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Abstract

Learning RAW-to-sRGB mapping has drawn increasing
attention in recent years, wherein an input raw image is
trained to imitate the target SRGB image captured by an-
other camera. However, the severe color inconsistency
makes it very challenging to generate well-aligned training
pairs of input raw and target SRGB images. While learning
with inaccurately aligned supervision is prone to causing
pixel shift and producing blurry results. In this paper, we
circumvent such issue by presenting a joint learning model
for image alignment and RAW-to-sRGB mapping. To dimin-
ish the effect of color inconsistency in image alignment, we
introduce to use a global color mapping (GCM) module to
generate an initial SRGB image given the input raw image,
which can keep the spatial location of the pixels unchanged,
and the target sSRGB image is utilized to guide GCM for
converting the color towards it. Then a pre-trained opti-
cal flow estimation network (e.g., PWC-Net) is deployed to
warp the target SRGB image to align with the GCM output.
To alleviate the effect of inaccurately aligned supervision,
the warped target SRGB image is leveraged to learn RAW-
to-sRGB mapping. When training is done, the GCM module
and optical flow network can be detached, thereby bringing
no extra computation cost for inference. Experiments show
that our method performs favorably against state-of-the-
arts on ZRR and SR-RAW datasets. With our joint learning
model, a light-weight backbone can achieve better quantita-
tive and qualitative performance on ZRR dataset. Codes are
available at https://github.com/cszhilul998/
RAW-to—-sRGB.

1. Introduction

The image signal processing (ISP) pipeline refers to the
processing of raw sensor image for producing high qual-
ity display-referred SRGB image, and thus is pivotal for a
camera system. A representative ISP pipeline usually in-
volves a sequence of steps including demosaicking, white
balance, color correction, tone mapping, denoising, sharp-
ening, gamma correction and so on [40]. While hand-

crafted ISP solutions are usually adopted in current cam-
era systems, convolutional networks (CNNs) have exhibited
great potential in learning deep ISP model in an end-to-end
manner [22,29,45].

The end-to-end property of deep ISP makes it very com-
petitive to learn RAW-to-sRGB mapping to generate high
quality image for mobile camera [22]. Albeit mobile cam-
era has become the dominant sources of photos, it has a
smaller sensor size and limited aperture in comparison to
DSLR camera. By learning RAW-to-sRGB mapping to pro-
duce DSLR-like sSRGB image from mobile raw image, deep
ISP model can thus offer an encouraging way to close the
gap between mobile camera and DSLR camera. Moreover,
in contrast to 8-bit SRGB image, raw image usually has
higher-bit (e.g., 10-14 bit) and may convey richer details.
Therefore, learning RAW-to-sRGB mapping is beneficial to
performance improvement even for other low level vision
tasks, e.g., image super-resolution [62], low light image de-
noising [8] and high dynamic range imaging (HDR) [6].

However, when preparing training data, input raw im-
age and target SRGB image are usually taken using different
cameras (e.g., a smartphone and a DSLR) or with different
camera configurations (e.g., focal length). Consequently,
color inconsistency and spatial misalignment are usually in-
evitable. On the one hand, the color inconsistency makes
it very challenging to generate well-aligned training pairs
of input raw and target SRGB images. The input raw and
target SRGB images usually cannot be perfectly aligned by
existing methods [34,49], resulting in mild alignment. On
the other hand, learning with inaccurately aligned super-
vision is prone to pixel shift and producing blurry results
(see Fig. 1(b)). To alleviate the adverse effect of inaccurate
alignment, AWNet [9] adopted global context block [5] at
the cost of increasing inference time, while Zhang et al. [62]
presented a contextual bilateral (CoBi) loss to search the
best matching patch for supervision. However, the patch-
based alignment is unable to appropriately handle the spa-
tially variant misalignment caused by depth discrepancy be-
tween objects. As a result, their method is still prone to
producing blurry results as shown in Fig. 1(f).

