency of the network after pruning. There-
fore, we design a new pruning scheme: for each node, we
use γo

i,j as the proportion of the operation o(·) in connection
from node j to node i, and then select n operations with top
n largest proportion. We constrain the sum of proportion
over 0.7 and set n ≤ 4 in our experiments. The pseudo-
code of the above method and resulting architecture can be
found in supplementary materials.

4.4. Experimental Results

Results on LIP. Tab. 1 shows the comparisons of human
parsing between the proposed NPPNet and state-of-the-art
models on the LIP validation set. As we can see, NPPNet
achieves the highest mIOU of 58.56% as well as the best
performance on 9 semantic parts. It is worth noting that
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Table 1. The comparison of human parsing with state-of-the-art methods on the LIP validation set.

Method bkg hat hair glove glass u-clot dress coat sock pants j-suit scarf skirt face l-arm r-arm l-leg r-leg l-shoe r-shoe mIOU
Attention [4] 84.00 58.87 66.78 23.32 19.48 63.20 29.63 49.70 35.23 66.04 24.73 12.84 20.41 70.58 50.17 54.03 38.35 37.70 26.20 27.09 42.92
MMAN [28] 84.75 57.66 65.63 30.07 20.02 64.15 28.39 51.98 41.46 71.03 23.61 9.65 23.20 69.54 55.30 58.13 51.90 52.17 38.58 39.05 46.81
SS-NAN [47] 88.67 63.86 70.12 30.63 23.92 70.27 33.51 56.75 40.18 72.19 27.68 16.98 26.41 75.33 55.24 58.93 44.01 41.87 29.15 32.64 47.92
CE2P [36] 87.67 65.29 72.54 39.09 32.73 69.46 32.52 56.28 49.67 74.11 27.23 14.19 22.51 75.5 65.14 66.59 60.1 58.59 46.63 46.12 53.1
HRNet [37] 87.55 68.69 73.31 40.41 34.27 70.41 32.42 57.89 47.31 74.79 25.01 25.52 29.77 76.11 66.11 67.95 59.77 60.29 44.59 45.79 54.40
BraidNet [26] 88.04 66.84 72.04 42.54 32.14 69.84 33.74 57.44 49.04 74.94 32.44 19.34 27.24 74.94 65.54 67.94 60.24 59.04 47.44 47.94 54.54
CorrPM [46] 87.77 66.20 71.56 41.06 31.09 70.20 37.74 57.95 48.40 75.19 32.37 23.79 29.23 74.36 66.53 68.61 62.80 62.81 49.03 49.82 55.33
PCNet [44] 88.68 69.32 73.08 44.72 34.21 72.59 36.02 60.84 51.03 76.66 38.78 31.60 33.94 76.65 67.07 68.74 60.22 60.16 47.65 48.67 57.03
CNIF [39] 87.99 69.55 73.45 45.17 41.45 70.57 38.52 57.94 54.02 75.07 28.00 31.92 30.20 76.38 68.28 69.49 65.52 65.51 52.67 53.38 57.74
DTCF [27] 88.92 69.70 74.75 45.66 40.73 71.50 36.52 59.16 52.39 76.97 30.93 29.36 31.33 77.19 68.57 70.25 64.52 64.04 51.57 52.30 57.82
MuLA [31] - - - - - - - - - - - - - - - - - - - - 49.30
JPPNet [21] 86.25 63.55 70.20 36.16 23.48 68.15 31.42 55.65 44.56 72.19 28.39 18.76 25.14 73.36 61.97 63.88 58.21 57.99 44.02 44.09 51.37
NPPNet (ours) 88.38 66.43 72.34 51.98 31.59 71.88 40.88 60.54 49.81 77.07 27.55 26.58 33.54 75.31 71.04 71.50 71.75 70.55 56.66 55.84 58.56

Table 2. The comparisons of human pose estimation with state-of-
the-art methods on the LIP test set.

