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Abstract

The hyperspectral image (HSI) denoising has been
widely utilized to improve HSI qualities. Recently, learning-
based HSI denoising methods have shown their effective-
ness, but most of them are based on synthetic dataset and
lack the generalization capability on real testing HSI. More-
over, there is still no public paired real HSI denoising
dataset to learn HSI denoising network and quantitatively
evaluate HSI methods. In this paper, we mainly focus on
how to produce realistic dataset for learning and evaluat-
ing HSI denoising network. On the one hand, we collect a
paired real HSI denoising dataset, which consists of short-
exposure noisy HSIs and the corresponding long-exposure
clean HSIs. On the other hand, we propose an accurate
HSI noise model which matches the distribution of real data
well and can be employed to synthesize realistic dataset.
On the basis of the noise model, we present an approach
to calibrate the noise parameters of the given hyperspec-
tral camera. The extensive experimental results show that a
network learned with only synthetic data generated by our
noise model performs as well as it is learned with paired
real data. Our code and data are available at: https:
//github.com/ColinTaoZhang/HSIDwRD.

1. Introduction
Hyperspectral image (HSI) can provide much more spec-

tral information than RGB image, and is beneficial to nu-
merous applications, including remote sensing [6,35], com-
puter vision [7], medical diagnosis [5, 32] and more. Hy-
perspectral imaging is to capture spectral information of
each spatial position in a scene with massive wavebands,
and the commercial hyperspectral cameras often utilize the
scanning design [4, 39]. These make its photon counts for
each band are much less than that in RGB image, and vari-
ous noises are easily introduced into the acquisition process.
This kind of degradation negatively influences not only the
visual appearance of the HSI but also the performance of
all downstream HSI applications [14]. Thus, HSI denois-
ing is an essential step in the pipeline of HSI analysis and
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(a) Input (PSNR) (b) Complex [16] (30.59)

(c) Ours Real (33.60) (d) Ours Synthetic (34.22)
Figure 1. A scene from our collected HSI dataset, and we show the
spectral band in 550 nm. (a) The input noisy image; (b) The out-
put of CNN trained with synthetic dataset generated by complex
noise model [16]; (c) The output of CNN trained with our collected
paired real dataset; (d) The output of CNN trained with synthetic
dataset generated by our noise model, which is comparable with
(c) the result trained with paired real dataset and obviously outper-
forms synthetics dataset generated by complex noise model.

processing.
To remove the imaging noise, the well-known model-

based HSI denoising methods often iteratively solve an op-
timization problem with various hand-crafted priors, such
as smoothness [50], self-similarity [20, 21] and so on.
Nevertheless, the iterative optimization procedure is time-
consuming and the hand-crafted priors cannot sufficiently
represent the variety of data in the real world. Instead of
costly optimization and hand-crafted priors, learning-based
methods [9, 19, 29, 45, 51] automatically learn the mapping
from noisy HSI to clean HSI with convolutional neural net-
work (CNN). However, existing learning-based methods
generally rely on training dataset synthesized with simple
Gaussian noise model or complex noise models [16, 45].
Promising results on synthetic data notwithstanding, these
methods still cannot well work and evaluate on the real data,
due to lacking realistic HSI data.
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There are two ways to solve this problem. One is to
capture paired real data for HSI denoising network learn-
ing and evaluation, like those for RGB image denoising
[1, 12, 13, 26, 38]. But collecting abundant high-quality real
data for learning HSI denoising network is obviously ex-
pensive and requires a large amount of labor. The other is
to generate realistic paired data. This is convenient and in-
expensive, but it lies in how accurate the noise formulation
model of real HSI is. The heteroscedastic Gaussian noise
model [2] approximates the noise occurred in HSI better
than the commonly-used homoscedastic one. Nevertheless,
it cannot delineate the full picture of sensor noise in the HSI.
Actually, due to the physical characteristics of hyperspec-
tral camera, e.g., scanning the scene in spatial or spectral
domain [4, 39], the captured HSI contains more complex
noise than heteroscedastic Gaussian noise, as shown in Fig-
ure 2.

