
Exploration and Estimation for Model Compression

Yanfu Zhang1∗, Shangqian Gao1∗, Heng Huang1,2

1Electrical and Computer Engineering, University of Pittsburgh, 2JD Explore Academy
yaz91@pitt.edu, shg84@pitt.edu, henghuanghh@gmail.com

Abstract

Deep neural networks achieve great success in many vi-
sual recognition tasks. However, the model deployment is
usually subject to some computational resources. Model
pruning under computational budget has attracted growing
attention. In this paper, we focus on the discrimination-
aware compression of Convolutional Neural Networks
(CNNs). In prior arts, directly searching the optimal sub-
network is an integer programming problem, which is non-
smooth, non-convex, and NP-hard. Meanwhile, the heuris-
tic pruning criterion lacks clear interpretability and doesn’t
generalize well in applications. To address this problem,
we formulate sub-networks as samples from a multivari-
ate Bernoulli distribution and resort to the approximation
of continuous problem. We propose a new flexible search
scheme via alternating exploration and estimation. In the
exploration step, we employ stochastic gradient Hamilto-
nian Monte Carlo with budget-awareness to generate sub-
networks, which allows large search space with efficient
computation. In the estimation step, we deduce the sub-
network sampler to a near-optimal point, to promote the
generation of high-quality sub-networks. Unifying the ex-
ploration and estimation, our approach avoids early falling
into local minimum via a fast gradient-based search in a
larger space. Extensive experiments on CIFAR-10 and Im-
ageNet show that our method achieves state-of-the-art per-
formances on pruning several popular CNNs.

1. Introduction

With the advance of high-performance GPUs, Convolu-
tional Neural Networks (CNNs) achieve great success in
computer vision tasks [20, 38, 39]. Via exploiting deeper
structure and over-parameterization, modern CNNs have
strong generalization abilities. However, the complexity
of CNNs is also growing, both in the computational cost
and the size of model parameters. These requirements re-

∗ Equal contributions. This work was partially supported by NSF IIS
1845666, 1852606, 1838627, 1837956, 1956002, IIA 2040588.

strict the deployment of modern CNNs to resource-sensitive
platforms, such as mobile devices and low-end facilities.
Another severe issue also arises for mobile devices, as the
computational burden typically leads to high energy costs,
which depletes the battery quickly. To address these prob-
lems, pruning weights or structures [13, 23] from computa-
tional heavy models is an effective solution.

Among existing methods, structural pruning, particu-
larly channel pruning, is an efficient scheme since post-
processing is not necessary. Although various effective
methods are proposed to target this problem, these meth-
ods still suffer from several problems. In some works, the
pruned networks are obtained via solving the relaxation of
the integer optimization. However, bias may be introduced
into the reduced pruning criterion due to the small but in-
eluctable impacts of certain channels. Importance sam-
pling [27, 30] attempts to estimate the global or relative im-
portance of neurons, but the performance is heavily affected
by the priors. Recently, discrimination power [46, 10] is
used as an effective criterion for channel pruning. Never-
theless, the intra-neuron relation is delicate and difficult to
deal with.

To address these problems, we propose a new continuous
formulation for the pruning problem of pretrained deep con-
volutional networks, which can be solved via alternating ex-
ploration and estimation. We characterize the sub-network
space with an interpretable probabilistic model, that shares
the same optimum with the naive formulation and avoids
the ambiguity of non-integer values and the potential bias in
naive relaxation methods. Instead of directly searching the
optimal sub-networks, we compute the parameter to gen-
erate high-quality sub-networks via alternating exploration
and estimation. More specifically, in the exploration step,
we sample sub-networks from the temporary distribution
by virtue of stochastic gradient Hamiltonian Monte Carlo
(SGHMC), which can explore more sub-networks and avoid
falling into sub-optimal areas encoded by the temporary dis-
tribution. Of note, the exploration is gradient-based and
computationally efficient, particularly for high-dimension
parameter space. In the estimation step, we compute the op-
timal distribution that generates high-quality sub-networks,

487



which is then used as a warm-start for the next exploration,
to guide the search focusing on the informative areas. Dif-
ferent from importance sampling, our prior is learned from
the data, which has better generalization ability. To accel-
erate the computation, we further construct a proximal ob-
jective in the estimation, which implicitly considers the re-
lation between neurons.

Our main contributions are summarized as follows:

• We propose a probabilistic formulation of the model
compression problem. Our new formulation is inter-
pretable and avoids potential sub-optimal or biased eval-
uation of pruned networks.

• We propose a method to solve the probabilistic model via
alternating exploration and estimation. We also design
a correction term to ensure the sampled sub-networks
obeying the FLOPs budgets.

• The proposed algorithm can search the parameter space
effectively. Guided by the estimation step, the search fo-
cuses on high-quality sub-networks. Via the exploration
step, the search is more likely to jump out the local min-
imum, benefiting from both the larger search space of
sampling methods and the computational efficiency of
gradient methods.

• Extensive experimental results demonstrate our approach
achieves state-of-the-art performances in pruning VGG
and ResNet on CIFAR10 and ImageNet.

Notations: We use the bold capital and bold lowercase
symbols to represent matrices and vectors, respectively. In
denotes a n × n-identity matrix. 1n is a n-dimension one
vector, and 0n is a n-dimension zero vector. The weights of
layer l are represented by Fl ∈ Rcl×wl×hl , where cl is the
number of channels, wl and hl are height and width of the
feature map. E(·) represents the expectation.