In order to circumvent inaccurately aligned supervision
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(a) Input raw image (visualized) (b) PyNet [22]

(e) Input raw image (visualized)

(f) Zhang et al. [62]

problem, this paper presents a joint learning model for im-
age alignment and RAW-to-sRGB mapping. We argue that
one major reason that explains the inaccurate/mild align-
ment is the severe color inconsistency between input raw
and target SRGB images. Otherwise, existing optical flow
networks [10, 23, 46] can be readily utilized to fulfill the
task of image alignment. Thus, we suggest to perform im-
age alignment by concatenating a delicately designed global
color mapping (GCM) module with a pre-trained optical
flow estimation network (e.g., PWC-Net [46]). In particular,
the GCM module involves a stack of 1 x 1 convolutional lay-
ers to ensure that the mapping is spatially independent. To
overcome the obstacle of color inconsistency, we constrain
the GCM output to approximate the aligned target sSRGB
image. It is worth noting that GCM is deployed to align
target SRGB image only during training. Thus, we can also
take the target SRGB image and coordinate map to generate
conditional guidance for modulating GCM features towards
diminishing color inconsistency. Then, a pre-trained optical
flow estimation network (e.g., PWC-Net [46]) can be used
to align the target SRGB image with the GCM output, re-
sulting in the well aligned sSRGB image.

The aligned target SRGB image can serve as a better
supervision for training the RAW-to-sRGB mapping. In
particular, we propose a LiteISPNet by reducing the resid-
ual channel attention blocks (RCABs) in MW-ISPNet [20].
GCM and LiteISPNet are jointly trained for both the align-
ment of target SRGB image (i.e., GCM and PWC-Net) and
the RAW-to-sRGB mapping (i.e., LiteISPNet). When train-
ing is done, GCM and PWC-Net can be detached and only
LiteISPNet is required for handling test raw images, thereby

(c) Ours (d) Target sSRGB image

(h) Target SRGB image
Figure 1: Example of data pairs of ZRR and SR-RAW datasets, where clear spatial misalignment can be observed with the ref-
erence line. With such inaccurately aligned training data, PyNet [22] and Zhang ef al. [62] are prone to generating blurry re-
sults with spatial misalignment, while our results are well aligned with the input. Please zoom in for better observation.

(g) Ours

bringing no extra inference cost. Experiments on Zurich
RAW to RGB (ZRR) dataset [22] show that our solution is
effective in learning with inaccurately aligned supervision
and producing more fine details. Our proposed method also
outperforms the state-of-the-art method in terms of quan-
titative metrics, perceptual quality and computational ef-
ficiency. Furthermore, using SRResNet as the backbone,
experiments also show the effectiveness of our method for
image super-resolution on the SR-RAW dataset [62].

The main contributions of this work are three-fold:

* An effective approach is presented to circumvent the
task of learning RAW-to-sRGB mapping with inaccu-
rately aligned supervision.

* A global color mapping (GCM) module is delicately
designed to tackle the effect of color inconsistency
on image alignment. A spatially preserving network
(SPN) is leveraged to avoid spatial shift of pixels, and
the target SRGB image is adopted to modulate GCM
features towards diminishing color inconsistency.

* Quantitative and qualitative results on ZRR and SR-
RAW datasets show that our method outperforms the
state-of-the-art methods with no extra inference cost.

2. Related Work
2.1. Deep Networks for ISP

The camera ISP pipeline is deployed to produce display-
referred SRGB image from raw images. To this end, clas-
sical ISP has been extensively studied, which generally in-
volves a sequence of subtasks [40] including demosaick-
ing, white balance, color correction, tone mapping, denois-
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ing, sharpening, gamma correction and efc. For each sub-
task, a number of methods have been proposed in the liter-
ature [2, 17,42,48]. Motivated by the unprecedented suc-
cess of deep learning, CNNs have also been investigated
to tackle several hard ISP subtasks like image denoising
[57,59,60], demosaicking [12, 30, 47], auto-white-balance
(AWB) [1, 18,33,54] and tone mapping [3, |3, 16, 58].
Recently, several attempts have been made to learn a full
ISP pipeline with a deep model. Schwartz et al. [45] de-
signed a DeepISP model to produce a well-lit SRGB im-
age given a raw image captured under low-light environ-
ment. CameraNet [29] explicitly grouped the sub-tasks into
two categories (i.e., restoration and enhancement), and ex-
tracted the ground-truths by commercial software. Igna-
tov et al. [22] collected a dataset containing paired raw and
sRGB images, which respectively are captured by Huawei
P20 smartphone and Canon 5D Mark IV DSLR. With the
dataset proposed in [22], two challenges were held [20,21].
Among the decent methods proposed by the participants,
MW-ISPNet [20] leveraged MWCNN [32] and residual
channel attention blocks (RCABs) [63], AWNet [9] adopted
global context block [5] to learn non-local color mapping,
and they won first two places in the perceptual track [20]. In
this work, we present a LiteISPNet by reducing the number
of RCABs in MW-ISPNet [20] for learning full ISP model.
By incorporating LiteISPNet with the joint learning model,
better quantitative results and perceptual quality can be at-
tained in comparison to MW-ISPNet [20] and AWNet [9].