In this paper, we mainly focus on how to capture realistic
data for learning HSI denoising network, including paired
real dataset and high-quality synthetic data performing as
well as real data, as shown in Figure 1. To the best of our
knowledge, there is no public dataset for training and test-
ing HSI denoising methods with diverse real world data and
ground truth. Therefore, we first collect a real dataset of
noisy HSI captured with short exposure time and each noisy
HSI has a corresponding long-exposure clean HSI, which is
beneficial to the follow-up noise model formulation and de-
noising method evaluation. Then, we propose an accurate
noise model for HSI, which can formulate the distribution
of real data well. In addition, we calibrate the parameter of
the formulated noise model, and the calibrated noise model
can be utilized to synthesize realistic HSI denoising dataset.
Finally, we employ the generated synthetic dataset to learn
a CNN for HSI denoising. Extensive experiments show that
the HSI denoising network learned with only synthetic data
generated with our noise model can reach the HSI denoising
performance as well as that trained with real data.

In summary, our main contributions are that we

• Collect the first real dataset with paired noisy and clean
HSIs, which will be publicly released to facilitate fur-
ther researches;

• Formulate a noise model to synthesize realistic noisy
HSI, which can match the distribution of real noisy
data;

• Present a noise parameter estimation approach to cal-
ibrate the noise parameter of the given hyperspectral
camera.

2. Related Work
Noise removal from a single HSI is a well-developed

topic in computer vision [21] and remote sensing [30]. Ex-

Figure 2. A typical band with the obvious noise in the HSI.

isting methods toward HSI denoising can be roughly clas-
sified into two categories, including model-based methods
and learning-based methods. The model-based methods of-
ten iteratively solve an optimization problem with various
hand-crafted priors, e.g., smoothness [50], sparsity [15],
self-similarity [20], low-rankness [21]. Yuan et al. [50] em-
ployed spatial-spectral total variation to exploit smoothness
prior for HSI denoising. Chen et al. [15] proposed HSI de-
noising method with sparsity prior using wavelet shrinkage
and principal component analysis. Maggioni et al. [33] ex-
tended the BM3D filter [17] to volumetric data, which is
named BM4D and explores the sparsity and self-similarity
priors. Peng et al. [37] and Fu et al. [20] proposed dictio-
nary learning methods for HSI denoising with sparsity and
self-similarity priors. Xie et al. [46] proposed a HSI de-
noising method with tensor sparsity regularization. Zhang
et al. [52] restored noisy HSI with low-rank matrix recov-
ery. To exploit low-rankness prior for HSI denoising, more
elaborately designed methods have been successively pro-
posed [10, 11, 18, 21, 22, 43, 47]. However, the iterative op-
timization is time-consuming and the hand-crafted priors
only model the linear property of HSI, thus, cannot suffi-
ciently exploit the nonlinearity of various HSI in the real
world.

Recently, researchers pay more attention to learning-
based methods [9, 19, 29, 45, 51], which infer with less time
than model-based methods leveraging graphics processing
unit (GPU) and automatically learn the deep prior from
training dataset. Chang et al. [9] proposed a HSI denoising
network with residual learning and 2D convolution. Lin et
al. [29] combined matrix factorization with deep prior for
HSI denoising. Yuan et al. [51] employed a residual net-
work to recover HSI with a sliding window strategy. Dong
et al. [19] proposed a 3D HSI denoising network with U-
net architecture [40] to exploit spectral and spatial correla-
tions. Wei et al. [45] introduced recurrent architecture to
3D HSI denoising network to exploit global spectral cor-
relation. Nevertheless, due to lacking paired real HSI de-
noising dataset, these powerful learning-based methods are
often trained with synthetic data. The most widely-used ap-
proach is applying additive, white, Gaussian noise to gen-
erate noisy HSI [9, 19, 29, 51]. However, even the complex
noise [16, 45] also cannot effectively model the noise in re-
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alistic testing HSI, and leads to significant performance re-
duction according to our experiments.

Distribution difference between synthetic data and real
image is a general problem in learning-based denoising
methods. To alleviate this issue, there are mainly two so-
lutions. On the one hand, some works [1, 12, 13, 26] collect
paired real RGB images not only for evaluation but also for
network learning. For instance, Chen et al. [13] collected a
paired real dataset, with short-exposure noisy image and the
corresponding long-exposure clean image, for RGB image
denoising. Nevertheless, capturing an abundant paired real
dataset is obviously expensive and requires a great amount
of labor. More importantly, to the best our knowledge, there
is no appropriate paired real dataset for training HSI denois-
ing network.