2. Related Works

Channel Pruning: Channel pruning technologies achieve
the model compression via reducing the channel-wise re-
dundancy. Naturally, channels with low magnitude are re-
garded as less important, and Group Lasso [42] is an effec-
tive method to reduce the channel magnitude. GrOWL [44]
further considers similar channels on top of sparsity. Given
that exact zero values are difficult to achieve via `1 regular-
ization, explicit `0 [29] is also considered. Similarly, batch-
norm can be exploited in scaling the magnitude of feature
maps [31]. Another related method is AutoSlim [43], which
explicitly ranks each channel during training and only
searches for width. The importance of neurons is explic-
itly considered in some methods. For example, importance
estimation [34, 30] is available by utilizing first-order or

second-order Taylor expansion. Recently, discrimination-
aware pruning [46] suggests the local discrimination power
is informative in pruning. Different from previous methods,
our method represents the sub-networks with distribution
and considers the discrimination of this distribution.

Other Pruning Techniques: There are other directions to
reduce the computational cost of neural networks. The con-
nection pruning suggests more zero weights will reduce
the storage requirements. The weights are pushed to be
sparse during training with the help of `1/`2 regulariza-
tion [13]. The weight-wise importance is considered in
SNIP [22] via back-propagation. To mining the fine-grained
weight importance, second-order Taylor expansion is ex-
ploited by optimal brain damage [21] and optimal brain sur-
geon [14]. Another weight-wise importance criterion is via
hashing [2], which avoids the costly computation of Hessian
matrices. Via replacing the vanilla convolution with compu-
tational efficient operations, the spatial/spatial-temporal re-
dundancy of neural networks can be reduced. Given the sce-
nario, such computational-efficient operations include oc-
tave convolution [41], and multi-dimensional Pruning [11],
and TSN [3], etc.. Different from previous methods, weight
quantization [12] preserves the model structures but po-
tentially decreases the precision. For example, the model
weights are binary in Binary connect [4] and binary neu-
ral network [37]. To let the gradient pass the quantization,
Straight-through estimator (STE) is exploited. MetaPrun-
ing [26] generate weights for each sub-network by us-
ing a meta network, which cannot prune pre-trained mod-
els. TAS [7] use a probability distribution to sample sub-
networks, but it lacks exploration and requires more com-
putational costs due to knowledge transfer. Compared to
channel pruning, these methods either require special hard-
ware or software for implementation or have significant per-
formance loss against the full models. As such, in this pa-
per, we focus our scope on structural pruning. Some Neural
Architecture Search (NAS) approaches are also related to
pruning. DARTS [25] jointly optimizing the structure and
the weights. ENAS [35] exploits a policy gradient optimiza-
tion framework. Our method shares some ideas of parame-
ter sharing based NAS methods, but the approaches, costs,
search space, and detailed settings are very different.

Sampling Algorithm: In this paper we exploit sampling
techniques to help the search jump out of the local mini-
mum. Typically, a Markov chain can be built w.r.t. the target
distribution and the samples can be generated via the walks
on the chain [32]. The Metropolis-Hastings algorithm is
an important method, where the samples are drawn from
a simple distribution and are rejected with some probabil-
ity. For high-dimension sampling, the rejection rate usually
is high. By exploiting Hamiltonian dynamics, Hamiltonian
Monte Carlo (HMC) [8] is designed to solve the problem.

488



Based on HMC, SGHMC [1] is proposed where the rejec-
tion step is no longer necessary. In Bayesian neural net-
works, Hamiltonian methods are also frequently utilized.
Simulated annealing (SA) [36], inspired by Metropolis-
Hastings, is another algorithm related to our method, which
introduces temperature parameters for the canonical distri-
bution to guide the search.

3. Proposed Method

The idea of our method is illustrated in Fig. 1. The
pruned pretrained networks can be viewed as sub-networks
of the full model, and we propose a probability relaxation
for channel pruning in §3.1. Our task is to compute the dis-
tribution parameters to generate high-quality sub-networks.
More specifically, with fixed weights of the pretrained full
model, we first sequentially sample sub-networks using the
temporary distribution (the exploration step described in
§3.2) and update the sampler parameters (the estimation
step described in §3.3). Next, we obtain the optimal sub-
network according to the computed distribution, and fine-
tune the pruned model to obtain the final model. More im-
plementation details are discussed in §3.4.

3.1. Parameterized Search Space

Suppose we have a full network, denoted as F , opti-
mized sufficiently for dataDx and objective L. The channel
pruning problem is to find the optimal sub-network w.r.t. F
constrained by some computational budget b. In the context
of channel pruning, the sub-networks are defined by remov-
ing part of the channels ofF with the model weights frozen.
LetN denote the neuron set of F , then a pruned model can
be represented using the subsetNs ⊂ N preserved after the
pruning. Let f represent a function computing the resource
given Ns. Formally, our task is,

N ∗s = arg minNsL(Ns,Dx), s.t. f(Ns) ≤ b, (1)

let INs(ni) be the indicator function of the presence of neu-
ron ni in the sub-network Ns, the above problem is trans-
formed into an integer programming problem, which is non-
smooth, non-convex and NP-hard.