2.2. RAW-to-sRGB Mappings for More Tasks

In [22], the raw sensor and sRGB images are captured
using different cameras. This makes it feasible to empower
low-quality raw sensor to produce high-quality sSRGB im-
age by imitating either other cameras or camera with dif-
ferent configurations. Moreover, the pixels of raw images
are usually of higher-bit (e.g., 10 ~ 14 bit), spatially inde-
pendent and linear to brightness, thereby conveying richer
details for benefiting image enhancement. Chen et al. [8] pi-
oneered this line of work by leveraging paired low-light raw
and long-exposure SRGB images with different ISO settings
for extreme low-light image enhancement. And they fur-
ther explored extreme low-light video enhancement in [7].
Analogously, raw images are also utilized in other low level
vision tasks such as HDR [6] and image super-resolution
(SR) [55,62]. In this work, our method is also tested on
image SR [62] by using SRResNet [27] as backbone, and
achieves better quantitative and qualitative results.

Furthermore, studies have also been given for repurpos-
ing or merging RAW-to-sRGB mapping with high-level vi-
sion tasks. Wu et al. [53] designed a visionISP model
to generate better input for object detection. Schwartz et
al. [44] learned a model for image classification with raw
images via distilling the knowledge of an ISP pipeline and
an sSRGB image classification model.

2.3. Alignment of Paired Raw and sRGB Images

For learning RAW-to-sRGB mappings, input raw and
target SRGB images are usually taken using different cam-
eras or with different camera configurations [22, 62]. Mis-
alignment caused by multiple cameras and motion in the
scene are thus inevitable, hindering the learning of RAW-
to-sRGB mappings and giving rise to blurry or even pixel-
shifted results. For suppressing the effect of motion in the
scene, dual or multiple cameras are deployed to shoot con-
currently for some datasets like KITTI [11, 38] and Multi-
PIE [15]. Beam splitter is also introduced to collect image
pairs at the “same position” with different settings for real-
world super-resolution [25] and deblurring [4 1]. Albeit with
such equipments, misalignment remains unavoidable.

Several methods have been presented to align images
from different sources. SIFT keypoints [34] are adopted for
image registration in [19,22,52], where the homography can
be estimated via RANSAC algorithm [49]. Cai et al. [4] de-
signed a pixel-wise registration method that considers lumi-
nance adjustment for a real-world super-resolution dataset.
Li ef al. [28] warped the guidance image for facial im-
age restoration via optical flow based methods [10,23,46].
However, input raw and target SRGB images usually have
severe color inconsistency and cannot be perfectly aligned
by existing methods, thereby resulting in mild alignment.
Global context block [5, 9] and CoBi loss [62] have been
introduced to alleviate the effect of mild alignment, but are
still prone to producing blurry results. In this work, we in-
troduce a global color mapping (GCM) module for tackling
color inconsistency, and present a joint learning model for
both image alignment and RAW-to-sRGB mapping.

3. Proposed Method

In this section, we first give an overview of our model
for joint learning of image alignment and RAW-to-sRGB
mapping. Then, the design of the global color mapping
(GCM) module and LiteISPNet is detailed, and the learning
objectives are presented. And we also extend our proposed
method to other image enhancement tasks, e.g., image SR.

3.1. Joint Learning Model

Denote by x and y a raw image and the corresponding
target SRGB image. The RAW-to-sRGB mapping is used
to produce a SRGB image ¥ from x for approximating the
color characteristic of target SRGB image y,

y:I(X;@I)7 (1)

where Z denotes a RAW-to-sRGB mapping (e.g., LiteISP-
Net in Sec. 3.3) with the parameter O7.

