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Abstract

Increasingly, modern mobile devices allow capturing im-
ages at Ultra-High-Definition (UHD) resolution, which in-
cludes 4K and 8K images. However, current single image
super-resolution (SISR) methods focus on super-resolving
images to ones with resolution up to high definition (HD)
and ignore higher-resolution UHD images. To explore their
performance on UHD images, in this paper, we first in-
troduce two large-scale image datasets, UHDSR4K and
UHDSR8K, to benchmark existing SISR methods. With
70,000 V100 GPU hours of training, we benchmark these
methods on 4K and 8K resolution images under seven differ-
ent settings to provide a set of baseline models. Moreover,
we propose a baseline model, called Mesh Attention Net-
work (MANet) for SISR. The MANet applies the attention
mechanism in both different depths (horizontal) and differ-
ent levels of receptive field (vertical). In this way, correla-
tions among feature maps are learned, enabling the network
to focus on more important features.

1. Introduction
The task of single image super-resolution (SISR) is to

produce an image of high resolution (HR) given a low res-
olution (LR) input. In practice, image super-resolution has
a wide range of applications, such as medical image anal-
ysis [33], image generation [19], and face recognition at
large distances [53]. Super-resolving images is inherently
ill-posed, i.e., one LR image can correspond to multiple HR
images. To tackle this problem, traditional methods use
prior cues from HR images or LR exemplar images [14,
12, 46, 13, 6, 22, 47, 11, 18, 37, 31]. Recent deep learn-
ing methods remove the need to explicitly design different
types of priors. Networks are trained with pairs of corre-
sponding HR and LR images in an end-to-end manner. With
sufficient training data, deep learning models have achieved
impressive results [8, 44, 32, 20, 35, 26, 51, 52, 29, 43].

Most of them are trained based on HD images of up to
2K resolution, with the DIV8K [15] dataset being an excep-

tion. Thus, it is not clear how they perform in the case of
ultra-high definition (UHD) images, including 4K and 8K
resolution images. Currently, an increasing number of mo-
bile devices supports capturing images at these resolutions.
UHD images provide better visual pleasing effects and they
are also better to train SISR approaches, applicable to large
upscaling factors like 8× or 16×. In this paper, we explore
the SR performance of current SISR methods on such UHD
images. We collect two large-scale datasets of images with
resolutions of 4K and 8K, respectively, from the Internet.
The 4K dataset, UHDSR4K, includes 5, 999 and 2, 100 im-
ages for training and testing, respectively. The 8K dataset,
UHDSR8K, contains 2, 029 training and 937 test images, re-
spectively. As far as we know, UHDSR4K and UHDSR8K
are the largest UHD image datasets for 4K and 8K image
super-resolution, respectively. Sample images are shown in
Fig. 1.

We propose seven settings to assess the performance of
existing methods. These include different upsampling fac-
tors (from 2× to 16×), and two additional settings to eval-
uate common image degradations, blur plus downsampling
and downsampling plus noise. We evaluate ten recent SISR
methods on these datasets, and train the respective models
on the new datasets. Training one model on a single dataset
takes approximately three weeks, and the total training time
for all models was over 70, 000 V100 GPU hours.

By conducting this benchmarking study, we thus ob-
tain comprehensive understanding of how the current SISR
models work in the specific 4K and 8K settings, both in
terms of standard metrics, such as PSNR and SSIM, and
perceptual quality.

Further, we propose a Mesh Attention Network (MANet)
to improve the feature representation ability via learning the
inter-dependencies between different feature maps. Specif-
ically, MANet is a mesh architecture, whose horizontal and
vertical layers represent the feature maps from different
depths and different receptive fields, respectively. Within
the MANet, a novel mesh attention module is introduced to
simultaneously learn the relationship between features from
different depths and different levels of receptive fields. Fi-
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(a) Sample images from the UHDSR4K dataset.

(b) Sample images from the UHDSR8K dataset.

Figure 1. Sample images from the UHDSR4K and UHDSR8K datasets. These two datasets consist of a large number of 4K and 8K
UHD images, respectively.

nally, the weighted sum of feature maps from horizontal and
vertical layers allows the MANet to focus on informative
depths and receptive fields from input LR features to recon-
struct SR images.