To address this problem, we propose a probabilistic re-
laxation of Prob. (1). We use a Bernoulli distribution pa-
rameterized by p = [pn1 , pn2 , · · · , pnN ] to characterize
sub-networks Ns. pni is the probability that ni is pre-
served in Ns. The objective w.r.t. p is defined as Lp(p) =
Ep [L(Ns)]. Finally, the sub-network search problem can
be written as,

p∗ = arg minpLp(p,Dx), s.t. Ep [f(Ns)] ≤ b. (2)

Compared to Prob. (1), our new formulation Prob. (2) has
two advantages. Firstly, Prob. (2) allows an interpretable

…
…

Original Model

… …

… …

… …

Conf. 1:

Conf. 2:

Conf. 3:

Sampled 
Sub-Networks

Best 
Configuration

Exploring Configuration Exploring Configuration

Estimating 
Configuration

Figure 1: The illustration of exploration and estimation al-
gorithm to solve (2). In exploration step, we generate sev-
eral configurations (blue dots) from the start point (red dot),
and sample sub-networks from the configurations. In esti-
mation step, we compute the best configuration as the start
point for next exploration.

non-integer optimum. Observe that N ∗s in (1) is potentially
non-unique, as such, non-integer p∗ indicates there are mul-
tiple candidate sub-networks with competing performance.
Secondly, Prob. (2) can avoid the ambiguity of multiple op-
timal sub-networks. We can find that the solution set {N ∗s }
of Prob. (1) is in the solution set p∗ of the Prob. (2), and that
their objectives have the same minimal values. Moreover, if
p∗ is unique and the entries are supported only on {0, 1},
the optimal sub-network is also unique and the solution de-
generates to the uniqueN ∗s . As depicted in Fig. 1, we solve
Prob. (2) via alternating fixing p to explore sub-networks
and updating p based on collected sub-networks.

3.2. Exploring Sub-Networks Sampling

In the exploration step, we sample representative sub-
networks based on fixed p. More specifically, in each sam-
pled sub-network, neuron ni and the associated weights are
preserved with probability pni independently. Prob. (2) de-
fines a constrained optimization problem. However, there
is no budget guarantee for the sub-networks sampled from
p. To address this problem, we propose a method to sam-
ple sub-networks aware of FLOPs constraints. We also in-
sert randomness into p using SGHMC to enlarge the search
space which empirically improves the pruning performance.

Sampling Sub-Networks with FLOPs Constraints In this
paper, we consider the computational budget described in
FLOPs. Given a data sample, the FLOPs fl(Ns) associated
with a single convolution layer l in Ns can be denoted as,

fl(Ns) = k2l (1ᵀpl−1)(1ᵀpl)wlhl, (3)

489



here kl is the kernel size, wl and hl are width and height,
pl and pl−1 are vectors representing layer l and l− 1 of the
sampled Ns. The unpruned FLOPs fl(N ) is obtained by
replacing 1ᵀpl−1 and 1ᵀpl with cl−1 and cl, the number of
input and output channels.

To sample a sub-network subject to the FLOPs con-
straint, the probability p needs correction. A simple so-
lution is to neglect the selected gates with probability
min

(
1, fl(Ns)

b×fl(N )

)
. However, from (3), the FLOPs associ-

ated with different layers are highly imbalanced, affected by
both the layer structure and the number of connected neu-
rons. To generate sub-networks with stable FLOPs, we add
an alternative correction term to pni in p,

p̂ni = pni min(
Tαgl(1

ᵀpl,1
ᵀpl+1)

gl(bcl, bcl+1)
, 1), (4)

here Tα ≥ 1 is a parameter to control the importance of the
FLOPS constraint. gl(·) is defined as,

gl(x, y) = k2l xwlhl + k2l+1ywl+1hl+1. (5)

Compared to the simple method, the sampled sub-
networks by the proposed approach is more stable, because
p̂ni is related to the associated FLOPs. We start from a rela-
tive large Tα and gradually reduce it, which is equivalent to
decreasing the budget from 1 to b. Meanwhile, large Tα at
the beginning can help avoiding skimping on some neurons
from the early exploration.

Explorating Sub-Networks Sampling via SGHMC: A se-
vere problem in gradient-based channel pruning methods
is the instability introduced by the relaxation from discrete
values to continuous values. The instability is then con-
veyed to the gradient-based update, and eventually twists
the search space of sub-networks. This problem is alle-
viated in our probabilistic formulation. Now suppose we
have sampled a set ofNs. For high-dimension probabilistic
models, the Ns set can be generated with different p with
close probability. Note that each p implies different search
spaces and different local optimum. If we exploit multiple
potential p, the generation of sub-networks will have bet-
ter diversity and it is more likely to jump out of bad local
minimum. To this end, we can insert randomness into p via
Stochastic Gradient Hamiltonian Monte Carlo (SGHMC).