However, x and y are usually taken using different cam-
eras or with diverse camera configurations, giving rise to in-
evitable spatial misalignment between them. Moreover, the
severe color inconsistency between x and y further makes
the image alignment more difficult. On the other hand, the
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Figure 2: Illustration of the proposed joint learning framework. (a) Pipeline of the joint learning model, where GCM module
converts the color of X (demosaicked from x via simple interpolation) for more accurate optical flow, then the warped SRGB
(y™) can provide aligned supervision for a joint training of GCM and LiteISPNet. (b) Structure of GCM module, which is
composed of a GuideNet and an SPN. The target SRGB (y) and a coordinate map (7) are deployed for guiding the color
conversion. (c) Structure of LiteISPNet, please refer to Sec. 3.3 for more details. (d) Structure of residual group used in (c).

RAW-to-sRGB mapping aims at imitating the color charac-
teristics and fine details of target SRGB image. The mis-
alignment between x and y is harmful to the learning of
RAW-t0-sRGB mapping, thereby being prone to produc-
ing blurry outputs with unfavorable pixel shift. Several ap-
proaches have been proposed to improve the alignment or
the learning robustness, but are still not sufficient in sup-
pressing blurry outputs.

Joint learning of image alignment and RAW-to-sRGB
mapping can offer some new chances to circumvent such
issue. On the one hand, RAW-to-sRGB mapping is help-
ful in diminishing the color inconsistency between x and y,
thus easing the difficulty of image alignment. On the other
hand, better image alignment also benefits RAW-to-sRGB
mapping for suppressing blurry outputs and pixel shift. Un-
fortunately, the RAW-to-sRGB mapping (e.g., [22]) cannot
completely avoid pixel shift (see Fig. 1), thus aligning y
with ¥ cannot solve the misalignment problem.

Instead of aligning y with ¥y, our joint learning model
leverages a delicately designed global color mapping
(GCM) module to generate a color-adjusted image y for
warping y. A simple demosaicking method (e.g., bicubic) is
first used to obtain x by filling in missing values of x. Then,
the GCM module is introduced as a pixel-wise mapping of
%, and thus can guarantee not to introduce any pixel shift in
color correction. Furthermore, GCM is only required dur-

ing training. So we can take target SRGB image and co-
ordinate map as input to generate conditional guidance for
modulating GCM features towards diminishing color incon-
sistency. Thus, the GCM module can be given by,

y:C(vaaT;G)C)a ()

where C denotes the GCM module, 7 € R2XH*XW g the
2D coordinate map containing the coordinate of the pixels,
which is normalized to [—1,1]. Given y and y, we use a
pre-trained optical flow network (denote by F), e.g., PWC-
Net [46], to estimate the optical flow ¥,

U =F(y,y) 3)

The estimated optical flow is then used to warp y to form a
warped target SRGB image,

yY =Wy, ¥), “4)

where W is a warping operation (e.g., bilinear interpola-
tion) [46]. Then, y* can serve as a well aligned target
sRGB image for supervising the RAW-to-sRGB mapping Z
in Eqn. (1), resulting in our joint learning model (see Fig. 2).

3.2. GCM Module

For optical flow estimation, the color-adjusted image y is
required to satisfy two prerequisites. (i) y should imitate the
color of y for diminishing the severe color inconsistency.
(ii) The spatial position of the pixels should keep the same
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as the input image X. According to [16], some commonly-
used image processing operations can be approximated or
formulated by multi-layer perceptron (MLP), and the pixel-
wise nature ensures that the input and output are strictly
aligned. Thus, we deploy a spatially preserving network
(SPN) as the backbone of our GCM module, which is com-
posed of a stack of 1 x 1 convolutional layers.

It is worth noting that GCM is only required during train-
ing. Thus the target SRGB image can also be safely fed into
GCM for better converting ¥ towards target SRGB image.
To this end, we build a GuideNet to generate a conditional
guidance vector from the raw (%) and target SRGB (y) pair
(see Fig. 2(b)). To alleviate the effect of misalignment in
generating guidance vector, we use a relatively large ker-
nel (i.e., 7 x 7) in GuideNet, and global average pooling is
deployed to acquire holistic information.