In summary, the contributions of this paper are three-
fold:

• First, we introduce two large-scale UHD image
datasets for super resolving. To our knowledge, they
are the largest-scale UHD datasets in the field of 4K
and 8K image super-resolution. In addition, both
datasets provide seven degradation settings to conve-
niently evaluate SISR methods.

• Second, we extensively evaluate the state-of-the-art
SISR methods on the two datasets. By doing so, we
are able to understand the potential and limitations of
these methods.

• Third, we propose a baseline model, called MANet for
SISR with a novel mesh attention module. Experi-
ments verify its effectiveness on the UHD SISR task.

2. Related Work

2.1. SISR Datasets

Several datasets for SISR training and evaluation have
been introduced in the literature, including T91 [47], Set5

[3], BSDS300 [27], BSDS500 [2], General-100 [10], Out-
doorScene [40], PIRM [4], Manga109 [28], Urban100 [17],
DIV2K [36], RealSR [5], L20 [38], DIV8K [15], Set14
[48], and Sun-Hays 80 [34]. Among these datasets, the
sizes of T91 [47], Set5 [3], BSDS300 [27], BSDS500 [2],
General-100 [10], PIRM [4], Manga109 [28], RealSR [5],
and Urban100 [17] are relatively small, containing 5-595
images each for training and testing, respectively. Image
resolutions range from 264 × 204 to 826 × 1169. Wang
et al. provided a large-scale OutdoorScene dataset, which
includes 10, 624 images, but at a mean image resolution of
only 553× 440. The DIV2K dataset is the current standard
dataset for training and testing methods for 2K image super-
resolution. It contains 800 and 200 images for training and
testing, respectively. Yang et al. [45] published an earlier
SISR benchmark dataset, evaluating SISR methods on 229
images with resolution lower than 2K.

In order to evaluate the performance on even higher res-
olution images, Timofte et al. [38] introduced the L20
dataset, containing images of 3843 × 2870 resolution. Al-
though this is within the UHD range, the number of images
is too small to train state-of-the-art deep SISR methods.
More recently, Gu et al. [15] created the DIV8K dataset,
which contains 1, 504 images with 8K resolution only. In
this paper we focus on benchmarking state-of-the-art deep
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learning methods on 4K and 8K resolution images and in-
troduce two new large-scale datasets for this task. See Ta-
ble 1 for an overview of popular benchmark datasets.

2.2. Deep Learning based SISR Methods

Most state-of-the-art SISR methods are based on deep
learning [43]. For classical solutions to SISR, readers can
refer to other works [39]. The work by Dong et al. [8, 9]
first adopted deep learning for image super-resolution, and
many improvements have been proposed since. For exam-
ple, Kim et al. [21] proposed a deeply-recursive convolu-
tional network (DRCN). Skip connections are introduced to
train this network. EDSR [26] is a deep residual network
without redundant modules and is combined with multi-
scale processing. Efficiently super-resolving images has
also attracted attention in recent years [23, 20, 10]. GANs
were introduced in [24] to enhance the perceptual quality
of the produced HR images. Similarly, GANs are used in
[41] to enhance the visual quality using adversarial and per-
ceptual loss functions. Rather than focusing on pixel-wise
reconstruction, in [30], Sajjadi et al. proposed a novel net-
work focusing on automated texture synthesis to enhance
details. In [16], a Deep Back-Projection Network (DBPN)
is developed to study the mutual dependencies between HR
and LR images, with a mechanism of error feedback. Hi-
erarchical features are learned in [52] to make full use of
cues from various scales. Dense connections are also intro-
duced in this paper to improve the feature representation.
Residual channel attention networks (RCAN) were intro-
duced in [51], where a residual-in-residual (RIR) structure
and a channel attention module were proposed. To over-
come the shortage of channel attention, i.e., ignoring the
correlation among different layers, a new holistic attention
network (HAN) is proposed in [29], which is composed of a
layer attention module (LAM) and a channel-spatial atten-
tion module (CSAM). Dai et al. also employed the atten-
tion mechanism for the SISR task in [7]. Specifically, they
proposed a second-order attention network (SAN) to exploit
the correlation of features from the intermediate layers. The
feedback mechanism is also employed in [25]. An image
super-resolution feedback network (SRFBN) is constructed
with RNN structure to refine feature representations with
information in difference scales.