Method Head Sho. Elb. Wri. Hip Knee Ank. PCK
CPM [40] 86.6 83.6 75.8 72.1 70.9 62.0 59.1 74.0
Hourglass [30] 86.4 84.7 77.5 73.9 74.0 63.3 58.4 75.2
Hybrid Pose Machine 71.7 87.1 82.3 78.2 69.2 77.0 73.5 77.2
BUPTMM-POSE 90.4 87.3 81.9 78.8 68.5 75.3 75.8 80.2
Pyramid Stream Network 91.1 88.4 82.2 79.4 70.1 80.8 81.2 82.1
Chou et al. [7] 94.9 93.1 89.1 86.5 75.7 85.5 85.7 87.4
GCCPM [33] - - - - - - - 87.9
HRNet [37] 94.7 93.2 88.7 87.1 78.5 85.9 86.3 88.0
JPPNet [21] 93.3 89.3 84.4 82.54 70.0 78.3 77.7 82.7
MuLA [31] 94.9 93.1 89.9 87.6 75.9 84.9 84.4 87.5
NPPNet (ours) 95.8 95.6 90.3 88.5 79.0 86.7 86.7 88.9

NPPNet significantly outperforms other methods by 4-5%
on glove, l-arm, r-arm, l-leg, r-leg, l-shoe, and r-shoe. It can
be seen from Fig. 1, these classes often contain prominent
keypoints, e.g. shoe areas contain ankles and arm areas in-
clude elbows, which validates that our model has captured
the correlation between two tasks. Apart from models pro-
posed only for human parsing, JPPNet [21] and MuLA [31]
are two joint learning frameworks, yet unlike our model,
they fail to improve the performances of both tasks.

Tab. 2 shows the comparison of the pose estimation per-
formance on the LIP test set. The compared pose-only
models include classic Hourglass network [30] and Con-
volutional Pose Machine [40], as well as their extensions
BUPTMM-POSE and Hybrid Pose Machine. It can be seen
that NPPNet surpasses them in a large margin, which val-
idates the effectiveness of joint training of two tasks. Our
model also outperforms the joint frameworks JPPNet and
MuLA on the pose estimation and reports the best PCK
88.9%. We can see that NPPNet achieves the best PCK on
each keypoint, which is benefited from the dense semantic
information from the parsing branch.

More importantly, our model achieves the best perfor-
mances on both tasks with 73.4M parameters and 113.7
GFlOPs that are lower than some joint frameworks (JPP-
Net [21]) and single-task frameworks (CNIF [39]), which
shows its great potential to explore the interaction of the
two branches. Please see the detail in the supplementary
materials.

As shown at the top of Fig. 5, we compare NPPNet with
several methods for the visualization of human parsing. It
can be seen that NPPNet performs significantly better in ar-
eas containing prominent keypoints. This verifies that NPP-

Table 3. The comparison of human parsing with state-of-the-art
methods on the extended PASCAL-Person-Part validation set.

Method bkg head torso u-arm l-arm u-leg l-leg mIOU
Attention [4] 93.65 81.47 59.06 44.15 42.50 38.28 35.62 56.39
SS-NAN [47] 97.23 86.43 67.28 51.09 48.07 44.82 42.15 62.44
WSHP [9] 97.72 87.15 72.28 57.07 56.21 52.43 50.36 67.6
HRNet [37] 95.63 87.61 73.21 61.32 62.46 54.25 51.27 69.39
CNIF [39] 96.02 88.02 72.91 64.31 63.52 55.61 54.96 70.76
DTCF [27] 96.25 88.32 73.54 64.19 63.91 55.01 54.34 70.80
Xia et al. [41] 95.32 85.50 67.87 54.72 54.30 48.25 44.76 64.39
MuLA [31] - - - - - - - 65.10
NPPNet (ours) 95.88 86.78 72.50 66.33 63.95 58.06 58.59 71.73

Table 4. The comparison of human pose estimation with state-of-
the-art methods on the PASCAL-Person-Part validation set.

Method Head Sho. Elb. Wri. Hip Knee Ank. mAP
Chen and Yuille [40] 45.3 34.6 24.8 21.7 9.8 8.6 7.7 21.8
Insafutdinov et al. 41.5 39.3 34.0 27.5 16.3 21.3 20.6 28.6
PIL [32] 67.8 56.6 45.7 41.9 24.2 26.4 24.2 41.0
Xia et al. [41] 58.0 52.1 43.1 37.2 22.1 30.8 31.1 39.2
MuLA [31] - - - - - - - 39.9
NPPNet (ours) 68.1 57.9 46.1 42.0 27.3 27.6 25.7 42.1

Net can extract the structural information of keypoints to
help infer the categories of the body regions. On the other
hand, the bottom of Fig. 5 shows the comparison between
NPPNet and related methods on pose estimation. As we can
see, NPPNet can locate keypoints more accurately with the
help of parsing information.