Besides, dark corner (a.k.a, vignetting) can be observed
in the raw images of several datasets (e.g., ZRR [20]), where
the brightness is gradually weakened from image center to
the boarders. Standard global color mapping, however, is
not sufficient for compensating the adverse effect of dark
corner. Fortunately, the effect of dark corner can be mod-
eled by a pixel-wise function of 2D coordinate map (i.e., T
in Eqn. (2)) [56]. As aremedy, we simply feed 7 to both the
SPN and the GuideNet for handling anti-vignetting while
learning color mapping simultaneously.

With the GCM output y, we use PWC-Net [46] to esti-
mate the optical flow for warping target SRGB image y. The
warped sSRGB image y" can then be adopted as the super-
vision for training GCM. Besides, we note that the pixel-
wise mapping makes GCM unable to remove the noise in
%. Nonetheless, benefiting from PWC-Net [46], we can still
estimate the optical flow between y and y robustly.

3.3. LiteISPNet

For alleviating mild alignment, existing methods usu-
ally build large models and exploit specific modules [9,22],
which improves the performance at the cost of increasing
inference time. Considering that a better alignment can be
attained by joint learning, we can adopt a more efficient net-
work for learning RAW-to-sRGB mapping to achieve com-
parable or even better performance. Thus, we present a
LiteISPNet by simplifying MW-ISPNet [20], which is a U-
Net [43] based multi-level wavelet ISP network. In particu-
lar, we put convolutional layer and residual group [63] be-
fore each wavelet decomposition by referring to [31]. More-
over, we also reduce the number of RCAB from 20 to 4
in each residual group to construct the LiteISPNet back-
bone. Fig. 2(c) illustrates the network structure of LiteISP-
Net. Benefited from the structure modification and joint
learning, LiteISPNet outperforms MW-ISPNet [20] quanti-
tatively and qualitatively with ~40% model size and ~20%
running time.

3.4. Learning Objectives

Using the pre-trained PWC-Net [46] for computing op-
tical flow, GCM and LiteISPNet can be jointly trained for
learning image alignment and RAW-to-sRGB mapping. In
the following, we respectively introduce the loss terms for
GCM and LiteISPNet.

Loss Term for GCM. Denote by y the GCM output in
Eqgn. 2 and y" the warped target SRGB image in Eqn. 4.
The loss term for GCM is given by,

Laoom(y,y") = [lmeo (y —y*)|1, )
where o denotes entry-wise product, || - ||; is ¢; loss and
m is a mask indicating valid positions of the optical flow.
Here, each element m; of m is defined as,

1, Wwa,o)i>1—c¢

i = { 0, otherwise ’ ©)

where 1 denotes an all-1 matrix, € is a threshold set to 0.001,
and [-]; denotes the i-th element of a matrix.
Loss Terms for LiteISPNet. Denote by y the LiteISPNet
output in Eqn. 1. The LiteISPNet is trained with a combina-
tion of ¢; loss and (VGG-based) perceptual loss [36], which
can be written as,

Lisp(¥,5") = Ay [lmo (¥ —y")[11
+ Aveal|lmo (¢(y) — ¢(y*))ll1,

where ¢ denotes the pre-trained VGG-19 [36] network, and
we set Ay, = Ayge = 1. Besides, to further enhance the
visual quality, we also train the LiteISPNet with adversar-
ial loss [14]. Following LSGAN [37], the loss function is
defined as,

)

1
LGAN = iExwpx [D(I(X)) - ”2a (8)

where D denotes the discriminator (see the suppl for de-
tailed structure configuration), which is trained by
1

L0 = 3By [D(3) — 1P + 3By DEGO)P. O

Then, LiteISPGAN is provided by training with the loss,

Lispcan = Lisp + AganLgan, (10
where Agany = 0.01.
Learning Objective. With the above loss terms, the overall
learning objective of our model can be defined by,

L = LccMm + Lisp/1sPGAN- (11)
3.5. Extension to Other Image Enhancement Tasks

As previously discussed in Sec. 2.2, RAW-to-sRGB
mapping has been combined with many other tasks, where
considerable efforts have been paid to mitigate the influence
of misalignment [6,55,62]. In these scenarios, the main ob-
stacle to alignment is similar with the ISP problem [22],
thus the proposed joint training framework can be naturally
extended to many image enhancement tasks. In this paper,
we conduct experiments on the raw image SR [62] task to
show the generalization ability of our method.
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(a) Raw image (visualized) (b) PyNet [22]

() AWNet (raw) [9] (d) AWNet (demosaicked) [9]

(e) MW-ISPNet (GAN) [20]

(f) Ours (LiteISPNet)

(g) Ours (LiteISPGAN) (h) GT

Figure 3: Visual comparisons on ZRR dataset. Please zoom in for better observation.