On the other hand, to evade the difficulties in captur-
ing paired real data with camera, some researches focus
on improving the realism of synthetic dataset. By consid-
ering both photon and thermal noise, the works of [2] uti-
lized a signal-dependent heteroscedastic Gaussian model to
characterize the noise properties in real HSI. More recently,
Chen et al. [16, 45] utilized a noise model, considering the
Gaussian noise, stripe noise, deadline noise and impluse
noise, to simulate noisy HSI. However, these methods ei-
ther oversimplify noise ingredients caused by sensor, or do
not estimate the noise parameter for real noisy HSI.

In this work, we collect the first dataset with short-
exposure noisy HSI and corresponding long-exposure clean
HSI to support systematic reproducible research in HSI de-
noising. Based on the captured real HSI dataset, we propose
an accurate noise formulation model and a corresponding
noise parameter estimation method to synthesize realistic
dataset, and verify its effectiveness by comparing with the
captured real HSI dataset.

3. Real HSI Denoising Dataset
The existing learning-based methods [9, 19, 29, 45, 51]

often trained and evaluated on synthetic data, and the de-
noising and generalization capabilities on real data are not
considered, as there is no appropriate paired real HSI de-
noising dataset.

To support the systematic research, we collect the first
real dataset for training and benchmarking HSI denois-
ing. We employ a SOC710-VP hyperspectral camera,
manufactured by Surface Optics Corporation (SOC), USA.
The SOC710-VP hyperspectral camera is equipped with
a silicon-based charge-coupled device (CCD) and an in-
tegrated scanning system. With standard settings, the
SOC710-VP can capture HSI with 696× 520 pixels in spa-
tial resolution and 256 spectral bands from 376.76 nm to
1075.80 nm at 2.7 nm interval. The camera is mounted on
a sturdy tripod. For each scene, we adjust camera settings
such as aperture, focus and exposure time to maximize the

Figure 3. Example images in our captured HSI denoising dataset.
Outdoor images in the top two rows, indoor images in the bottom
two rows. Long-exposure clean images (ground truth) are shown
in left, and short-exposure images are shown in right in each im-
age. The noisy images are captured with 1/50 exposure time as
the reference image photographed with. The RGB is synthesized
by HSI bands in 482 nm, 539 nm and 607 nm.

quality of the reference images. Capturing a reference im-
age often needs dozens of seconds. Then, we employ a re-
mote control software to deliberately decrease the exposure
time by factor 50 for short-exposure image. In other word,
we capture noisy image with fractions of a second to sec-
onds. Since we capture multiple images for one scene and
the exposure time for reference image is necessarily long,
all scenes in the dataset are static. Some samples of ref-
erence images and corresponding noisy images are shown
in Figure 3. The dataset contains both indoor and outdoor
scenes. To capture high-quality reference images, we cap-
ture indoor images under incandescent lamp to lighten the
scene. The outdoor images are generally captured on sunny
days between 9:00 and 17:00 around, when the scene is
well-illuminated.

Following existing HSI datasets [3, 8, 49], we select 34
bands around from 400 nm to 700 nm in visible spectral
range. The dynamic range of the captured HSI is 12 bit,
and the spectral value range is 0 to 4095. This dataset
contains 62 long-exposure clean HSIs, of which each is
paired with a corresponding noisy HSI captured with short-
exposure time. We select paired noisy and reference im-
ages of 17 scenes to form the testing set, and the rest are
selected for training set. The captured real HSI denoising
dataset can evaluate the generalization capability of exist-
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ing learning-based methods and verify the effectiveness of
our noise model proposed in the next section.

4. Noise Modeling for HSI
Existing learning-based HSI denoising methods [9, 19,

29, 45, 51] are always learned on synthetic dataset, which
follows various noise models. However, there is no system-
atic and quantitative evaluation on real testing data for these
noise models.

In this section, we focus on synthesizing a realistic HSI
denoising dataset. We first formulate the noise model of
HSI. Then, we introduce a noise parameter estimation ap-
proach to calibrate the noise model. Finally, we synthesize
a realistic dataset for learning HSI denoising network based
on calibrated noise model.