SGHMC is a fast sampling technique inspired by Hamil-
tonian dynamics. For self-containedness, we recap the nec-
essary steps in SGHMC in the following. First, we construct
the desired probability as p(p|DN , b) ∝ exp(−U(p)).
DN , {(Ns,L(Ns))} refers to the set of observed sub-
networks and their performances. U is the potential energy
function given by,

U = −
∑

log p ((Ns,L(Ns))|p)− log p(p), (6)

here the first term can be viewed as the discrimination
power of p, the second term is the prior distribution of p.
Using (4), (6) can be written as,

U = −
∑
Lp(p̂)− log p(p̂), (7)

where we abuse Lp(·) on the corrected p̂, representing the
uncorrected Lp(p). In this step p is not updated, instead we
use it as the start point and sample new p̂, which is used for
generating new sub-networks. For simplicity, we directly
consider the priors on p̂. (4) considers the local FLOPs
w.r.t. neurons of the the sampled sub-networks. We ad-
ditionally consider the global stability of the sampled sub-
networks. Specifically, let p(p̂) ∝ exp(−Lv(p̂)), where

Lv(p̂) , Ep

[
max

((
Ep[f(Ns)]
b×Ep[f(N )]

)−Tβ
− 1, 0

)2
]

. Lv(p̂)

is then used to replace the second term of Eq. 7. Tβ is a
temperature parameter controlling the strength of the con-
straint. Lv(p̂) can be viewed as the FLOPs variance of the
sampled sub-networks. Finally, U is given by,

U = Lp(p̂,Dx) + λLv(p̂), (8)

where λ is a parameter to compensate the normalization in
p(p̂), Lp(p̂,Dx) = −

∑
Lp(p̂), and Dx is the dataset for

pruning. Assuming p̂ follows a Hamiltonian dynamic sys-
tem with friction, we have,

dp̂ = rdt, dr = −OU(p̂)dt− rdt+N (0, 2I), (9)

here r ∼ N (0, I) is a random momentum, N (0, I) is a
Gaussian distribution. We omit the noise term, and set the
friction term to I . The sample of p̂ is obtained by updating
p̂ and r iteratively,

p̂(k+1) = p̂(k) + εr(k), (10)

r(k+1) = r(k) − ε
(
OU(p̂)− r(k) +N (0, 2I)

)
. (11)

where ε is the step size. For simplicity we recursively com-
pute p̂(k) and the associated sub-networks. The computa-
tion of Lp(p̂) is discussed in the next section.

3.3. Estimating Start Point

The exploration step elaborated in §3.2 allows larger
search space w.r.t. sub-networks. To make the search more
efficient, we utilize an estimation step to guide the search
focusing on the area with high potential. Specifically, we
compute a plausible p∗ from the historically sampled sub-
networks DN , which is used as the start point in the explo-
ration step.

In this step, we minimize the following objective,

p∗ = arg minp

1

ZN

∑
Ns∈DN

pp(Ns)L(Ns), (12)

490



here ZN =
∑
Ns∈DN

pp(Ns) is a normalization term, and,

Pp(Ns) =
∏

pIjnj (1− pnj )
1−Ij , (13)

here Ij is the indicator function of neuron j in Ns. Note
thatF is fixed, therefore L(Ns) can be viewed as a constant
given a sub-network Ns. Lp(p̂) involves a similar Pp(Ns)
term, and the gradients w.r.t. p̂ can be computed based on
sampled sub-networks.

However, DN is dynamically growing in the sampling
which is inefficient in both maintaining and computation.
To make the problem tractable, we propose a proximal ob-
jective function and compute p∗ in an incremental manner.
Denote p(k)∗ as the start point in round k, the k + 1 start
point can be estimated by,

p(k+1)∗ = arg minpDKL(p|p(k)∗)+

1

Z
(k)
N

∑
Ns∈D(k)

N

pp(Ns)L(Ns), (14)

here DKL(·) is the KL divergence, D(k)
N is the samples start

from p(k)∗. The optimization of (14) can be achieved via
a standard stochastic gradient descent method. Note that
in (14), p(k)∗ and L(Ns) are deterministic, and the gradient
of p is mainly computed on the KL divergence and pp(Ns)
defined in (13).

The rationale behind the above approximation is two-
fold. Firstly, p(k)∗ bears the historical observations which is
dominant in DN , thus we expect p(k+1)∗ is close to p(k)∗.
Secondly, D(k)

N is generated via two-step sampling, which
can be viewed as generating from p(k)∗ but with larger vari-
ance. As such, the original problem can be reduced to the
KL divergence term and the new observation term.

3.4. Algorithm and Implementation

Our algorithm is summarized in Algo. 1. During the
search, the original model weights are remained untouched,
and we only search the optimal combination of neurons
from the full model. The finalized pruning is determined
by deleting all neurons for pni ≤ 0.5 (step 18 in Algo. 1).
Then, we finetune the pruned network to obtain the final
model. Although we use the SGHMC method in the sam-
pling, the optimized parameter is computed in the estima-
tion step, which is more close to Maximum A Posterior es-
timation (MAP) with a Canonical distribution as the prior.
SGHMC is an auxiliary method to enlarge the search space
of sub-networks. On the other hand, the parameters of the
sub-network distribution can be viewed as neuron-wise im-
portance. Compared to the related method, we introduce
the exploration step, which can be interpreted as a Bayesian
model. Of note, our estimation explicitly considers the

Algorithm 1: Exploration and Estimation for
Model Compression

Input: Full model F , pruning dataDx, finetune data
Df , budget b, parameter Tα, Tβ , λ, K, m, ε.