3. Benchmark Datasets

We present a benchmark study by evaluating recent state-
of-the-art algorithms on UHD image super-resolution. To
this end, we first build appropriate datasets. In the follow-
ing, we introduce the collection process of the UHDSR4K
and UHDSR8K datasets, and the settings associated with
the two datasets for evaluating the selected methods are rep-
resented.

Table 1. Single image super-resolution datasets. We introduce
two new large-scale UHD (4K and 8K) SR benchmark datasets.

Dataset Size Avg. Resolution Format

T91 91 264× 204 PNG
Set5 5 313× 336 PNG
BSDS500 500 432× 370 JPG
BSDS300 300 435× 367 JPG
General-100 100 435× 381 BMP
OutdoorScene 10,624 553× 440 PNG
PIRM 200 617× 482 PNG
Manga109 109 826× 1, 169 PNG
Urban100 100 984× 797 PNG
RealSR 595 1, 541× 1, 302 PNG
DIV2K 1,000 1, 972× 1, 437 PNG
L20 20 3, 843× 2, 870 PNG
DIV8K 1,504 5, 557× 3, 935 PNG

UHDSR4K 8,099 3,840 × 2,160 PNG
UHDSR8K 2,966 7,680 × 4,320 PNG

3.1. The UHDSR Datasets

We collect UHD images of 4K and 8K from the Inter-
net (Google, Youtube, and Instagram), containing diverse
scenes such as city scenes, people, animals, buildings, cars,
natural landscapes, and sculptures. These images were cap-
tured using various cameras in outdoor and indoor scenes,
which are shown in Fig. 1.

The first dataset, UHDSR4K, includes images of
3, 840 × 2, 160 resolution. Its training set contains 5, 999
HR images and the test set 2, 100 HR images, respectively.
The city scenarios of training and testing sets are different.
These two sets also contain the same number of LR images
in each degradation setting, as shown in the next section.
The second dataset, UHDSR8K, is composed of 2, 029 im-
ages for training and 937 images for testing, with different
street scenarios. The image resolution is 7, 680× 4, 320.

We apply seven different degradation settings to each of
these two datasets, obtaining over 77, 000 pairs of HR and
LR images in total.

3.2. Image Degradation Settings

Real-world image degradation processes are complex
and challenging to capture accurately. The strategy em-
ployed in most existing datasets is to simulate the degrada-
tion process by specific operations such as downsampling.
Some datasets contain HR and LR image pairs captured of
the same scene. Other methods use pixel-wise registration
to adjust image pairs. However, as we have only the UHD
images at their original resolution, we follow the strategy of
simulating the degradation [36, 15]. We use seven different
degradation settings, named 2×, 3×, 3× BD, 3× DN, 4×,
8×, 16×. The numbers indicate the downsampling factor,
“D” stands for downsampling, “B” indicates a blur opera-
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Figure 2. The architecture of the proposed mesh attention network. MAN takes a low-resolution image as input, and uses residual
dense blocks (RDB) and dilated convolutions to extract feature maps at different levels and from different receptive fields within the same
level, respectively. Both are fed into a mesh attention module to learn correlations between different levels and different receptive fields.
Finally, a set of layers including upsampling and convolution are used to generate high-resolution images.

tion, and “N ” stands for Gaussian noise that is added to
the LR images. The order of letters indicates the order of
operations, for example, “BD” means that the blur artifact
is applied prior to the downsampling operation. Similar to
[52] and [49], for downsampling, we use bicubic interpola-
tion (BI). When blurring images, Gaussian blur is employed
with a kernel of size 7 × 7 and a standard deviation of 1.6.
Gaussian noise is added to images to simulate the noise ef-
fect. Specifically, the noise level (σ in the Gaussian noise
model) is set as 30.

4. Mesh Attention Network for SR
In this section, we introduce the network architecture of

the proposed Mesh Attention Network (MAN).

4.1. Network Architecture

As shown in Fig. 2, the proposed MAN is composed of
four parts: prepossessing module, dilated convolution mod-
ule, mesh attention module, and up-sampling module.
Prepossessing module. Given a low-resolution image, the
network first extracts features via a convolutional layer.