Table 1: Quantitative results on ZRR dataset for methods trained without and with adversarial loss.

Original GT
PSNR1/ SSIM+ / LPIPS |

Align GT with raw
PSNR+1/ SSIM+ / LPIPS

Align GT with result
PSNR+1/ SSIM+ / LPIPS |

21.19/0.7471/0.193
21.42/0.7478/0.198
21.53/0.7488/0.212
21.42/0.7544/0.213
21.55/0.7487/0.187

22.73/0.8451/0.152
23.27/0.8542/0.151
23.38/0.8497/0.164
23.07/0.8479/0.165
23.76 / 0.8730 / 0.133

22.97/0.8510/0.152
23.35/0.8559/0.151
23.41/0.8502/0.164
23.31/0.8578/0.164
23.87/0.8737/0.133

#Params  Time

Method M) (ms)

PyNet [22] 47.6 62.7
AWNet (raw) [9] 52.2 55.7
AWNet (demosaicked) [9] 50.1 62.7
MW-ISPNet [20] 29.2 110.5
Ours (LiteISPNet) 11.9 23.3
MW-ISPNet (GAN) [20] 29.2 110.5
Ours (LiteISPGAN) 11.9 23.3

21.16/0.7317/ 0.159
21.28/0.7387 / 0.159

22.80/0.8285/0.134
23.47/0.8642 /0.120

23.38/0.8513/0.131
23.56/0.8670 / 0.119

4. Experiments
4.1. Implementation Details

Datasets. We conduct experiments on two datasets, i.e.,
Zurich RAW to RGB (ZRR) [22] and SR-RAW [62].

In the ZRR dataset, 20 thousand image pairs are col-
lected and roughly aligned via SIFT keypoints [34] and
the RANSAC algorithm [49], and the cropped patches with
cross-correlation < 0.9 are discarded, resulting in 48,043
raw-sRGB pairs of size 448 x 448. We follow the official
division to train our LiteISPNet with 46.8k pairs, and report
the quantitative results on the remaining 1.2k pairs.

In the SR-RAW dataset, there are 500 scenes of images
collected. In each scene, the authors take 7 photos with
various focal length (24, 35, 50, 70, 100, 150 and 240 mm),
where the 24/100, 35/150 and 50/240 pairs form a 4 x super-
resolution dataset (i.e., with 1,500 pairs in total). We use
400 scenes for training, 50 scenes for validation, and report
the performance on 35/150 mm pairs of rest 50 scenes. For
a fair comparison, we replace LiteISPNet by SRResNet [27]
used in Zhang et al. [62] on the SR-RAW dataset.
Training Details. During training, data augmentation is
applied on training images, including random horizontal

flip, vertical flip and 90° rotation. In each iteration, 16
packed raw patches with 4 channels are extracted as inputs.
Our framework is optimized by ADAM algorithm [26] with
B1 = 0.9 and B2 = 0.999 for 100 epochs. The learning rate
is initially set to 1 x 10~* and is decayed to half after 50
epochs. The experiments are conducted with PyTorch [39]
framework on an Nvidia GeForce RTX 2080Ti GPU.
Evaluation Configurations. To evaluate the performance
quantitatively, we compute three metrics on RGB channels,
i.e., Peak Signal to Noise Ratio (PSNR), Structural Similar-
ity (SSIM) [51] and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [61]. Note that in this paper, we use the
version 0.1 of LPIPS trained on the AlexNet network. All
results of the competing methods are generated via the offi-
cially released model. In addition, we also count the infer-
ence time on ZRR dataset to evaluate model efficiency.
Besides providing the metrics computed with Original
GT, we additionally provide two sets of metrics for a com-
prehensive and more accurate comparison by considering
the alignment. Specifically, we align y with GCM output
y by PWC-Net [46], and the metrics computed with such
warped y are denoted by Align GT with raw. In addition,
considering that previous models trained with misaligned
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(a) BlcublcT (b) SRGANT [27] (©) ESRGANT [50] (d) SPSRT [35] (e) RealSRT [24]

(f) Raw image (visualized) (g) Zhang et al. [62] (h) Ours @) Ours (GAN) () GT
Figure 4: Visual comparison on SR-RAW dataset. T means that the result is obtained given LR sSRGB image as input.