Output: p(0), pruned & finetuned model Fp.
1 Initialization p(0) = 1.
// Model pruning with F weights frozen

2 repeat
3 Shuffle Dx, DN ← ∅
4 Sample D(0)

N from p(0) using (4)
5 DN ← DN ∪ D(0)

N
6 Compute p̂(0) w.r.t. (4)
7 for k ← 0 to K do
8 Tα ← max(0.999× Tα,1),

Tβ ← 0.999× Tβ .
9 Sample momentum r ∼ N (0, I)

10 p̄(0) ← p̂(k)

11 for i← 0 to m do
12 Compute p̄(i+1) w.r.t. (10)

13 p̂(k+1) ← p̄(m+1)

14 Sample D(k+1)
N from p̂(k+1) using (4)

15 DN ← DN ∪ D(k+1)
N

16 Update p(0) on DN w.r.t. (14)
17 until Converges.;
// Finetune pruned model

18 Obtain pruned model Fp via deleting neurons in F
using binarized p(0)

19 repeat
20 Finetune Fp on Df .
21 until Converges.;

computational budgets, which is interpretable and avoids
the bias by the threshold pruning in previous methods.

4. Experimental Results

4.1. Experimental Settings

We verify our method on CIFAR-10 [20] and Ima-
geNet [5]. We use b ∈ (0, 1) as the FLOPs budget, denot-
ing the percentage of FLOPs preserved in the pruning. For
CIFAR-10, the target models include VGG-16 and ResNet
56, and the network weights are trained from scratch using
PyTorch example codes. λ = 0.001 recommended by the
original implementation [1].We set Tα = 2 and Tβ = 3,
and the performance is not sensitive to Tα and Tα when
they are not too large. The pruned models are finetuned for
160 epochs using SGD with start learning rate 0.1, weight
decay 0.0001, and momentum 0.8, the learning rate is mul-

491



Method Architecture Baseline Acc Pruned Acc ∆-Acc Pruned FLOPs
VP [45]

VGG-16

93.25% 93.18% −0.07% 39.1%
Slimming [27] 93.85% 92.91% −0.94% 48.1%

DCP [46] 93.99% 93.82% −0.17% 50.0%
DCP-Adapt [46] 93.99% 93.41% −0.58% 35.0%

SCP [18] 93.85% 93.79% −0.06% 66.23%
Proposed 93.36% 93.63% +0.27% 56.6%

DCP [46]

ResNet-56

93.80% 93.49% −0.31% 50.0%
DCP-Adapt [46] 93.80% 93.81% +0.01% 47.0%

SCP [18] 93.69% 93.23% −0.46% 51.5%
FPGM [17] 93.59% 92.93% −0.66% 52.6%

SFP [16] 93.59% 92.26% −1.33% 52.6%
FPC [15] 93.59% 93.24% −0.25% 52.9%
Proposed 93.62% 93.68% +0.06% 56.0%

Table 1: Comparison results on CIFAR-10 dataset with ResNet-56 and VGG-16. ∆-Acc represents the performance changes
before and after model pruning. ± indicates increase or decrease compared to baseline results. Baseline results are adopted
from the original papers. The best results are in bold.

Method Architecture BL Top-1 Acc BL Top-5 Acc ∆-Acc Top-1 ∆-Acc Top-5 Pruned FLOPs
MIL [6]

ResNet-18

69.98% 89.24% −3.65% −2.30% 34.6%
SFP [16] 70.28% 89.63% −3.18% −1.85% 41.8%

FPGM [17] 70.28% 89.63% −1.87% −1.15% 41.8%
Proposed 70.28% 89.63% −2.01% −1.19% 46.6%

SFP [16]

ResNet-50

76.15% 92.87% −1.54% −0.81% 41.8%
IE [30] 76.15% − −1.68% − 45.0%

SCOP-A [40] 76.15% 92.87% −0.20% −0.08% 45.3%
Proposed 76.15% 92.87% −0.10% −0.02% 46.1%

ABCP-70 [24] 76.01% 92.96% −2.49% −1.45% 56.6%
ABCP-80 [24] 76.01% 92.96% −2.15% −1.27% 54.29%
SCOP-B [40] 76.15% 92.87% −0.89% −0.34% 54.6%
FPGM [17] 76.15% 92.87% −1.32% −0.55% 53.5%
CCP [34] 76.15% 92.87% −0.94% −0.45% 54.1%
SCP [18] 75.89% 92.98% −0.62% −0.68% 54.3%
DMC [9] 76.15% 92.87% −0.80% −0.38% 55.0%
DCP [46] 76.01% 92.93% −1.06% −0.61% 55.6%
Proposed∗ 76.15% 92.87% −0.49% −0.35% 56.0%

Slimming [27]

VGG-11bn

70.84% − −2.22% − 8.9%
Rethinking [28] 70.84% − −0.84% − 8.9%

IE [30] 70.84% − −0.20% − 8.9%
Proposed 70.84% 89.81% +0.31% +0.67% 34.0%

Table 2: Comparison results on ImageNet dataset with ResNet-18, ResNet-50 and VGG-11bn. BL refers to baseline. ∆-Acc
represents the performance changes before and after model pruning. ± indicates increase or decrease compared to baseline
results. For ResNet-50, we compare two different pruned rates, denoted as Proposed and Proposed∗.