FC1 = HC1(ILR) , (1)

where ILR, HC1, and FC1 are the input low-resolution im-
age, the function indicating the first convolutional layer, and
features extracted via the first layer, respectively.
Dilated convolution module. FC1 is passed to a dilated
convolution module to further extract features. The dilated
convolutional module consists of several Residual Dense
Blocks (RDB) and a dilated convolutional layer. Specially,
one RDB first takes the FC1 as input to extract features

FRDB1−1 = HRDB1−1(FC1) , (2)

where HRDB−1 and FRDB−1 denote the function repre-
senting the RDB and its extracted features, respectively.

Then dilated convolution is applied to extract two more fea-
tures as,

FRDB2−1 = HRDB2−1(FRDB1−1) , (3)

FRDB3−1 = HRDB3−1(FRDB1−1) , (4)

whereHRDB2−1 andHRDB3−1 are functions of the dilated
convolutional layers with dilation parameters set to 2 and 4,
respectively, to obtain different levels of the receptive field.
FRDB2−1 and FRDB3−1 are their corresponding features.
The proposed dilated convolutional module has N number
of RDBs, and the output of the n-th RDB and dilation con-
volutional layers is denoted as:

FRDB1−d = HRDB1−n(FRDB1−(n−1)) , (5)

where HRDB1−n denotes the n-th RDB operation.
FRDB1−(n−1) and FRDB1−n are its input and output.

The operations in the two streams corresponding to the
n-th RDB are denoted as:

FRDB2−n = HRDB2−n(FRDB1−n) , (6)

FRDB3−n = HRDB3−n(FRDB1−n) , (7)

where HRDB2−n and HRDB3−n are the dilated convolu-
tional layers. Their input, FRDB1−n, is obtained from the
output of RDB2 − n, and their outputs are FRDB2−n and
FRDB3−n. All the FRDB1−n, FRDB2−n, FRDB3−n are of
the same size.
Mesh attention module. After obtaining the three hier-
archical features by the sets of RDBs and dilation convolu-
tional layers, we introduce a mesh attention module to make
full use of the features from all preceding layers, allowing
to make use of features from both horizontal and vertical
directions. The attention module in the horizontal direction
allows the proposed model to address features from differ-
ent levels, and the attention module in the vertical direction
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Figure 3. The architecture of the proposed mesh attention module. Attention mechanism is applied in both the horizontal and vertical
directions to learn the dependency among feature maps from different levels and different receptive fields.

allows the proposed model to process features from differ-
ent levels of the receptive field.

The above three feature groups are fed into the proposed
mesh attention module, which is denoted as:

FMAM = HMAM (concat(FRDB1−1, ..., FRDB3−N )) ,
(8)

where HMAM and FMAM are the functions of the mesh at-
tention module and its output, respectively. We will discuss
the mesh attention module in details in Sec. 4.2.
Up-sampling module. After obtaining the mesh attentive
features in the LR space, we use an up-sampling module,
including a convolutional layer (C2), an up-convolutional
layer (UP ), and another convolutional layer (C3) to recon-
struct high-resolution images. The process can be described
as:

ISR = HUSM (FMAM ) , (9)

where FMAM is the output of the mesh attention module.
HUSM denotes the operations in the up-sampling module.
Its output is the high-resolution image ISR.

4.2. Mesh Attention Module

In order to model inter-dependencies among features at
different depths within the network, we propose a mesh at-
tention module to treat the feature maps from each layer dif-
ferently and learn the relation among them. In the horizon-
tal direction, it learns three groups of dependencies among
features of different depths. Similarly, it learns D groups
of dependencies among features of different levels of the
receptive field in the vertical direction. In this way, the
proposed network is capable of learning different attention
weights corresponding to features of different depths and
levels of the respective field, and thus achieves a better fea-
ture representation ability. As shown in Fig. 3, when the
feature maps are fed into the MAM, they are reshaped and
recombined into two groups. The first group is composed
of three matrices, each of shape N ×HWC, corresponding
to one stream in Fig. 2. This matrix is multiplied with its
transpose to derive anN byN correlation matrix, with each

element being,

wi,j = φ(ϕ(FRDB)i · ϕ(FRDB)
>
j ), i, j = 1, 2, 3, . . . , N,

(10)
where φ and ϕ denote the softmax and the reshape opera-
tion, respectively. FRDB is the output of the dilated convo-
lution module, and i and j are feature indexes to compute
correlations.