Results on extended PASCAL-Person-Part. For the
extended PASCAL-Person-Part, we directly employ the ar-
chitecture searched on the LIP dataset. Tab. 3 shows the
performance of human parsing reported by related meth-
ods on the validation set. Among them, Xia et al. [41] and
MuLA [31] are both joint learning methods, and PIL [32]
utilize parsing to assist pose. Consistent with the observa-
tions on the LIP dataset, NPPNet outperforms other meth-
ods in areas where the joint points are prominent. Tab. 4
shows the comparison of the pose estimation performance
on the validation set. NPPNet surpasses the best-compared
model PIL by 1.1% with 42.1% mAP.

In summary, our NPPNet outperforms both joint learning
and single-task models on two datasets, which verifies the
effectiveness of the proposed searching method.

4.5. Ablation Studies

To verify the effectiveness of the three searches we pro-
posed, we establish a baseline for comparison, where its
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Table 5. Ablation studies on the LIP validation set.
Enc.-Dec. Fea. Inter. Fea. Fus. mIOU PCK

× × × 46.72 84.0
✓ × × 51.13 85.6
× ✓ × 50.31 85.7
✓ ✓ × 55.74 87.6
× × ✓ 48.05 85.2
✓ × ✓ 53.58 86.9
× ✓ ✓ 52.03 86.5
✓ ✓ ✓ 57.14 88.3

encoder-decoder is a fixed architecture, and conduct exten-
sive ablation studies based on it. We adopt plain ResNet50
[15] as the encoder, and use FPN [22] as the decoder. With-
out losing generality, we perform studies on the LIP dataset
and do not include flipping and multi-scale testing to speed
up the process.

Encoder-Decoder. First of all, we report the perfor-
mance of the baseline model. Although it has two branches
to extract pose and parsing features, the parsing perfor-
mance is still very low, which proves the existing encoder-
decoder structure is not optimal for joint training. Com-
pared to it, the searched structure obtains significantly bet-
ter results, which validates that we can obtain reliable pose
and parsing features for the subsequent interaction and fu-
sion search. From Tab. 5, the searched basic architecture
are 4.41% and 1.6% higher than the baseline in mIOU and
PCK, respectively.

Feature Interaction. The role of feature interaction
search is to allow multi-scale features to exchange infor-
mation and enhance each other. Based on the experimental
results, our search has greatly improved both branches, es-
pecially the parsing one. By adding interaction search to the
baseline, it increases mIOU by 3.59% and PCK by 1.7%.
When it is applied to the searched encoder-decoder struc-
ture, it also increases 4.61% and 2.0% on mIOU and PCK,
respectively. Compared to the baseline, the improvements
on the searched structure are much higher, which further
confirms the searched encoder-decoder is more suitable for
the joint training.

Feature Fusion. The searching of high-level feature fu-
sion aims at allowing two branches to benefit from each
other’s structural and semantic information. We observe
that it improves more on the searched encoder-decoder
structure than the baseline. With both feature interaction
and fusion search, the model improves by 6.01% mIOU and
2.7% PCK on the searched encode-decoder structure. And
with all three proposed searches, the final model achieves
the best performances on both tasks.

5. Conclusion
Joint training for human parsing and pose estimation is a

non-trivial task. In order to model the correlation between
the two tasks on top of extracting discriminative features,

Input GT Ours CorrPM JPPNet MuLA

GT Ours MuLA JPPNet GCCPM

Figure 5. The visualization results on the LIP dataset. The top
is for human parsing and the bottom is for pose estimation. We
have highlighted visual improvements on hard joints (hips, pelvis)
with red circles and our model obtains more accurate predictions
against existing frameworks on both tasks.

in this paper, we propose to search for the optimal network
architecture from three aspects, namely the basic encoder-
decoder structure, the multi-scale feature interaction, and
the high-level feature fusion. Extensive experiments ver-
ify that with the proposed NPPNet, the structural informa-
tion from the pose branch helps to allocate semantic body
regions, and the abundant semantic information from the
parsing branch, in turn, improves the pose estimation.
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