tiplied by 0.1 at epoch 80 and 120. For ImageNet, the target
models include VGG-11 with batchnorm, ResNet18, and
ResNet 50, and we use the pre-trained model released by
PyTorch [33]. In all experiments, λ = 0.001, Tα = 4,
and Tβ = 5. After pruning, we finetune the model for
60 epochs using SGD with start learning rate 0.01, weight
decay 0.0001, and momentum 0.9, and the learning rate is
scaled by 0.1 at epoch 20 and 40. The finetuning hyperpa-
rameters are similar to those used in Collaborative Channel

Pruning (CCP) [34] for both CIFAR-10 and ImageNet. We
randomly choose 2500 and 10,000 samples from CIFAR-
10 and ImageNet respectively as the training set for the pro-
posed method. Our model is trained using ADAM [19] opti-
mizer with a constant learning rate of 0.001 for 300 epochs.
All the codes are implemented with PyTorch [33]. The ex-
periments are conducted on a machine with 4 Nvidia Tesla
P40 GPUs.

492



0 50 100 150 200 250 300
Epochs

50

55

60

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(a) VGG-16, 35% FLOPs

0 50 100 150 200 250 300
Epochs

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(b) VGG-16, 50% FLOPs

0 50 100 150 200 250 300
Epochs

82

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(c) VGG-16, 60% FLOPs

0 50 100 150 200 250 300
Epochs

88

89

90

91

92

93

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(d) VGG-16, 80% FLOPs

0 25 50 75 100 125 150 175 200
Epochs

30

40

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(e) ResNet-56, 35% FLOPs

0 25 50 75 100 125 150 175 200
Epochs

50

60

70

80

90

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(f) ResNet-56, 50% FLOPs

0 25 50 75 100 125 150 175 200
Epochs

65

70

75

80

85

90

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(g) ResNet-56, 60% FLOPs

0 25 50 75 100 125 150 175 200
Epochs

84

86

88

90

92

Te
st

 A
cc

ur
ac

y

Proposed
No Exploration

(h) ResNet-56, 80% FLOPs

Figure 2: (a)-(d), test accuracy of pruned VGG-16 during training under different prune rate. (e)-(h), test accuracy of
pruned ResNet-56 during training under different prune rate. The computational budgets are evaluated mainly on convolution
operations, and are not strictly corresponding to the pruned FLOPs.

4.2. Results on CIFAR10

Table 1 presents the results of the proposed method and
related baselines on CIFAR-10. For VGG-16, our method
outperforms state-of-the-art baselines in both accuracies
and pruned FLOPs. For example, the proposed method
significantly outperforms DCP and DCP-Adapt [46]. DCP
prunes more FLOPs by sacrificing performance compared
to DCP-Adapt. ∆-Acc of our approach outperforms DCP-
Adapt by 0.05% and prunes 6% more FLOPs compared to
DCP. For ResNet-56, similar results can be observed. Be-
sides SCP [18], our approach has the best ∆-Acc and the
highest pruned FLOPs. DCP performs better than DCP-
Adapt in general, and our approach outperforms DCP in
both accuracies and pruned FLOPs. SCP [18] prunes more
FLOPs, however, the proposed method achieves signifi-
cantly higher ∆-Acc by up to 0.33%.

4.3. Results on ImageNet

Table 1 summarizes the comparison results on ImageNet.
For ResNet-18, our approach is comparable to other related
methods. Compared to FPGM which is the best-performed
baseline, our method has slightly sacrificed accuracy for
higher pruned FLOPs. For ResNet-50, our method shows
state-of-the-art performances. For example, the accuracy
of the sub-network found by our method is 0.13% higher
in ∆-Acc Top-1 and 0.33% higher in ∆-Acc Top-5 com-
pared to SCP under similar computational budgets. Of note,

our method outperforms IE — a state-of-the-art importance-
based method — in accuracy by up to 1.58%. Meanwhile,
1.2% more FLOPs are pruned. The generative parameter
estimated by our method can also be interpreted as neuron
importance, and we conjecture that the improvements are
due to that the estimation of our approach is based on the
temporary sub-networks instead of full networks, which is
more accurate. For VGG-11, the proposed method signifi-
cantly outperforms the related baselines. Compared to IE,
the best-performed baseline, our method improves ∆-Acc
Top-1 by 0.51%. Moreover, the improvement is achieved
via pruning up to 34.0% FLOPs, which is much higher than
the baselines where only 8.9% FLOPs are pruned.

4.4. Ablation Study and Discussions

In this section, we discuss some observations in the sub-
network search of our approach. Firstly we examine the
necessity of the exploration step. Specifically, we show
the exploration step can help find better sub-networks. We
compare the performances of several scenarios including
No Expl., referring to not using the exploration, Expl. (a),
where K = 1 and m = 1, Expl. (b), where K = 3 and
m = 3, Expl. (c), where K = 5 and m = 5. The results are
described in Tab. 3. For VGG-16, Expl.(c) clearly outper-
forms No Expl., Expl.(a), and Expl.(b) by a large margin.
For ResNet-56, the improvements via introducing explo-
ration is also observed, for example Expl.(c) outperforms
No Expl. by 0.37%. These results verify our claim.