Similarly, the second group of features is composed ofN
matrices, where each is of 3×HWC, corresponding to the
depth in Fig. 2. This matrix is multiplied with its transpose
to derive a 3 by 3 correlation matrix, with elements being

wi,j = φ(ϕ(FRDB)i · ϕ(FRDB)
>
j ), i, j = 1, 2, 3. (11)

With this formulation, we obtain N + 3 correlation ma-
trices in total. These two groups of feature maps are mul-
tiplied with these N + 3 correlation matrices to derive two
groups of feature maps (the same as the mesh features in
terms of size). These two groups of features are reshaped
and respectively added with the original feature maps, to
derive two sets of feature maps of size 3×N×H×W ×C.
They are concatenated along the first axis and reshaped to a
tensor of size 6 ×H ×W ×NC, termed as Fmatrix. The
new feature maps Fmatrix help the proposed MAN focus on
different depths and different levels of the respective field.
It is further fed into a convolutional layer to create new fea-
ture maps of size H ×W × NC for post-processing. The
output of MAM can be represented as:

FMAM = Hone(Fmatrix) , (12)

where Hone means convolution.

5. Experiments and Analysis
In this section, we benchmark existing SISR methods

and our proposed MANet on the proposed UHDSR4K and
UHDSR8K datasets.

5.1. Evaluated SISR Methods

We compare ten state-of-the-art SISR methods in a
benchmark study, DRLN [1], HAN [29], RDN [52], RCAN
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Table 2. Performance comparison of representative methods for SISR on the UHDSR4K dataset. Both PSNR and SSIM values are
reported.

Scale Metrics SRCNN FSRCNN VDSR LapSRN EDSR DBPN RCAN RDN HAN DRLN MANet

2× PSNR 42.119 41.535 43.315 43.153 43.614 43.330 43.593 43.642 43.641 43.560 43.742
SSIM 0.9838 0.9828 0.986 0.9856 0.9863 0.9859 0.9862 0.9862 0.9864 0.9862 0.9865

3× PSNR 34.082 33.614 35.115 - 35.674 - 35.576 35.769 35.547 35.808 35.842
SSIM 0.9503 0.9462 0.9575 - 0.9608 - 0.9608 0.9614 0.9601 0.9617 0.9618

3× BD
PSNR 29.681 30.587 32.729 - 35.046 - 35.136 35.199 35.138 34.107 35.240
SSIM 0.8672 0.8824 0.9187 - 0.9438 - 0.9448 0.9455 0.9449 0.9367 0.9457

3× DN
PSNR 30.026 30.12 30.916 - 31.557 - 31.619 31.703 31.563 31.725 31.589
SSIM 0.8756 0.8818 0.8959 - 0.9091 - 0.9090 0.9112 0.9085 0.9110 0.9088

4× PSNR 30.586 30.162 31.540 31.823 32.073 32.157 32.164 32.532 32.177 32.372 32.218
SSIM 0.9131 0.9058 0.9249 0.9281 0.9310 0.9318 0.9311 0.9353 0.9314 0.9338 0.9315

8× PSNR 25.421 25.401 25.924 26.563 26.816 26.772 26.816 27.116 26.856 27.009 26.877
SSIM 0.8126 0.8109 0.8262 0.8411 0.8469 0.8466 0.8483 0.8548 0.8489 0.8520 0.8493

16× PSNR 22.515 22.464 22.733 23.285 23.479 23.434 23.626 23.639 23.656 23.536 23.523
SSIM 0.7498 0.7367 0.7569 0.7714 0.7750 0.7762 0.7812 0.7820 0.7821 0.7813 0.7805

[51], DBPN [16], EDSR [26], LapSRN [23], VDSR [20],
FSRCNN [10], and SRCNN [8]. All methods are based on
deep learning.