4.1. Noise Formulation

Nowadays, most hyperspectral cameras utilize CCD sen-
sors. Fortunately, some works have discussed the vari-
ous noise components associated with CCD camera sys-
tems [23, 24, 41]. Let X (m,n, λ) indicate the clean HSI,
where 1 ≤ m ≤ M and 1 ≤ n ≤ N index the spatial co-
ordinate and 1 ≤ λ ≤ Λ indexes the spectral coordinate.
A linear model describing the relationship between the raw
sensor output in digital numbers, i.e., noisy HSI, and the
integrated photoelectrons during exposure can be expressed
as

Y(m,n, λ) = X (m,n, λ) +N (m,n, λ)

= kL(m,n, λ) +N (m,n, λ),
(1)

where Y is the noisy HSI, N indicates the summation of
all noises physically caused by light and camera, L repre-
sents the number of photoelectrons that is proportional to
the scene irradiation, and k denotes the system gain, respec-
tively. Note that we assume the system gain of all elements
in the captured HSI is identical due to the same CCD sensor
in hyperspectral camera.

To systematically analyze the noise in HSI, we divide
the noise into two components, e.g., signal-dependent noise
(correlated to incident light) and signal-independent noise
(uncorrelated to incident light).
Signal-dependent noise. During the exposure time, pho-
tons in the incident light hits the sensing area of the sensor.
Leveraging photoelectric conversion, the sensor transforms
photon to electrons. However, due to the quantum prop-
erty of light, the number of electrons collected by sensor
exists an ineluctable uncertainty, which can be formulated
as a Poisson distribution

[L(m,n, λ) +Nsd(m,n, λ)] ∼ p(L(m,n, λ)), (2)

where Nsd denotes the signal-dependent noise (i.e., shot
noise) and p(·) represents the Poisson distribution. Gener-
ally, due to the limitation of light characteristic, shot noise

cannot be avoided by hyperspectral sensors. Overall, signal-
dependent noise is shot noise caused by photon-to-electrons
stage.
Signal-independent noise. For CCD sensors in hyper-
spectral imaging, during the exposure time, thermal energy
in silicon generates free electrons, known as dark current
noise, which can be stored at collection sites and thereafter
become indistinguishable from photoelectrons. Read noise
is caused by amplifier, reset, and other electronic noise
sources during electrons-to-voltage stage. During voltage-
to-digital stage, due to the dynamic range of digital storage
medium, the continuous analog voltage signal is quantized
to discrete digital number, which causes the quantization
noise. These noises can be described as

Np(m,n, λ) = Nd(m,n, λ)+Nr(m,n, λ)+Nq(m,n, λ),
(3)

where Nd is the dark current noise, Nr is read noise, and
Nq is quantization noise. As these noises are caused by
camera circuit and not related to incident light, they are
signal-independent noises. Following the zero-mean noise
assumption for all pixels, these signal-independent noise
can be formulated as a Gaussian distribution

Np(n,m, λ) ∼ g(0, σp(λ)), (4)

where g(·) represents the Gaussian distribution and σp(λ)
denotes the scale parameter for the λ-th band.

Apart from these signal-independent noise, due to spatial
scanning design, hyperspectral camera often suffers from
stripe pattern noise, as illustrated in Figure 2. As we analyze
the hyperspectral camera employed to capture our real HSI
dataset, we find it contains both horizontal stripe pattern
noise and vertical stripe pattern noise, as shown in Figure
4. The reason is that each row is captured by the same CCD
unit during horizontal scanning, which causes the horizontal
stripe pattern noise. Meanwhile, each column is captured in
different time, which causes the vertical stripe pattern noise.
Thus, the stripe pattern noise Nsp can be represented as

Nsp(n,m, λ) = N h
sp(n,m, λ) +N v

sp(n,m, λ), (5)

where N h
sp and N v

sp denote horizontal and vertical stripe
pattern noise, respectively. The stripe pattern noise is
caused by scanning camera design and not related to in-
cident light, and it is signal-independent noise. Following
the assumption of zero-mean Gaussian distribution in each
row or column, we respectively formulate the horizontal and
vertical stripe pattern noise as

N h
sp(m,λ) ∼ g(0, σh(λ)),

N v
sp(n, λ) ∼ g(0, σv(λ)),

(6)

where σh(λ) and σv(λ) denote the scale parameters of hor-
izontal and vertical stripe pattern noise for the λ-th band,
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Figure 4. Analysis of stripe pattern noise. Performing discrete
Fourier transform on a bias frame, the highlighted vertical and
horizontal patterns in the centralized Fourier spectrum verify the
existence of both horizontal and vertical stripe pattern noises, re-
spectively.

respectively. Thus, the full signal-independent noise can be
described as

Nsi = Np +Nsp. (7)

To summarize, our full noise model can be formulated as

N = kNsd +Nsi,

= kNsd +Np +Nsp,
(8)

where k, Nsd and Nsi represents system gain, signal-
dependent noise and signal-independent noise, respectively.