493



1 2 3 4 5 6 7 8 9 10 11 12 13
Layers

0.0

0.2

0.4

0.6

0.8

1.0

p n

(a) VGG-16, epoch 0

1 2 3 4 5 6 7 8 9 10 11 12 13
Layers

0.0

0.2

0.4

0.6

0.8

1.0

p n

(b) VGG-16, epoch 100

1 2 3 4 5 6 7 8 9 10 11 12 13
Layers

0.0

0.2

0.4

0.6

0.8

1.0

p n

(c) VGG-16, epoch 300

0 2 4 6 8 10 12
Layers

0

100

200

300

400

500

Nu
m

be
rs

 o
f C

ha
nn

el
s

Full
Pruned

(d) VGG-16, Full vs. Pruned

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layers

0.0

0.2

0.4

0.6

0.8

1.0

p n

(e) ResNet-56, epoch 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layers

0.0

0.2

0.4

0.6

0.8

1.0
p n

(f) ResNet-56, epoch 100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
Layers

0.0

0.2

0.4

0.6

0.8

1.0

p n

(g) ResNet-56, epoch 200

0 5 10 15 20 25
Layers

0

10

20

30

40

50

60

Nu
m

be
rs

 o
f C

ha
nn

el
s

Full
Pruned

(h) ResNet-56, Full vs. Pruned

Figure 3: The dynamic of p̂ in Algo. 1. For VGG-16, (a)-(c), the layer-wise box plot of p̂ in epoch 0, 100, and 300; (d), the
number of channels for the full network and the pruned network. In (c) we only plot p̂ of the preserved channels. (e)-(h), the
results on ResNet-56, defined similar to (a)-(d).

Method Architecture Pruned Acc Pruned FLOPs
No Expl.

VGG-16

92.88% 56.6%
Expl. (a) 93.17% 56.6%
Expl. (b) 93.33% 56.6%
Expl. (c) 93.63% 56.6%

No Expl.

ResNet-56

93.31% 56.0%
Expl. (a) 93.46% 56.0%
Expl. (b) 93.59% 56.0%
Expl. (c) 93.68% 56.0%

Table 3: Comparison of different exploration settings.

Secondly, we plot the test accuracy curve during the sub-
network search of our approach in Fig. 2. To generalize our
findings, we alter the computational budgets include 0.35,
0.5, 0.60, and 0.80. Here we highlight several noteworthy
observations. Firstly, the proposed method is effective in
different budget constraints. Secondly, in our approach, the
search on sub-networks has two stages. In the first stage,
the search is dominanted by the FLOPs constraints, and
weakly-performed sub-networks are sampled. This is a very
short stage. In the second stage, the optimal parameters are
gradually discovered. Thirdly, the search is more difficult
for more strict computational budges. For example, with
80% FLOPs we obtain satisfactory parameters after merely
50 epochs. But with 80% FLOPs, the sub-network sam-
pling is continuously improving until 300 epochs. The test
accuracy for No Expl. is also included in Fig. 2. The re-
sults show that the exploration step can help the sampling
of good sub-networks instead of stuck in a sub-optimal area,
particularly for high prune rates.

Lastly, to provide a closer view of the dynamics of the
parameters, in Fig. 3 we present the layer-wise statistics
of p̂ during the search. At the beginning of the search
on VGG-16, p̂ is generally random. With more sampled
sub-networks, part of neurons in each layer are identified
as unimportant, which can be verified by the bottom part
of Fig. 3 (b). Meanwhile, the larger variance also implies
that informative neurons are differentiated from the unim-
portant. In the pruned networks, p̂ of the preserved neu-
rons are close to 1 and have much less variance in each
layer, which can be observed from Fig. 3 (c). These results
indicate that the learned p̂ discovers the neuron-wise dis-
criminator power. For ResNet-56, a similar tendency can
be found. The layer-wise variance is growing during the
search and the pruned network only preserves highly dis-
criminating channels.

5. Conclusion

In this manuscript, we propose a novel method to
prune CNN. We formulate the search of sub-networks as
a probabilistic model and design an effective optimization
method. We propose an alternating exploration and esti-
mation scheme to solve the problem. Specifically, we en-
large the search space in the exploration step to avoid falling
into bad local optimums. Meanwhile, the estimation step
guides the search to focus on high potential sub-networks
in the estimation step. Extensive experiments show our ap-
proach achieves state-of-the-art performances. The training
dynamics of our algorithm also verifies the effectiveness of
the search scheme.

494



References

[1] Tianqi Chen, Emily Fox, and Carlos Guestrin. Stochastic
gradient hamiltonian monte carlo. In International confer-
ence on machine learning, pages 1683–1691, 2014. 3, 5

[2] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Wein-
berger, and Yixin Chen. Compressing neural networks with
the hashing trick. In International conference on machine
learning, pages 2285–2294, 2015. 2

[3] Yunpeng Chen, Haoqi Fan, Bing Xu, Zhicheng Yan, Yan-
nis Kalantidis, Marcus Rohrbach, Shuicheng Yan, and Jiashi
Feng. Drop an octave: Reducing spatial redundancy in con-
volutional neural networks with octave convolution. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 3435–3444, 2019. 2

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre
David. Binaryconnect: Training deep neural networks with
binary weights during propagations. In Advances in neural
information processing systems, pages 3123–3131, 2015. 2

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical im-
age database. In Computer Vision and Pattern Recognition,
2009. CVPR 2009. IEEE Conference on, pages 248–255.
Ieee, 2009. 5

[6] Xuanyi Dong, Junshi Huang, Yi Yang, and Shuicheng Yan.
More is less: A more complicated network with less infer-
ence complexity. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 5840–
5848, 2017. 6