5.2. Implementation

Both of the UHDSR4K and UHDSR8K datasets have
seven different degradation settings. Each setting corre-
sponds to pairs of LR and HR images, which are used to
train an SR model. For each method compared in the bench-
mark, we use the released code and settings as in the orig-
inal publication. LapSRN [23] and DBPN [16] do not pro-
vide models for the upscaling factor 3×. Therefore, we
do not evaluate their performance of the settings of 3×,
3× BD and 3× DN . In addition, almost all of the above
original codes do not provide models for the upscaling fac-
tor 16×. In this paper, we modify them and make them be
able to work in the case of 16× super-resolution. We set
the number of training epochs for all methods as 1000. All
models are trained using V100 GPU for about three weeks,
thus the total training hours are 24× 7× 3× 7× 10× 2 =
70, 560. The best performance is reported in the bench-
marking study. Many metrics (like PSNR, SSIM [42] and
LPIPS [50]) can be used as quantitative metrics. In this pa-
per, we use PSNR and SSIM since they are most popular
for SR. Specifically, we conduct the calculation of PSNR
and SSIM in the RGB space. Patch based computation is
only applied for 8K images, which are cropped to four 4K-
resolution patches

5.3. UHDSR4K SR Dataset

We first evaluate the ten methods and our proposed
MANet on the UHDSR4K images to explore their perfor-
mance on 4K image super-resolution.

BI, BD and DN degradation models are widely used in
SISR settings. Table 2 shows a quantitative comparison of
2×, 3×, 3 × BD, 3 × DN , 4×, 8× and 16× super-

resolution settings. Among the ten state-of-the-art methods,
in terms of PSNR, RDN achieves the best performance on
the 2×, 4×, 8×, 16× settings. DRLN achieves the best
performance on the 3 × BD setting, and VDSR achieves
the best performance in the case of 3 × DN . In terms of
SSIM, HAN achieves the best performance on the 2× and
16× settings. DRLN achieves the best performance on the
3× and 3 × BD settings. RDN achieves the best perfor-
mance on the 3 × DN , 4× and 8× settings. Also, based
on the results, for all methods it is generally more and more
difficult to super-resolve high-quality images with the in-
creasing of upsampling factors. The proposed MANet is
based on the residual dense block from RDN, and applies
a mesh attention module to capture the correlation of fea-
tures from the intermediate layers. Therefore, it achieves
satisfactory performance on all seven degradation settings.
Specially, it outperforms the current state-of-the-art SISR
methods on 2×, 3× and 3× BD settings.

We also show a visual comparison of different methods
on the UHDSR4K dataset for 8×, 3 × BD and 3 × DN
SR in Fig. 4. We can find that though the PSNR and
SSIM show difference, it is difficult to tell the difference
among the qualitative results from the RCAN, RDN, HAN,
DRLN and LMNet. At the same time, there still exists a
clear gap between the HR images and SR results from cur-
rent state-of-the-art SISR methods. As Fig. 4(b) and Fig.
4(c) show, the HR images are sharper than the SR versions.
Meanwhile, in some cases, even though the SISR methods
can generate sharp images, details are still missing like Fig.
4(a).

5.4. UHDSR8K SR Dataset

To evaluate the ten methods on 8K SISR, we provide the
quantitative results on the UHDSR8K dataset in Table 3.
Based on the PSNR values, HAN achieves the best perfor-
mance on 2×, 3×, 3 × BD degradation settings. DRLN
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(a) Visual results of BI models (×8) on the UHDSR4K dataset.

(b) Visual results of BD models (×3) on the UHDSR4K dataset.

(c) Visual results with DN model (×3) on the UHDSR4K dataset.

Figure 4. Visual results corresponding to different settings on the UHDSR4K dataset. From left to right: HR, results of bicubic,
SRCNN, VDSR, RCAN, RDN, HAN, DRLN, and ours. Best viewed in color.

Table 3. Performance comparison with representative methods for SISR on the UHDSR8K dataset. Results are reported in terms of
both PSNR and SSIM.

Scale Metrics SRCNN FSRCNN VDSR LapSRN EDSR DBPN RCAN RDN HAN DRLN MANet

2× PSNR 55.591 54.980 55.981 56.128 56.645 55.967 57.323 57.061 57.163 56.740 57.371
SSIM 0.9965 0.9962 0.9967 0.9968 0.9971 0.9965 0.9972 0.9963 0.9970 0.9970 0.9973

3× PSNR 51.052 50.644 51.716 - 52.280 - 52.548 52.487 52.562 52.502 52.544
SSIM 0.9935 0.9932 0.9938 - 0.9941 - 0.9943 0.9943 0.9944 0.9943 0.9943

3× BD
PSNR 44.382 44.988 46.900 - 48.599 - 48.669 48.825 48.835 48.689 48.862
SSIM 0.9789 0.9817 0.9852 0.9887 - 0.9888 0.9890 0.9891 0.9886 0.9891