4.2. Noise Parameter Estimation

To calibrate the noise parameters of our proposed noise
model for the given hyperspectral camera, we introduce a
noise parameter estimation method. According to Equa-
tions (2) (4) and (6), four parameters need to be calibrated,
including the system gain k for signal-dependent noiseNsd,
the scale parameters σp for pixel noiseNp, and scale param-
eters σh and σv for stripe pattern noise Nsp.

To estimate the system gain k, we record a colorchecker
under uniform light, as shown in Figure 5. Each color block
in colorchecker is cropped to form a sequence of images
captured with different intensities. Thus, only one image
need to be captured rather than multiple images with dif-
ferent luminous fluxes. According to the Photon Trans-
fer approach [25], we employ the sequence of color blocks
captured under well-lighted environment to determine sys-
tem gain k. With the estimated system gain k, we can add
signal-dependent noise to HSI.

To estimate the scale parameters σp, σh and σv , the bias
image is captured with the shortest exposure time under a
lightless condition, i.e., in a dark room and capping on the
camera lens. Bias image delineates the noise picture in-
dependent of light, blended by the multiple noise sources
aforementioned. Leveraging the zero-mean assumption of
pixel noise Np, we firstly extract the mean values of each
column or row of the λ-th band in bias image to estimate

Figure 5. The colorchecker employed to estimate system gain k.

the underlying intensities of vertical or horizontal stripe pat-
tern noise. Then, we can readily estimate the scale param-
eters σh(λ) or σv(λ) by approximating Gaussian distribu-
tion. Further, we subtract the estimated stripe pattern noise
from bias image and estimate the scale parameters σp(λ)
of pixel noise by maximizing the log-likelihood of Gaus-
sian distribution. Figure 6 shows the probability plot. The
goodness-of-fit can be evaluated by the coefficient of deter-
mination R2 [34], and the R2 is closer to 1 illustrates the
fitness is better. We can see that theR2 of σp(λ), σh(λ) and
σv(λ) are all close to 1, which means our method fits the
empirical data well.

(a) σp(λ) (b) σh(λ) (c) σv(λ)
Figure 6. The distribution fitting of signal-independent noise (a),
horizontal (b) and vertical (c) stripe noises. λ = 550 nm.

To make our calibrated noise model more robust, we es-
timate scale parameters of a sequence of bias images, and
fit them with Gaussian distribution in the logarithmic do-
main. When we employ our calibrated noise model, we can
sample the noise parameter from

log(σp(λ)) ∼ g(ap(λ), bp(λ)),

log(σh(λ)) ∼ g(ah(λ), bh(λ)),

log(σv(λ)) ∼ g(av(λ), bv(λ)),

(9)

where a(λ) and b(λ) denote the estimated mean and stan-
dard deviation of Gaussian distribution for λ-th band, re-
spectively.

4.3. Noisy Image Synthesis

Here, we describe how to synthesize noisy image with
the calibrated noise model. We first divide the clean HSI by
a factor to match the intensity of short-exposure noisy im-
age, which follows the setting of our captured real HSI de-
noising dataset in Section 3. Then, we add signal-dependent
noiseNsd by converting the HSI X into the number of pho-
toelectrons L, imposing a Poisson distribution on L, and
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Table 1. Quantitative results of different methods on our real HSI denoising dataset. Ours(Real) and Ours(Synthetic) denote our network
trained with our real and synthetic datasets, respectively. The best results are highlighted in bold.