Table 2: Quantitative results on SR-RAW dataset. Methods taking LR sRGB image as input are marked with .

Method Original GT Align GT with raw Align GT with result
PSNR+/ SSIM+1/LPIPS|  PSNR+t/SSIM+t/LPIPS]  PSNRt/ SSIM1/ LPIPS)

SRGANT [27] 18.42/0.5534/0.456 19.32/0.5999/0.419 21.89/0.6832/0.398
ESRGANT [50] 18.66 /0.5563 / 0.435 19.55/0.6018 /0.411 21.99/0.6785/0.393
SPSRT [35] 18.64 /0.5428 / 0.454 19.50/0.5854 /0.441 21.90/0.6603 / 0.425
RealSRT [24] 18.69 / 0.5570/ 0.435 19.58/0.6026 /0.412 22.03/0.6796 /0.394
Zhang et al. [62]  16.03/0.5184/0.517 17.43/0.5745/ 0.440 22.26/0.7205 /7 0.372
Ours 17.74 1 0.5572 1 0.430 22.00/0.7049 / 0.346 22.50/0.7205/ 0.342

Ours (GAN) 17.71/0.5501 7 0.422 22.10/0.6996 / 0.340 22.59/0.7156 / 0.336

data may cause pixel shift in the result, we further align the
ground-truth with the output of each method, and the met-
rics are denoted by Align GT with result.

4.2. Experimental Results on ZRR Dataset

To evaluate the effectiveness of the proposed method
on ZRR dataset, we compare our model with three state-
of-the-art methods, i.e., PyNet [22], AWNet [9] and MW-
ISPNet [20]. Note that AWNet (raw) and AWNet (demo-
saicked) denote two models proposed in AWNet, which take
4-channel raw image and 3-channel demosaicked image as
input respectively, and MW-ISPNet (GAN) denotes MW-
ISPNet trained with adversarial loss.

As shown in Table 1, LiteISPNet exceeds the compet-
ing methods on all metrics in Align GT with raw and Align
GT with result. Furthermore, when training with adversarial
loss, our LiteISPGAN achieves better LPIPS score (as well
as the PSNR and SSIM indices) than MW-ISPNet (GAN),
which is the winner of perceptual track in the AIM 2020
Learned Smartphone ISP challenge [20]. It is worth men-
tioning that our model achieves the superior performance
with a lightweight structure (the number of parameters is
~25% and ~40% of AWNet and MW-ISPNet), and the in-
ference time is only ~23 ms for a 448 x 448 input (~40%
and ~20% of AWNet and MW-ISPNet).

Besides, we show the qualitative results in Fig. 3. It can
be seen that the results of PyNet, AWNet (demosaicked)
and MW-ISPNet (GAN) are blurry. AWNet (raw) is able to
retain more details, however, it may generate artifacts and
the result is less satisfactory. In contrast, our results are
visually more pleasant while preserving finer details. Please
refer to the suppl. for more results.

4.3. Experimental Results on SR-RAW Dataset

The proposed method is also evaluated on SR-RAW
dataset for 4x SR. Apart from the raw image SR method
(Zhang et al. [62]), we also compare with state-of-the-
art SRGB image SR methods (i.e., SRGAN [27], ES-
RGAN [50], SPSR [35] and RealSR [24]), where low-
resolution sSRGB images provided in SR-RAW dataset are
taken as input. The quantitative and qualitative results are
given in Table 2 and Fig. 4, respectively.

We can see that SRGAN [27], ESRGAN [50], SPSR [35]
and RealSR [24] tend to generate noisy results with unde-
sired textures, and show unsatisfactory quantitative perfor-
mance. Although trained with mild misalignment robust
contextual bilateral (CoBi) loss, Zhang et al. [62] is un-
able to recover fine details and resulting in blurry results.
Our method, with the same SRResNet [27] backbone as
Zhang et al. [62], can preserve more textures and generate
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(b) SPN

(a) Full raw image (visualized)

Table 3: Ablation study on alignment

(c) SPN+y
Figure 5: Visual results of GCM output (y). With the guidance of y, the color of (c)(d) is closer to GT. Dark corner can also
be observed, as the patch in blue box is darker in (b)(c) but has similar illumination with the patch in red box in (d)(e).