3× DN
PSNR 35.296 36.270 36.871 - 37.860 - 37.909 37.962 37.896 37.948 37.893
SSIM 0.9415 0.9500 0.9546 - 0.9613 - 0.9624 0.9619 0.9623 0.9618 0.9618

4× PSNR 49.472 48.533 50.030 49.462 50.230 50.299 50.510 50.604 50.563 50.614 50.686
SSIM 0.9911 0.9904 0.9919 0.9912 0.9919 0.9921 0.9922 0.9923 0.9922 0.9923 0.9924

8× PSNR 37.814 37.466 38.539 38.928 39.178 39.273 39.326 39.460 39.359 39.497 39.289
SSIM 0.9486 0.9456 0.9531 0.9555 0.957 0.9577 0.9582 0.9588 0.9583 0.9592 0.9578

16× PSNR 30.794 30.632 31.388 31.924 32.141 32.206 32.475 32.491 32.514 32.535 32.463
SSIM 0.8915 0.8912 0.8975 0.9041 0.9064 0.9069 0.9100 0.9101 0.9102 0.9108 0.9095

achieves the best performance on 4×, 8× and 16× settings,
and RDN achieves the best performance on the 3 × BD
scenario. In terms of SSIM, the best performance on 2×,
3×, 3× BD, 3× DN , 4×, 8× and 16× are obtained by
RCAN, HAN, HAN, RCAN, RDN (and DRLN), DRLN,
and DRLN, respectively. We also find that the proposed
MANet achieves satisfactory performance for the applica-
tion of 8K image SR. Specially, it outperforms the current

state-of-the-art SISR methods on 2×, 3 × BD and 4×.
Fig. 4 shows the visual comparison of different methods
on the UHDSR8K dataset. Similar to the 4K image super-
resolution, the 8K image SR also faces the problems that
the super-resolved images are not sharp enough like Fig.
5(b) and 5(c), and the generated images lose details like Fig.
5(a).
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(a) Visual results of BI model (16×) on the UHDSR8K dataset.

(b) Visual results of BD model (3×) on the UHDSR8K dataset.

(c) Visual results of DN model (3×) on the UHDSR8K dataset.

Figure 5. Visual results corresponding to different settings on the UHDSR8K dataset. From left to right: HR, results of bicubic,
SRCNN, VDSR, RCAN, RDN, HAN, DRLN, and ours. Best viewed in color.

5.5. Discussion

The evaluation results on the UHDSR4K and UHDSR8K
datasets, have led to some interesting findings.

First, compared with 2K image SR, noise and blur have
greater impact in the case of 4K and 8K SR. In the 2K SR
scenario, the results (PSNR) of models with and without
blur and noise do not show significant differences, e.g., the
[29] in the case of 3× setting. However, for the UHD im-
ages SR, the difference is evident. When super-resolving
an image to a UHD image (3×), noise and blur are impor-
tant factors hindering the SR performance. Compared with
blur, noise is the more important factor. The results of 3×,
3× BD and 3× DN in Tab. 2 & 3, Fig. 4 & 5, and [29]
support this finding.

Second, as shown in Tab. 3 and Fig. 5(a), we can
compress images by factors to save space and transmission
bandwidth. For instance, images can be downsampled with
a bicubic operation for transmission, and it can still be re-
stored with high quality (PSNR >= 30). In the case of 8K
images, the SR factor can even be as high as 16, while the
restored quality is still satisfactory.

Third, in the case of the same SR factor, the down-
sampled images from 8K images provide more details than

those from the 4K images, so it is easier to restore higher-
quality images, and the difference is evident. For example,
the results of 8K are better than 4K in the case of the 2×
setting (Tab. 2 & 3).

6. Conclusion
In this paper, we explored the domain of single im-

age super-resolution for ultra-high-definition (UHD) reso-
lutions. We introduced two large-scale UHD SR datasets,
and evaluated the ten state-of-the-art SISR methods. In ad-
dition, a baseline model, called Mesh Attention Network for
SISR, was proposed to improve the representation ability of
extracted features. In the future, we will add more settings,
like 32× or 64×, to evaluate the extreme SR performance
of current SR methods, and explore new models to super-
resolve images to UHD resolution.
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