[7] Xuanyi Dong and Yi Yang. Network pruning via
transformable architecture search. arXiv preprint
arXiv:1905.09717, 2019. 2

[8] Simon Duane, Anthony D Kennedy, Brian J Pendleton, and
Duncan Roweth. Hybrid monte carlo. Physics letters B,
195(2):216–222, 1987. 2

[9] S. Gao et al. Discrete model compression with resource con-
straint for deep neural networks. In CVPR, 2020. 6

[10] Shangqian Gao, Feihu Huang, Weidong Cai, and Heng
Huang. Network pruning via performance maximization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 9270–9280, 2021. 1

[11] Jinyang Guo, Wanli Ouyang, and Dong Xu. Multi-
dimensional pruning: A unified framework for model com-
pression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 1508–
1517, 2020. 2

[12] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with pruning,
trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 2

[13] Song Han, Jeff Pool, John Tran, and William Dally. Learning
both weights and connections for efficient neural network. In
Advances in neural information processing systems, pages
1135–1143, 2015. 1, 2

[14] Babak Hassibi and David G Stork. Second order derivatives
for network pruning: Optimal brain surgeon. In Advances
in neural information processing systems, pages 164–171,
1993. 2

[15] Yang He, Yuhang Ding, Ping Liu, Linchao Zhu, Hanwang
Zhang, and Yi Yang. Learning filter pruning criteria for deep
convolutional neural networks acceleration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 2009–2018, 2020. 6

[16] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi
Yang. Soft filter pruning for accelerating deep convolutional
neural networks. In International Joint Conference on Arti-
ficial Intelligence (IJCAI), pages 2234–2240, 2018. 6

[17] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolutional
neural networks acceleration. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4340–4349, 2019. 6

[18] Minsoo Kang and Bohyung Han. Operation-aware soft chan-
nel pruning using differentiable masks. International Con-
ference on Machine Learning, 2020. 6, 7

[19] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer, 2009. 1, 5

[21] Yann LeCun, John S Denker, and Sara A Solla. Optimal
brain damage. In Advances in neural information processing
systems, pages 598–605, 1990. 2

[22] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. ICLR, 2019. 2

[23] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets. ICLR,
2017. 1

[24] Mingbao Lin, Rongrong Ji, Yuxin Zhang, Baochang Zhang,
Yongjian Wu, and Yonghong Tian. Channel pruning via au-
tomatic structure search. arXiv preprint arXiv:2001.08565,
2020. 6

[25] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:
Differentiable architecture search. In International Confer-
ence on Learning Representations, 2019. 2

[26] Z. Liu et al. Metapruning: Meta learning for automatic neu-
ral network channel pruning. In ICCV, 2019. 2

[27] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning efficient
convolutional networks through network slimming. In ICCV,
2017. 1, 6

[28] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and
Trevor Darrell. Rethinking the value of network pruning.
In International Conference on Learning Representations,
2019. 6

[29] Christos Louizos, Max Welling, and Diederik P. Kingma.
Learning sparse neural networks through l0 regularization.
In International Conference on Learning Representations,
2018. 2

[30] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,
and Jan Kautz. Importance estimation for neural network
pruning. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pages 11264–11272,
2019. 1, 2, 6

495



[31] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-
malization for adaptively style-invariant neural networks. In
NIPS, 2018. 2

[32] Radford M Neal et al. Mcmc using hamiltonian dynamics.
Handbook of markov chain monte carlo, 2(11):2, 2011. 2

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 6

[34] Hanyu Peng, Jiaxiang Wu, Shifeng Chen, and Junzhou
Huang. Collaborative channel pruning for deep networks.
In International Conference on Machine Learning, pages
5113–5122, 2019. 2, 6

[35] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and
Jeff Dean. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268, 2018. 2

[36] Martin Pincus. Letter to the editor—a monte carlo method
for the approximate solution of certain types of constrained
optimization problems. Operations research, 18(6):1225–
1228, 1970. 3

[37] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,
and Ali Farhadi. Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European Conference
on Computer Vision, pages 525–542. Springer, 2016. 2

[38] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 1

[39] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[40] Yehui Tang, Yunhe Wang, Yixing Xu, Dacheng Tao, Chun-
jing Xu, Chao Xu, and Chang Xu. Scop: Scientific con-
trol for reliable neural network pruning. arXiv preprint
arXiv:2010.10732, 2020. 6

[41] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works: Towards good practices for deep action recognition.
In European conference on computer vision, pages 20–36.
Springer, 2016. 2

[42] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural networks.
In Advances in neural information processing systems, pages
2074–2082, 2016. 2

[43] Jiahui Yu and Thomas Huang. Autoslim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019. 2

[44] Dejiao Zhang, Haozhu Wang, Mario Figueiredo, and Laura
Balzano. Learning to share: Simultaneous parameter tying
and sparsification in deep learning. In International Confer-
ence on Learning Representations, 2018. 2

[45] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao,
Wenjun Zhang, and Qi Tian. Variational convolutional neu-
ral network pruning. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 2780–
2789, 2019. 6

[46] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu,
Yong Guo, Qingyao Wu, Junzhou Huang, and Jinhui Zhu.
Discrimination-aware channel pruning for deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, pages 875–886, 2018. 1, 2, 6, 7

496