Table 4: Ablation study on GCM. PSNR is calculated

A

(d) SPN+y+7(Ours)

(e) GT

Table 5: Ablation study on

strategies. with GCM output (¥) and final result (), respectively. LiteISPNet.
Method PSNR LPIPS GCM Components PSNR (y) PSNR (¥) #RCAB Time (ms) PSNR
SIFT (baseline) 2349 0.148 N/A - 23.49 2 15.3 23.54
Align y with y 23.33 0.136 SPN 20.67 23.61 4 233 23.76
Align y with X 23.52 0.135 SPN +y 26.33 23.69 8 38.0 23.74
Align y with y (Ours) 23.76 0.133 SPN +y + 7 (Ours)  26.93 23.76 20 91.5 23.79

neat results. More qualitative results are given in the suppl.

5. Ablation Study

In this section, we conduct extensive ablation studies on
the proposed joint learning framework, and report the PSNR
metric of Align GT with raw on the ZRR dataset.

5.1. Alignment Strategies

To solve the misalignment issue between input raw and
target SRGB image, an intuitive way is to align them. For
example, image pairs in ZRR dataset are roughly aligned
by SIFT [34] algorithm. We train a LiteISPNet with such
image pairs as a baseline (see Table 3), and evaluate several
potential strategies for better alignment. (1) Learning image
alignment jointly with RAW-to-sRGB mapping may lead to
an iterative optimization process, so we align y with the out-
put of LiteISPNet (y) during training. Unfortunately, RAW-
to-sRGB mapping is not a pixel-wise operation, resulting in
more freedom for optical flow estimation and may cause
more severe pixel shift. (2) We also estimate an optical flow
between the demosaicked image X and y, and align y with
%x. Pixel shift is alleviated to some extent, yet the quality
is still limited due to the color inconsistency. (3) With pro-
posed GCM module, we can obtain y whose color is con-
sistent with y while the pixel positions are same with X.
Thus, our method performs favorably against other align-
ment strategies. Please refer to the suppl. for visual results.

5.2. GCM Module

To evaluate each individual component of GCM module,
we further perform experiments as shown in Table 5. The
baseline is a LiteISPNet trained with mildly aligned image
pairs in the dataset. When adding an SPN to the baseline,
a 0.12 dB PSNR gain is attained owing to a rough color
correction. By further introducing the guidance provided by
target SRGB image y and concatenating the coordinate map
T, the quality of GCM output y is effectively improved (see
Fig. 5), which helps in optical flow estimation and providing

better aligned supervision. As a result, the performance of
the LiteISPNet is also promoted. Note that the ground-truth
y is applied to generate the GCM output, leading to a higher
PSNR metric than the LiteISPNet output. However, it is
unavailable during inference of the LiteISPNet.

5.3. Structure of LiteISPNet

To explore the structure of LiteISPNet, we also con-
ducted experiments on the number of residual channel at-
tention blocks (RCABSs) in each residual group (RG). As
shown in Table 5, using 4 RCABs is sufficient with the well
aligned training data, and deeper networks do not bring no-
ticeable performance improvements. Therefore, we apply 4
RCABs to achieve a better efficiency-performance tradeoff
in our LiteISPNet.

6. Conclusion

Learning with inaccurately aligned supervision is prone
to causing pixel shift and generating blurry results, but ex-
isting methods usually fail to solve the inherent misalign-
ment problem in many RAW-to-sRGB tasks due to the se-
vere color inconsistency between raw and sRGB pairs. To
diminish the effect of color inconsistency, we presented a
global color mapping (GCM) module, where SPN is lever-
aged to avoid spatial shift of pixels, and the target SRGB im-
age serves as a guidance to convert the color of the raw data.
Then, a pre-trained optical flow estimation model (e.g.,
PWC-Net) is deployed for obtaining well aligned super-
vision, which is used to train the RAW-to-sRGB mapping
in a joint learning manner. Extensive experiments on ZRR
and SR-RAW datasets show that our proposed method can
achieve better performance against state-of-the-art methods
both quantitatively and qualitatively.
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