Metrics
Methods

Noisy BM4D ITSReg LRTDTV QRNN3D Ours Ours
[33] [46] [43] [45] (Real) (Synthetic)

PSNR 20.907 25.318 25.459 25.564 23.832 30.583 30.451
SSIM 0.3186 0.8156 0.8400 0.7859 0.7917 0.8843 0.9004
SAM 25.2992 6.3024 5.1425 6.4881 10.0188 4.6816 4.1364

ERGAS 60.758 35.078 34.618 34.429 43.271 20.816 21.324

reverting the signal to X , with the estimated system gain
k. Besides, we sample the noise parameters according to
Equation (9), and generate pixel noiseNp and stripe pattern
noise Nsp. These generated noise are added to the scaled
clean HSI. Finally, we multiply the noisy HSI by the same
factor to match the intensity of clean HSI.

Following these steps, we generate a realistic synthetic
dataset with rich paired noisy and clean HSIs, which is ben-
eficial to train HSI denoising network and generalize it to
the evaluation on noisy HSI in the real world.

5. Experimental Results
In this section, we first introduce the settings in our ex-

periments, including implementation details and metrics for
quantitative evaluation. Then, our method is compared with
several state-of-the-art methods on our captured real HSI
denoising dataset. Finally, we discuss the effect of different
noise model to synthesize noisy data.

5.1. Settings

Implementation details. Recent researches [13, 31, 48]
have shown the effectiveness of CNN in image-to-image
tasks, especially U-Net [40]. Inspired by it, we employ a
modified U-Net with 3D convolution to better exploit spec-
tral correlation1.

To train our HSI denoising network, we crop overlapped
256× 256 spatial regions from realistic dataset synthesized
with our noise model and augment them by random flip-
ping and/or rotation. Besides, we also train networks with
our real HSI denoising dataset and employ the same aug-
mentation method.

Our implementation is based on PyTorch [36]. The mod-
els are trained with the L1 loss and Adam optimizer [27]
(β1 = 0.9 and β2 = 0.999) for 200 epochs. The initial
learning rate and mini-batch size are set to 2× 10−4 and 4,
respectively.
Evaluation metrics. We employ four quantitative quality
metrics to evaluate the performance of all methods, includ-
ing peak signal-to-noise ratio (PSNR), structural similarity

1The network design is not the contribution of this paper, and can be
replaced by other powerful HSI denoising network.

(SSIM) [44], spectral angle mapping (SAM) [28] and rela-
tive dimensionless global error in synthesis (ERGAS) [42].
PSNR and SSIM show the spatial accuracy, which are cal-
culate on each 2D spatial image and averaged over all spec-
tral band. SAM and ERGAS show the spectral fidelity.
SAM is calculated on each 1D spectral vector and averaged
over all spatial points, while ERGAS calculates the average
amount of specific spectral distortion normalized by mean
intensity of each band. Lager values of PSNR and SSIM
indicate better reconstruction, and smaller values of SAM
and ERGAS denote higher performance.

5.2. Evaluation on Real HSI Denoising Dataset

Compared methods. We compare our method with four
state-of-the-art HSI denoising methods on our captured real
HSI dataset, including three model-based methods, i.e.,
filtering-based approach (BM4D [33]), sparsity-based ap-
proach (ITSReg [46]), low-rankness tensor method (LRT-
DTV [43]), and one learning-based method, i.e., QRNN3D
[45]. We make great effort to reproduce the best results for
competitive methods with the codes that are released pub-
licly. Note that to investigate the generalization capability
of existing learning-based methods, we employ QRNN3D
trained with synthetic complex noise 2 to train and evaluate
on our real HSI denoising dataset.
Numerical results. Table 1 provides the averaged recov-
ery results over all test images on our real HSI denoising
dataset with indoor and outdoor scenes, to quantitatively
compare our method with BM4D, ITSReg, LRTDTV and
QRNN3D. The best results are highlighted in bold for each
metric. It can be seen that our method always has bet-
ter performance than all compared methods, which demon-
strates the effectiveness of our method. Compared with
the results of QRNN3D, our model trained with real and
synthetic datasets both significantly outperforms QRNN3D
learned on our dataset with its complex noise model, even
if QRNN3D is elaborately designed and has more complex
computation. It implies the importance of realistic training
dataset to guarantee the generalization capability for image
in the real world. Moreover, our network trained with syn-
thetic dataset is comparable with or even better than that
trained with real dataset in some metrics. The reason may

2The noise model in [45] is the same with that in [16].
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Noisy BM4D ITSReg LRTDTV
(17.466) (3.034) (2.152) (2.658)

QRNN3D Ours(Real) Ours(Synthetic) Reference
(6.867) (2.028) (2.137) (SAM)

Noisy BM4D ITSReg LRTDTV
(33.308) (9.218) (8.104) (10.729)

QRNN3D Ours(Real) Ours(Synthetic) Reference
(13.236) (7.130) (6.143) (SAM)

Figure 7. Visual quality comparison on two typical scenes for noise removing in our real HSI denoising dataset. The outdoor and indoor
scenes are shown in top and bottom rows, respectively. The noisy image, BM4D/ITSReg/LRTDTV/QRNN3D/Ours(Real)/Ours(Synthetic)
recovered results and the reference image on 550 nm are shown from left to right and from top to bottom. The SAM for the result images
is shown in the parenthesis. Our methods outperform all the competitive methods in terms of spatial and spectral fidelities.

be that the synthetic dataset generated with our noise model
can provide more samples for the same number of scenes,
compared with real dataset. It further verifies the superior-
ity of our accurately noise model.

Spatial quality. To visualize the experimental results, two
representative scenes are shown in Figure 7. The PSNR
and SAM values are provided for each results. Compared
with other methods, the recovered results by our method are
consistently more accurate for all scenes. Specifically, our

method can produce the visually pleasant results with less
artifacts and sharp edges. It verifies that our method can
provide higher spatial accuracy.

Spectral fidelity. Figure 8 shows the recovered spectra of
two points in the the selected images, which is indicated as
orange in Figure 7. We can see that the spectra recovered by
our method are much closer to the reference, which demon-
strates that our method obtain higher spectral fidelity.
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Figure 8. Comparison of spectral fidelity. The points of outdoor
and indoor scenes are indicated as orange in Figure 7. The spectra
recovered by our method are much closer to the reference.

Table 2. Quantitative results of our network trained with synthetic
datasets generated by different noise models. The complex noise
model is consist of Gaussian, stripe, deadline and impulse noises,
and utilized in previous learning-based method [45]. Homo. de-
notes the homoscedastic Gaussian noise model for pixel noise
(Np) and Hetero. represents the heteroscedastic Gaussian noise
model for signal-dependent and pixel noises (Nsd + Np). The
best results are highlighted in bold.

Noise Metrics
models PSNR SSIM SAM ERGAS

Complex [16] 28.337 0.8327 7.9049 28.831
Homo. 29.976 0.8446 5.8650 22.505
Hetero. 30.284 0.8946 4.4488 21.675

Ours 30.451 0.9004 4.1364 21.324

5.3. Ablation Study on Noise Models

To verify the effectiveness of the proposed noise model
for HSI, we compare the performance of network trained
with synthetic dataset generated by different noise models,
including complex noise model [16], homoscedastic Gaus-
sian noise model and heteroscedastic Gaussian noise model
[2]. The results are provided in Table 2. The complex noise
model is utilized by previous learning-based method [45] to
synthesize dataset. However, the complex noise model per-
forms worse than latter three calibrated noise models, for
it does not well calibrate and match the noise distribution
of real HSI data. Homoscedastic and heteroscedastic Gaus-
sian noise models perform worse than our full noise model,
even if we has calibrated the noise parameters for them. A
visual comparison of our noise model and other noise mod-
els is provided in Figure 9. It can be seen that the result of
our method is cleaner than compared methods, which ver-
ifies that our method can accurately formulate the noise in
the HSI and can generate the most realistic dataset for CNN
training.

Noisy Complex [16]
(26.499) (8.420)

Homo. Hetero.
(5.648) (4.374)

Ours Reference
(4.359) (SAM)

Figure 9. Visual quality comparison of our network trained with
different noise models. We show the spectral band in 550 nm.

6. Conclusion

In this paper, we mainly focus on how to capture real-
istic datasets for learning HSI denoising network. On the
one hand, we collect the first real HSI denoising dataset
with paired short-exposure noisy image and long-exposure
clean image, which is beneficial to follow-up researches in
this area. On the other hand, we propose an accurate noise
model to comprehensively consider the noise occurred in
imaging process. Besides, we present a noise parameter
estimation approach to calibrate the proposed noise model
for a given hyperspectral camera, and the calibrated noise
model can be employed to synthesize realistic dataset. Ex-
perimental results show that a network learned with only
synthetic data generated with our noise model performs as
well as that learned with real data. We hope our work could
provide foundations for further researches in the field of
HSI denoising with realistic data.
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